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ABSTRACT
Unconditional cash transfers to the extreme poor via mo-
bile telephony represent a radical, new approach to giving.
GiveDirectly is a non-governmental organization (NGO) at
the vanguard of delivering this proven and effective approach
to reducing poverty. In this work, we streamline an impor-
tant step in the operations of the NGO by developing and
deploying a data-driven system for locating villages with ex-
treme poverty in Kenya and Uganda. Using the type of roof
of a home, thatched or metal, as a proxy for poverty, we de-
velop a new remote sensing approach for selecting extremely
poor villages to target for cash transfers. We develop an an-
alytics algorithm that estimates housing quality and density
in patches of publicly-available satellite imagery by learn-
ing a predictive model with sieves of template matching
results combined with color histograms as features. We de-
velop and deploy a crowdsourcing interface to obtain labeled
training data. We deploy the predictive model to construct
a fine-scale heat map of poverty and integrate this discov-
ered knowledge into the processes of GiveDirectly’s opera-
tions. Aggregating estimates at the village level, we pro-
duce a ranked list from which top villages are included in
GiveDirectly’s planned distribution of cash transfers. The
automated approach increases village selection efficiency sig-
nificantly.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing; I.5.4 [Pattern Recognition]: Applications; J.4
[Social and Behavioral Sciences]: Economics
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1. INTRODUCTION
GiveDirectly is a non-profit, non-governmental organiza-

tion (NGO) that aims to help people living in extreme poverty
by making unconditional cash transfers to them via mo-
bile telephony. Unlike other charitable giving, unconditional
cash transfers do not presuppose that food, livestock, or any
other provisions are best for the recipients; recipients are
free to spend the funds in any way they choose. Evidence
from a randomized control trial shows that this method of
charity has large positive effects on multiple measures of
recipients’ well-being [7]. Additionally, by forgoing large in-
termediary infrastructures, donations can be used extremely
efficiently; to date, more than 90% of each donated dollar
has reached a recipient. Currently operating in Kenya and
Uganda, GiveDirectly takes an end-to-end operations model
and does not outsource or subcontract work to other orga-
nizations.

Several steps comprise GiveDirectly’s operations. First,
funds are solicited from individual and institutional donors,
and collected in GiveDirectly’s bank account. Once a suf-
ficient amount has been collected, e.g. US$ 1 million, the
NGO initiates a campaign to disburse the donations to the
extremely poor. The first part of a campaign is enrolling
extremely poor households to be recipients; the second is
transferring funds to recipients via mobile money systems
such as M-Pesa [8]; and the third is conducting telephone
and in-person follow-up with each recipient.

Targeting extremely poor households starts by identifying
regions of the country with high poverty rates through data
from the national census. Within those regions, villages and
households are selected through a transparent criterion that
is associated with extreme poverty. In Kenya and Uganda,
where the NGO currently operates, the extremely poor tend
to live in homes with thatched roofs whereas the less poor
tend to live in homes with metal roofs. Villages with an
abundance of low-quality housing and access to a mobile
money agent are targeted.

After this selection stage, using a rigorous process of au-
dits and security measures to prevent errors and fraud, money
that has been transferred to GiveDirectly’s local mobile money
account is transferred directly to the recipient’s account.1 A
text message is sent to the recipient who then goes to a mo-
bile money agent—usually a shopkeeper in the village or
nearby town. The recipient transfers the new funds in his or
her account to the agent’s account in return for cash. The

