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Abstract
Non-discrimination is a recognized objective in algorithmic decision making. In
this paper, we introduce a novel probabilistic formulation of data pre-processing
for reducing discrimination. We propose a convex optimization for learning a data
transformation with three goals: controlling discrimination, limiting distortion
in individual data samples, and preserving utility. We characterize the impact
of limited sample size in accomplishing this objective. Two instances of the
proposed optimization are applied to datasets, including one on real-world criminal
recidivism. Results show that discrimination can be greatly reduced at a small cost
in classification accuracy.

1 Introduction
Discrimination is the prejudicial treatment of an individual based on membership in a legally protected
group such as a race or gender. Direct discrimination occurs when protected attributes are used
explicitly in making decisions, also known as disparate treatment. More pervasive nowadays is
indirect discrimination, in which protected attributes are not used but reliance on variables correlated
with them leads to significantly different outcomes for different groups. The latter phenomenon is
termed disparate impact. Indirect discrimination may be intentional, as in the historical practice of
“redlining” in the U.S. in which home mortgages were denied in zip codes populated primarily by
minorities. However, the doctrine of disparate impact applies regardless of actual intent.

Supervised learning algorithms, increasingly used for decision making in applications of consequence,
may at first be presumed to be fair and devoid of inherent bias, but in fact, inherit any bias or dis-
crimination present in the data on which they are trained [Calders and Žliobaitė, 2013]. Furthermore,
simply removing protected variables from the data is not enough since it does nothing to address
indirect discrimination and may in fact conceal it. The need for more sophisticated tools has made
discrimination discovery and prevention an important research area [Pedreschi et al., 2008].

Algorithmic discrimination prevention involves modifying one or more of the following to ensure
that decisions made by supervised learning methods are less biased: (a) the training data, (b) the
learning algorithm, and (c) the ensuing decisions themselves. These are respectively classified as
pre-processing [Hajian, 2013], in-processing [Fish et al., 2016, Zafar et al., 2016, Kamishima et al.,
2011] and post-processing approaches [Hardt et al., 2016]. In this paper, we focus on pre-processing
since it is the most flexible in terms of the data science pipeline: it is independent of the modeling
algorithm and can be integrated with data release and publishing mechanisms.

Researchers have also studied several notions of discrimination and fairness. Disparate impact is
addressed by the principles of statistical parity and group fairness [Feldman et al., 2015], which seek
similar outcomes for all groups. In contrast, individual fairness [Dwork et al., 2012] mandates that
similar individuals be treated similarly irrespective of group membership. For classifiers and other
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predictive models, equal error rates for different groups are a desirable property [Hardt et al., 2016],
as is calibration or lack of predictive bias in the predictions [Zhang and Neill, 2016]. The tension
between the last two notions is described by Kleinberg et al. [2017] and Chouldechova [2016]; the
work of Friedler et al. [2016] is in a similar vein. Corbett-Davies et al. [2017] discuss the trade-offs
in satisfying prevailing notions of algorithmic fairness from a public safety standpoint. Since the
present work pertains to pre-processing and not modeling, balanced error rates and predictive bias are
less relevant criteria. Instead we focus primarily on achieving group fairness while also accounting
for individual fairness through a distortion constraint.

Existing pre-processing approaches include sampling or re-weighting the data to neutralize dis-
criminatory effects [Kamiran and Calders, 2012], changing the individual data records [Hajian and
Domingo-Ferrer, 2013], and using t-closeness [Li et al., 2007] for discrimination control [Ruggieri,
2014]. A common theme is the importance of balancing discrimination control against utility of the
processed data. However, this prior work neither presents general and principled optimization frame-
works for trading off these two criteria, nor allows connections to be made to the broader statistical
learning and information theory literature via probabilistic descriptions. Another shortcoming is that
individual distortion or fairness is not made explicit.

Learn/Apply 
Transformation

Original data
{(Xi, Yi)}

Discriminatory
variable {Di}

Utility: pX,Y � pX̂,Ŷ

Individual distortion: (xi, yi) � (x̂i, ŷi)
Discrimination control: Ŷi �� Di

Learn/Apply
predictive

model (Ŷ |X̂, D)

Transformed data
{(Di, X̂i, Ŷi)}

Figure 1: The proposed pipeline for predictive learning
with discrimination prevention. Learn mode applies
with training data and apply mode with novel test data.
Note that test data also requires transformation before
predictions can be obtained.

