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I. INTRODUCTION

The modeling of data as the product of two lower-dimensional
(often matrix-valued) latent variables or factors has been widely used
in applications as varied as psychometrics, finance, recommender
systems, DNA microarray analysis, and foreground/background video
separation. In finance, the factors often correspond to market seg-
ments and market styles; in recommender systems, the factors cor-
respond to users and items. In many cases, the data matrices under
investigation are dynamic, i.e., are functions of time.

Matrix factorization methods have a long history in statistics and
signal processing, but most methods deal with the case where either
both factors are not time-varying or one of the factors is not [1]–
[3]. In contrast, we formulate an approach for factoring dynamic
matrices into two time-varying low-dimensional matrices [4], [5].
The proposed method uses recent developments in robust nonlinear
Kalman smoothing [6].

II. FORMULATION

Let a (possibly partially-observed) matrix Z ∈ RS×T be approx-
imately factored into latent matrices A ∈ RS×K and F ∈ RT×K

with K small. Moreover, let that matrix and consequently its factors
be time-varying: Zk ≈ AkF

T
k , k = 1, . . . , N . We would like to infer

Ak and Fk from Zk.
We pose this problem through a state space formulation to bring

a broad set of dynamic inference tools to bear [6]. In particular, we
can take both factors stacked together as the state variable Xk with
some forward model gk and some process noise Wk:

Xk =
[
Ak; Fk

]
; Xk = gk(Xk−1) +Wk. (1)

The forward model could simply be the identity operation, but we
include gk for generality. The key part of the proposed state space
model and a source of potential difficulty in optimization is the
nonlinear measurement model:

Zk = hk(Xk) + Vk; hk(Xk) = L(AkF
T
k ), (2)

where a linear measurement operator L, which can be a mask to
capture partial observation, is composed with the outer product of
Ak and Fk; there is also additive measurement noise Vk.

The distributions of the noises Vk and Wk are subject to design.
With desiderata of tracking sudden changes unexplained by the
forward model and obtaining good results in the face of artifacts in the
observed data, we would often like to choose these distributions to be
non-Gaussian. The Laplacian distribution and Student’s t-distribution
are robust alternatives.

Inference under the proposed model is a Kalman smoothing
operation that can be approached by an optimization formulation [6].
The optimization problem is:

min
X

ρW
(
g(X)−

[
X0; 0; · · · ; 0

])
+ρV (h(X)− Z)+ρr (X) ,

(3)

where g(X) =
[
X1; X2 − g2(X1); · · · ; XN − gN (XN−1)

]
and h(X) =

[
h1(X1); · · · ; hN (XN )

]
. The functions ρV and

ρW come from the choice of noise distribution, e.g. ‖ · ‖1 for
Laplacian and the non-convex function log(νσ2 + ·2) for Student’s
t. The ρr term may be included for extra regularization, such as to
promote smoothness across time on one of the factors. Problem (3)
is non-convex and thus it is difficult to have global guarantees.

We propose a matrix-free gradient-based optimization technique
that takes advantage of the special structure of the problem to
keep complexity per iteration moderate. Computing AkF

T
k requires

O(KST ) operations and computing gradients of ρ functions with
respect to Ak and Fk require the same. For example, the gradient
of ρV (Z − L(AkF

T
k )) with respect to Ak is L ∗ ∇ρV (Z −

L(AkF
T
k ))(Fk⊗ I). The gradients may be used within the L-BFGS

algorithm [7].

III. APPLICATION TO FINANCE

A key application area for matrix factorization methods is finance.
In many types of investments, including equities (e.g. stocks) and
fixed income (e.g. bonds), such methods are used to reduce the
dimensionality of the investment universe when modeling risk and
return. For time series of stock prices, S is often in the tens of
thousands, T in the hundreds, and K thirty to fifty. For fixed income
yield curves, often K = 3 with intuitive interpretations of the three
factors as level-shift, slope, and curvature changes.

Oftentimes in these applications, the matrices that are factored
are static; doing so allows the analyst to produce stable factors,
but such a model cannot react quickly to changes in the market.
Exponential smoothing methods with fast decay can allow dynamics
in the model but result in factors highly sensitive to short-lived
spikes in volatility and other market anomalies. Our proposed method,
since it incorporates robust Kalman smoothing, is able to both
react to changes and ignore short-lived anomalies. Parametric and
semiparametric methods for bond yield curves are not as flexible and
rich as our proposed approach [2], [8], [9].

In practice, we have applied the proposed approach to yield curve
modeling. For example, Fig. 1 shows the yield curve for eurodollar
contracts from 1998 to 2010. Factors estimated using the Kalman
smoothing for different example days with K = 3 are shown in
Fig. 2. The results show that the factors do tend to have the level-
shift, slope, and curvature interpretations and vary smoothly over
time, thereby reacting to market changes without sensitivity to spikes.

IV. DISCUSSION

In the big data era, modeling of high-dimensional dynamic matrices
is increasingly important. We have proposed a new, efficient, and
robust method for dynamic matrix factorization based on an opti-
mization viewpoint of nonlinear Kalman smoothing that permits both
factors to be time-varying. An extension of the proposed approach
with orthogonality constraints on the inferred factors allows us to
tackle the subspace estimation and tracking problem [10]–[12].



Fig. 1. Yield curve data for eurodollar contracts from 1998 to 2010. The
curve for a given time represents the prices for the contracts at different
available durations.

Fig. 2. Yield curve factor estimates using proposed Kalman smoothing
method for four different example days. The three factors per plot have an
intuitive interpretation as level-shift (flat curve), slope (mostly decreasing
curve), and curvature. The factors track changes smoothly across time due
to the robust Kalman smoothing formulation.
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