1SIM cards are given to those recipients that do not have
mobile phones.
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recipient is then free to use the cash for any purpose of his
or her choosing.
In the current operations, the village selection phase in-

volves multiple rounds of site visits with their attendant
costs and logistical difficulties because governmental or other
poverty data does not exist at village-level granularity. In
this work, we formulate, implement, and deploy data-driven
approaches to streamline this part of a campaign, thereby
both increasing the efficiency of direct cash transfers and
improving targeting of transfers to the extremely poor.
In particular, the main contribution of this work is a re-

mote sensing system that estimates the quality and density
of housing in large areas of central east Africa at a fine scale
to facilitate village selection. Specifically, we apply a com-
bination of image processing and machine learning methods
on publicly-available electro-optical satellite imagery to con-
struct features for a regression that estimates the number of
houses of different roof types in an image patch. We use tem-
plate matching to find roofs in images, and color histograms
and supervised classification to differentiate roof types. We
take advantage of a special characteristic of roofs in this
part of the world: thresholding template matching results
over a sequence of values reveals different roof types like a
sieve. Therefore, all features are calculated over a sequence
of thresholds.
We develop an interactive image labeling platform and

deploy it to crowdsource the acquisition of training data on
roof locations and types for the supervised classification and
regression algorithms. We find that crowdsourcing results in
rapid and high-quality completion of the labeling task, which
we attribute to the intrinsic motivation of crowd members to
contribute to social good. The final learned regression func-
tion allows us to construct heat maps of housing density
and thatched-roof proportion from individual image patch-
level estimates; areas with a preponderance of thatched-roof
houses are to be targeted. From the heat maps, we aggre-
gate village-level proportions of thatched roofs to produced
a ranked list of villages to target.
Thus far, the data-driven prioritization of villages has

been deployed in three districts in Kenya.2 In total, the vil-
lages selected through the proposed approach have received
or are in the process of receiving over US$ 4 million in di-
rect cash transfers. Using the data mining approach saved
approximately 100 person-hours of manual work that would
have been incurred in manual ways of conducting village
selection. The system offers a way to quickly scale GiveDi-
rectly’s operations and generate further cost savings in the
future.
There is no specific prior work in the remote sensing lit-

erature on estimating the proportion of metal and thatched
roofs in a village. However, two typical remote sensing prob-
lems are related: land use classification and building extrac-
tion. The most common feature for land use classification
from single electro-optical images is color histograms as we
also use [11]. Building extraction methods in the literature,
including those based on the Hough transform [9], are pri-
marily focused on urban and suburban environments hav-
ing closely-spaced buildings with high variability in size and
shape, and also sometimes attempt to reconstruct the three-
dimensional geometry of the buildings. For our work, such
approaches are excessve because we are concerned with the

2We do not report names of districts and villages in this
paper to protect recipients and the process from harm.

(a) (b)

Figure 1: Homes in central east Africa with (a)
metal and (b) thatched roofs.

easier rural setting with roofs all of approximately the same
size and of a similar approximately rotationally-invariant
shape; therefore, we can use simpler template matching ap-
proaches with good performance.

The remainder of the paper is organized as follows. In Sec-
tion 2, we further discuss the penury criterion of thatched
and metal roofs. Section 3 discusses data available from
satellites and previous campaigns, and the crowdsourcing
we instituted to obtain further data. We present a feature
construction method from satellite imagery based on tem-
plate matching and use the constructed features for esti-
mating the density of homes and the proportion that have
thatched roofs in Section 4. Section 5 describes the deploy-
ment of the estimation system in GiveDirectly’s campaigns
for village targeting. Finally, Section 6 presents the results
and impact of the deployment to GiveDirectly and Section 7
provides a summary and suggestions for future research.

2. THATCHED AND METAL ROOFS
In many villages of central east Africa, the roofs of homes

are typically constructed in one of two ways: they are either
made of grass, i.e., are thatched, or are made of metal like
tin or iron. Photographs of the two roof types are shown
in Fig. 1. Metal roofs provide many benefits over thatched
roofs. For example, thatched roofs leak and collapse reg-
ularly, requiring replacement one or two times a year at
a cost of US$ 100 or US$ 150 per year in materials and
labor, whereas metal roofs last ten to fifteen years. Gut-
ters to collect rain water are sometimes installed with metal
roofs which lessens the incidence of waterborne diseases and
reduces the labor involved with fetching water from a po-
tentially large distance. Thatched roofs are also a comfort-
able habitat for mosquitoes, leading to higher incidence of
mosquito-borne diseases among people living under thatched
roofs [5].

Households that can afford to invest in a metal roof—
which can cost as much as US$ 564 purchasing power parity
in western Kenya [7]—typically do. Therefore the type of
roof, thatched or metal, is a reliable proxy of the poverty
level of a given area. In order to maximize operating ef-
ficiency and target the poorest, the NGO seeks to operate
in administrative units with a high proportion of thatched
roofs and low proportion of metal roofs.

In this work, we would like to quantify the proportion
of thatched and metal roofs in administrative units as effi-
ciently as possible. Toward this end, we turn to remote sens-
ing because it is possible to differentiate roof type in satellite
imagery. Leaving aside all other possible proxies for poverty,
the remainder of the paper is concerned with estimating the
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Figure 2: Example of metal roof in center of satellite
image.

proportion of thatched roofs in administrative units and us-
ing these estimates for village selection operations.

3. AVAILABLE DATA AND CROWDSOURC-
ING DEPLOYMENT

In this section, we describe various data sources available
to us including their limitations and also describe a crowd-
sourcing platform we deployed to obtain additional data.

3.1 Satellite Imagery
Various satellites take images of the earth with differ-

ing modalities (optical, hyperspectral, radar, etc.), spatial
resolutions, temporal resolutions, and costs of imagery. In
our application, we require the cost of obtaining imagery to
be minimal, preferably zero, and the spatial resolution to
be sufficient so that homes occupy more than a handful of
pixels. Temporal resolution is a secondary concern for us
and the electro-optical modality is sufficient. Under these
desiderata, we choose to pull 400×400 pixel images at the
highest zoom level available in this part of the world from the
Google Maps API, which is made available for free. Metal
and thatched roofs are distinguishable in these images, as
seen in Fig. 2 and Fig. 3.
Satellite images from Google Maps are not without issue.

In the part of Africa in which we are working, some small
regions are obscured by clouds. An example is shown in
Fig. 4(a). Since only one temporal snapshot is available per
spatial location, we have no way of removing the clouds.
Additionally, we have no indication on the provenance of
the images, specifically the time stamp of acquisition. In
examining the images for east central Africa, it is clear that
images have been taken in different seasons, which results in
different visual characteristics of roofs and the other compo-
nents of the scene. As shown in Fig. 4(b)–(d), some images
are from a wet season, some are from a dry season, and

Figure 3: Example of thatched roof in center of
satellite image.

some are from a season in which there is an abundance of
haze. These differences have a direct consequence on image
processing and machine learning, as we detail in Section 4.
Moreover, without a time stamp, we cannot say how out-of-
date our estimates may be in various small regions.

3.2 Data from Previous Censuses and Cam-
paigns

During the process of selecting individual households to
receive cash transfers, GiveDirectly sends staff to villages to
conduct censuses of the households there. Collected data in-
cludes geographic coordinates of individual homes obtained
using GPS receivers and an observation on roof type. Cen-
suses include all households in a village, irrespective of roof-
ing material, which may have provided excellent training
data for a supervised learning algorithm had it not been
for the following reason. Homes are often located at close
proximity to each other; the GPS coordinates did not have
enough precision and accuracy to allow us to draw a cor-
respondence between homes seen in satellite images and
homes recorded in censuses. Therefore, this data was not
usable as a labeled training set. This same reason prevented
us from using similar data from previous campaigns along
with the fact that only data on actual recipients (living un-
der thatched roofs) was collected in campaigns. Although
not amenable to supervised learning, the census coordinates
proved valuable in illuminating the geographic location of
typical populated villages as we discuss in Section 3.3, where
we describe a crowdsourcing application we developed to ob-
tain labeled training data.

There are several levels of administrative units in Kenya,
going from coarse to fine as province, district, division, loca-
tion, sublocation, and village. Prioritizing at the level of the
finest administrative unit, the village level in Kenya, requires
us to have the geographic coordinates of the boundaries of
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(a) (b)

(c) (d)

Figure 4: Satellite images taken under different con-
ditions: (a) cloudy, (b) wet, (c), dry, and (d) hazy.

these localities. As part of previous campaigns, GiveDirectly
obtained ESRI shapefiles of province, division, district, and
sublocation boundaries in Kenya, but not village boundaries.
The NGO also has PDF files of maps showing the village
boundaries, but not in any georeferenced format, as seen in
Fig. 5.
We had two options: work at the sublocation level only or

try to georeference the PDF files. Since villages are the level
at which the NGO desired to work, we set about convert-
ing the PDFs into shapefiles. The first step was to convert
the PDF maps into a format we could open in a GIS ap-
plication. Using Inkscape, an open source vector graphics
editing program [1], we opened the PDF files and deleted
all unnecessary features (rivers, roads, labels, etc.). We
then exported the stripped-down maps as DXF files. We
then opened these files in QGIS—an open source mapping
application—and converted the DXF files to GEOJSON.
Luckily, the PDF maps had been rendered in WGS 84, a
commonly-used projection system; therefore to georeference
the village-level map for each division, we wrote a simple
Python script that applied a linear transformation on the
coordinate system of the village-level maps to fit the bounds
of the division-level shapefile.
At this point, we had a fairly good geographic represen-

tation of villages. However, since villages are fairly small,
any discrepancies between their actual location and their lo-
cation in our shapefiles would yield innacurate results. To
address this problem, we opened our transformed shapefiles
in CartoDB, a web application for creating and editing maps
[12], and manually aligned the shapefiles to prominent fea-
tures like roads, rivers, and district boundaries. Finally,
so as to ensure the interpretability of our maps, we hand-
labeled each village polygon by referencing our shapefiles
against the original PDF images. While this process was
somewhat inexact, NGO staff members in Kenya were satis-
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Figure 5: Example village map.

fied with the results and confident that our village polygons
faithfully represented reality.

3.3 Crowdsourcing Application and Deploy-
ment

To create a collection of training data for our machine
learning algorithms, we develop an interactive image label-
ing platform in Python using Flask—a web development
framework [4]. As shown in Fig. 6, the application serves a
random satellite image to a user and allows him or her to
click on roofs in the image and indicate whether they are
thatched or metal. When the user is done with an image,
a new, unlabeled image is served and he or she replicates
the process. On the backend, we record the total number of
roofs of each type in each image, as well as the pixel coordi-
nates and type of each roof in each image. The platform is
deployed to the web using Heroku so that people can label
images in a distributed fashion.

Working with our partners at DataKind, we recruited vol-
unteers to help with the labeling process. DataKind initially
announced the need for volunteers via meetup.com.3 Within
an hour, more than 20 people signed up. Ultimately, 10 peo-
ple were selected for the crowdsourcing process. Volunteers
were trained to use the platform by telephone and via a
screencast we made and posted to YouTube.4 Once volun-
teers were comfortable with the platform, we opened it up.
Within one weekend, 10 users labeled all 1468 images in our
training set.

While developing the platform, one of the authors of this
paper labeled a random subset of 70 images. As a rough
indication of the crowd’s labeling quality, we find the cor-
relation coefficient between the number of thatched roofs
identified by the author and the crowd to be 0.783. Simi-
larly, the correlation coefficient for iron roofs is 0.698. Both
quantities are quite good; manual verification of other im-
ages also suggested that we could be highly confident in the
results.

We conjecture that the excellent response time and qual-
ity are consistent with findings by Mason and Watts [10]:
“When it is possible to use non-financial rewards, such as

3http://www.meetup.com/DataKind-NYC/events/
159235222/
4https://www.youtube.com/watch?v=0mg-37JhAL4
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Figure 6: Screen shot of application deployed for crowdsourced labeling of roofs in satellite images.

harnessing intrinsic motivation, the quality of the work will
be as good or better than using financial rewards, and there-
fore work can be accomplished as effectively for little to no
cost.” Helping to reduce poverty in the world, like other
projects for social good, provides much intrinsic motivation.

4. REGRESSION OF ROOF COUNT AND
ROOF TYPE PROPORTION

As we have discussed, the ultimate use of the data ana-
lytics we are performing is in selecting administrative units
with the smallest proportion of metal roofs. To achieve this
objective, we pose two regression problems: estimating the
total number of roofs in a 400×400 pixel satellite image and
estimating the proportion of metal roofs in the same image.
With both estimates, we can then obtain an aggregate pro-
portion of metal roofs for any region by taking a weighted
average of estimates from a tiling of image patches from that
region. Let us note that accurately classifying individual
roofs is not the ultimate objective because we are tackling
the village selection problem.
From the crowdsourcing, we have a training set of 1468

satellite images labeled by the number of thatched roofs
and the number of metal roofs, from which we can derive
the total number of roofs and the fraction that are metal.
These are the response variables to predict. We use random
forests with 50 trees per ensemble to perform the super-
vised regression because of their typical effectiveness, speed
in prediction, and ease of use [2]. We note that the fraction
of metal roofs response variable takes values in the range
[0, 1], but since all training samples fall in this range and
we use random forests, the constraint does not need to be
explicit in the learning. The features for the regressions are
constructed from satellite image patches as we discuss next.

We provide tenfold cross-validation accuracies for different
feature choices at the end of the section.

4.1 Feature Construction
In constructing features that relate to the number of roofs

and proportion of metal roofs in an image, we rely on two
concepts: color histograms and template matching. Since
metal roofs, thatched roofs, and the background all have
different color distributions, we can use counts of pixels at
different color values as features. In particular, we quantize
each of the three color channels (red, green and blue) into
eight equal-width bins to obtain twenty-four color histogram
features per image patch. Color histogram features have
long been used in image retrieval applications [6].

We also have a fairly good idea of the size and appearance
of central east African roofs, which is fairly stationary across
the region, so we can apply a basic template matching ap-
proach to find individual roofs in image patches [3]. We use
the sum of absolute differences matching score on grayscale
versions of image patches with two different templates: a
10×10 pixel white square and a 12×12 pixel template which
is a central portion of an actual thatched roof from one of
our satellite images. Specifically, denoting the image patch
as I and the template as T , the matching score at pixel j of
the image patch is:

d(Ij , T ) =

n∑
i=1

|Ii,j − Ti| , (1)

where n is the total number of pixels in the template (100 for
the white square template and 144 for the thatched roof tem-
plate). An example of applying the white square template
to a satellite image is shown in Fig. 7. The input image is
shown in Fig. 7(a) and the resulting matching score is shown
in Fig. 7(b).
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(a) (b)

(c) (d)

Figure 7: Template matching steps, from (a) the
input image, to the (b) matching score, to the (c)
thresholded matching score, to the (d) centroids of
connected components in the thresholded matching
score.

Once we have the template matching score for the image
patch, we apply a threshold to obtain a binary image, as
shown in Fig. 7(c) in which we can identify roofs. Based
on morphological processing, we find all of the connected
components in the binary image. The number of connected
compounds is equivalent to the number of roofs identified.
The centroids of the connected components that are found
are superimposed on the input image in Fig. 7(d).
Of course, the number of roofs identified is a function of

the threshold value applied to the template matching score,
as illustrated in Fig. 8. A unique characteristic of central
east African roofs that is not usually apparent in general im-
age processing or remote sensing applications is that chang-
ing the threshold sequentially results in a sieve or filtration
of roof type. When the white square template is used, as
the threshold is increased, the metal roofs are revealed first
and the thatched roofs are revealed later. Finally, non-roof
items are revealed. The opposite is true with the thatched
roof template. Therefore, the sequence of roof counts as a
function of threshold is a sieve-like feature that not only pro-
vides information on the total number of roofs, but also on
the proportion of metal and thatched roofs. A compound
of dwellings may be identified as a single roof or as several
roofs depending on the threshold, but according to our con-
ception of the problem and our instructions to the crowd,
compounds should be counted as multiple roofs.
The final set of features we construct combines template

matching with color histograms within a roof classification
scheme. Based on the crowdsourced labeling, we not only
have the counts of thatched and metal roofs in the 1468
images, but we also have the pixel locations of all of the
roofs with their labels. Among the crowdsourced image set,
there are 8536 roofs: 5999 thatched and 2537 metal. Taking
image patches surrounding the crowdsourced clicks, we can

construct color histogram features and use those to classify
the roofs. Fig. 9 shows the average color histogram by roof
type in wet, dry, and hazy images. From the figure, it is
apparent that on average, these color histogram features are
able to distinguish thatched from metal. The baseline clas-
sification accuracy is 5999/8536 = 70.28%. With a random
forests classifier with 50 trees (again chosen due to typical
effectiveness, speed, and ease of use), we are able to achieve
a tenfold cross-validation test accuracy of 89.67%.

To actually construct the final set of features, we use the
output of the template matching at each threshold, take a
15×15 patch centered at each roof that is found, use the
random forest classifier on color histogram features calcu-
lated on those patches, and compute the classification score
output by the random forests (average vote among all con-
stituent decision trees) [2]. The average classification score
among all roofs in the image at a given template matching
threshold is the feature for that image at that threshold,
which is a good indicator of the proportion of metal and
thatched roofs in the image.

Thus overall, we have three sets of features derived from
the color pixel values in a 400×400 image patch. First is the
color histogram features for the entire image patch. Second
is a vector of roof counts at different template matching
thresholds for two different templates. Third is the average
individual roof classification score at the same thresholds
for the two templates. The feature sets are summarized in
Table 1.

4.2 Cross-Validation Accuracy
As mentioned at the beginning of the section, we learn re-

gression functions for two different response variables using
random forests: total roofs in an image and proportion of
roofs that are metal in an image using the three sets of fea-
tures described above. We examine two options for dealing
with the different conditions during satellite image acqui-
sition: learning a single estimator for all conditions, and
learning separate estimators for the different conditions.

The figure of merit we use is mean absolute error (MAE)
because of its easier interpretability than root mean squared
error. However, we should note that MAE at the satellite
image level is not the ultimate metric of interest. Since we
ultimately average together estimates from all images in a
village (which should reduce the error assuming that the
image-level estimates are close to unbiased), and then rank
the villages, the ultimate metrics of interest are MAE at the
village level and especially rank correlation at the village
level. However, we unfortunately have no ground truth for
these quantities to report accuracy against.

Table 2 presents tenfold cross-validation testing error for
different sets of features used and the two approaches for
dealing with differing satellite conditions. As a point of com-
parison, if we use the mean value of the training response
variables as the estimates for all test samples, the baseline
MAEs are 2.8392 for total roofs and 0.2121 for the propor-
tion of roofs that are metal. In examining the table, we
see that separate regressions for the different conditions are
better than a single regression across the board. Among the
different options for feature sets, the combination of all fea-
tures yields the best performance in predicting the propor-
tion of metal roofs, with mean absolute error 0.1621. The
average roof classification score feature set does not help
in predicting the total number of roofs, which is expected
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Figure 8: Template matching results at different thresholds.

Table 1: Summary of Feature Sets
Feature Set Number of Features Number of Templates Number of Thresholds Total

full image color histogram 24 — — 24
template matching roof count 1 2 14 28

average classifications 1 2 14 28

because by averaging together the classification scores, we
lose all information about the total number of roofs. The
best performance is achieved by the combination of color
histograms features and template matching roof count fea-
tures with mean absolute error 1.9511. As we see in the
next section, these error values are sufficiently small for our
application and deployment; we use these feature sets going
forward.

5. DEPLOYMENT
Having learned regression functions as described in Sec-

tion 4, we now describe how we deploy the image processing
and machine learning algorithm as part of the NGO’s opera-
tions workflow. Based on previous experience and national-
level data, GiveDirectly already identified which districts
and divisions it is considering operating in. The question to
answer is which villages within those divisions to target.
For any new 400×400 pixel image that was not seen by

the predictive model during training, we can calculate its
features and estimate the total number of roofs and the pro-
portion metal using the learned model. The different satel-
lite conditions in images persist over fairly large contiguous
regions, so it is a quick and straightforward exercise to de-
fine bounding boxes corresponding to wet, dry, and hazy
conditions, and use the appropriate regression function.
One may ask why we do not crowdsource the entire label-

ing effort instead of using the crowd only to provide training
data for a machine learning algorithm. Our initial deploy-
ment scored approximately thirty times as many images as
in the training set and future deployments may have hun-
dreds of times as many images. Therefore relying on the
crowd for the entire labeling task is not scalable, especially
because we require consistency in the labels to allow com-
parisons between villages.
We download satellite images from the Google Maps API

that tile the entire region of interest (and could do so for
all of Kenya and Uganda if desired). We use equally-spaced
latitudes and longitudes to do so since the API is called
using latitude and longitude inputs. Since our region of
interest straddles the equator, equally-spaced longitudes are
an extremely close approximation to equally-spaced ground
locations. We estimate the two quantities of interest for
each downloaded image. We also perform a post-processing
equalization step to match estimated values across satellite

condition boundaries. The estimates for all image patches
are visualized as heat maps, as shown in Fig. 10 and Fig. 11.

The northwest part of the region of interest contains clouds
in the satellite images, which is reflected in both estimates.
The estimated total number of roofs in these parts is very
close to zero and the metal proportion is very high. A cen-
tral large town in the middle of the region of interest shows
up with a high roof count and high metal proportion. Lakes
and reservoirs in the southwest appear as areas of low roof
count and low metal proportion. A few thin horizontal and
vertical lines in the heatmaps are artifacts of images con-
taining a blend of satellite conditions.

The next step is to aggregate these fine-scale estimations
within village boundaries. We take the average metal pro-
portion weighted by total number of roofs of all image patches
whose centers fall within the village boundary polygon. The
resulting village-level metal roof proportions are mapped in
Fig. 12. The cloud image patches do not contribute to the
village-level metal proportion estimate because their total
roof estimate is almost zero; the clouds do have the effect of
occluding anything beneath them, but if the occluded por-
tion of a village is similar to the unoccluded portion, then
the effect is not too severe. The thin horizontal and vertical
line artifacts have negligible effect on village-level estimates.

The village-level estimates are also presented as a ranked
list, as in Table 3, which shows the top twelve (obfuscated)
villages for targeting. Village C14C has the highest pro-
portion of thatched roofs in the region of interest and is
a prime village to target. Although proportion of thatched
roofs is the main criterion in village targeting, there are some
logistical considerations as well, such as access to M-Pesa
agents and reachability from roads. We may incorporate
these other criteria into an overall village score in future it-
erations of the algorithm for future campaigns, but in the
initial campaigns for which the data-driven approach was
applied, the rankings as in Table 3 were used as a priority
list for manual selection that takes the other considerations
into account.

In fact, many of the villages at the top of the list had
already been enrolled in previous campaigns, providing a
validation to the analytics. Additionally, several villages
that constitute the main township area of this region were
estimated to have high metal proportion, which is consistent
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Table 2: Tenfold Cross-Validation Test Mean Absolute Error
Feature Set Total Roofs (1) Prop. Metal (1) Total Roofs (Sep.) Prop. Metal (Sep.)

full image color histogram (A) 2.1020 0.1755 2.0423 0.1744
template matching roof count (B) 2.0084 0.1755 1.9915 0.1755

average classifications (C) 2.4696 0.1704 2.4090 0.1670
(A) + (B) 1.9743 0.1712 1.9511 0.1720
(B) + (C) 2.0494 0.1658 2.0203 0.1630

(A) + (B) + (C) 2.0028 0.1656 1.9731 0.1621
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Figure 9: Average color histogram by roof type in
15×15 pixel patches of training set in (a) wet, (b)
dry, and (c) hazy images.
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Figure 10: Heat map of number of total estimated
roofs per 400×400 pixel image in the region of in-
terest.
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Figure 11: Heat map of proportion of roofs that are
metal in the region of interest.
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Figure 12: Estimated proportion of metal roofs in
villages in the region of interest.

Table 3: Village Rankings (Names Obfuscated)
Ranking Village Name Proportion Metal

1 C14C 0.19039
2 C107 0.21016
3 C12E 0.21664
4 V10F 0.22197
5 V13D 0.22446
6 L180 0.22547
7 L111 0.22733
8 L106 0.22876
9 L193 0.22877
10 C14D 0.22916
11 L106 0.22934
12 C170 0.22986

with local knowledge. One small circularly-shaped village in
the south central part of the region of interest is specifically
delineated as a separate village by government authorities
precisely bacause it is a small enclave with lower poverty;
the estimation results bear this out: the predicted metal
proportion is much lower than the surroundings.

6. IMPACT
In early 2014, GiveDirectly piloted the algorithm to iden-

tify approximately 50 villages in western Kenya for its largest
campaign to date, which will move US$ 4 million in cash
transfers. The approach immediately resulted in two ma-
jor improvements: reduced staff time and reduced risk of
inconsistent results.
Under the previous model, one staff member could collect

requisite data on five villages per day. The 507 villages that
the algorithm assessed would have required 101 person days
to complete manually. This represents a cost savings of ap-
proximately US$ 4,000 in wages, which is equal to the value
of cash transfers for four households (or twenty individuals)
and improves overall operating efficiency by approximately
ten basis points (defined as the fraction of total funds de-
livered directly to the poor). Reducing the person-hours
required also allows implementation to move more quickly
by completing the assessment in a matter of minutes rather
than days, which modestly increases leverage of fixed costs
like infrastructure and management time. These efficiencies

will accumulate as the algorithm is applied on an ongoing
basis.

The previous model also posed a risk of inconsistent re-
sults because it relied on multiple individuals, each liable
to make different human errors. Although the historical er-
ror rate is unknown, it is reasonable to conclude that the
algorithm improves outcomes by introducing a consistent
approach to the entire task.

7. CONCLUSION
In this work, we have applied data mining for social good

by developing a remote sensing approach for targeting un-
conditional cash transfers to the extremely poor. The al-
gorithms and other system components we have developed
have been deployed as decision support systems for plan-
ning GiveDirectly’s operations. The impact of this work in-
cludes tangible benefits for the NGO including operational
efficiency in cost and time, and reduction of inconsistency
risk. This project also demonstrates how enthusiastic crowds
can be when the goal is social good.

The machine learning and image processing components
used in this work are fairly standard, but are composed in
a novel way. Especially novel is the construction of sieve-
like features from template matching, which was possible
because of properties of thatched and metal roofs, but may
find application in other settings as well. The steps taken
to develop the system, its architecture, and even the results,
can be applied more generally to uplift humanity beyond
just targeting for unconditional cash transfers because fine-
scale estimates of poverty and other social indicators in rural
villages have myriad uses.

There are several avenues for future research. First, sev-
eral improvements to the algorithm are possible. In this
work, each image patch estimation is treated independently;
Markov random field models connecting neighboring image
patches, including thin-plate and thin-membrane priors of-
ten used in remote sensing, could be used to improve the
estimation results [15]. Moreover, the feature engineering
can be further enhanced using techniques beyond the very
basic template matching and color histograms used herein.
Alternative supervised learning beyond random forests could
also yield improved performance.

The first deployment has been to prioritize villages in sup-
port of a human decision maker. Additional future work in-
cludes collecting data on all other considerations in village
targeting and using them to fully automate the process. In
this line of work, operational costs could be accounted for
in the learning algorithms, cf. [14, 13], and schedules and
routes for campaigns could also be constructed in a data-
driven way.

One area of improvement for future campaigns relates to
the fact that not all roofs seen in satellite imagery corre-
spond to separate households. As discussed earlier, in this
work, we count each structure within a compound sepa-
rately. However, in the part of the world in which the NGO
currently operates, it is common for kitchens to be separate
structures and for there to be sleeping houses that depen-
dent sons live in once they reach puberty, both of which
should not be counted separately from the main house.
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