In this work, we (i) introduce a probabilistic
framework for discrimination-preventing pre-
processing in supervised learning, (ii) formu-
late an optimization problem for producing pre-
processing transformations that trade off dis-
crimination control, data utility, and individ-
ual distortion, (iii) characterize theoretical prop-
erties of the optimization approach (e.g. con-
vexity, robustness to limited samples), and (iv)
benchmark the ensuing pre-processing transfor-
mations on real-word datasets. Our aim in part is
to work toward a more unified view of existing
pre-processing concepts and methods, which may help to suggest refinements. While discrimination
and utility are defined at the level of probability distributions, distortion is controlled on a per-sample
basis, thereby limiting the effect of the transformation on individuals and ensuring a degree of
individual fairness. Figure 1 illustrates the supervised learning pipeline that includes our proposed
discrimination-preventing pre-processing.

The work of Zemel et al. [2013] is closest to ours in also presenting a framework with three criteria
related to discrimination control (group fairness), individual fairness, and utility. However, the
criteria are manifested less directly than in our proposal. Discrimination control is posed in terms of
intermediate features rather than outcomes, individual distortion does not take outcomes into account
(being an `2-norm between original and transformed features), and utility is specific to a particular
classifier. Our formulation more naturally and generally encodes these fairness and utility desiderata.

Given the novelty of our formulation, we devote more effort than usual to discussing its motivations
and potential variations. We state conditions under which the proposed optimization problem is
convex. The optimization assumes as input an estimate of the distribution of the data which, in
practice, can be imprecise due to limited sample size. Accordingly, we characterize the possible
degradation in discrimination and utility guarantees at test time in terms of the training sample
size. To demonstrate our framework, we apply specific instances of it to a prison recidivism dataset
[ProPublica, 2017] and the UCI Adult dataset [Lichman, 2013]. We show that discrimination,
distortion, and utility loss can be controlled simultaneously with real data. We also show that the pre-
processed data reduces discrimination when training standard classifiers, particularly when compared
to the original data with and without removing protected variables. In the Supplementary Material
(SM), we describe in more detail the resulting transformations and the demographic patterns that they
reveal.

2 General Formulation
We are given a dataset consisting of n i.i.d. samples {(Di, Xi, Yi)}ni=1 from a joint distribution
pD,X,Y with domain D ×X × Y . Here D denotes one or more protected (discriminatory) variables
such as gender and race, X denotes other non-protected variables used for decision making, and Y
is an outcome random variable. We use the term ‘discriminatory’ interchangeably with ‘protected,’
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and not in the usual statistical sense. For instance, Yi could represent a loan approval decision for
individual i based on demographic information Di and credit score Xi. We focus in this paper on
discrete (or discretized) and finite domains D and X and binary outcomes, i.e. Y = {0, 1}. There is
no restriction on the dimensions of D and X .

Our goal is to determine a randomized mapping pX̂,Ŷ |X,Y,D that (i) transforms the given dataset into

a new dataset {(Di, X̂i, Ŷi)}ni=1 which may be used to train a model, and (ii) similarly transforms
data to which the model is applied, i.e. test data. Each (X̂i, Ŷi) is drawn independently from the same
domain X × Y as X,Y by applying pX̂,Ŷ |X,Y,D to the corresponding triplet (Di, Xi, Yi). Since Di

is retained as-is, we do not include it in the mapping to be determined. Motivation for retaining D is
discussed later in Section 3. For test samples, Yi is not available at the input while Ŷi may not be
needed at the output. In this case, a reduced mapping pX̂|X,D is used as given later in (9).

It is assumed that pD,X,Y is known along with its marginals and conditionals. This assumption is
often satisfied using the empirical distribution of {(Di, Xi, Yi)}ni=1. In Section 3, we state a result
ensuring that discrimination and utility loss continue to be controlled if the distribution used to
determine pX̂,Ŷ |X,Y,D differs from the distribution of test samples.

We propose that the mapping pX̂,Ŷ |X,Y,D satisfy the three following properties.

I. Discrimination Control. The first objective is to limit the dependence of the transformed outcome
Ŷ on the protected variables D. We propose two alternative formulations. The first requires the
conditional distribution pŶ |D to be close to a target distribution pYT

for all values of D,

J
(
pŶ |D(y|d), pYT

(y)
)
≤ εy,d ∀ d ∈ D, y ∈ {0, 1}, (1)

where J(·, ·) denotes some distance function. In the second formulation, we constrain the conditional
probability pŶ |D to be similar for any two values of D:

J
(
pŶ |D(y|d1), pŶ |D(y|d2)

)
≤ εy,d1,d2 ∀ d1, d2 ∈ D, y ∈ {0, 1}. (2)

Note that the number of such constraints is O(|D|2) as opposed to O(|D|) constraints in (1). The
choice of pYT

in (1), and J and ε in (1) and (2) should be informed by societal aspects, consultations
with domain experts and stakeholders, and legal considerations such as the “80% rule” [EEOC, 1979].

For this work, we choose J to be the following probability ratio measure:

J(p, q) =

∣∣∣∣pq − 1

∣∣∣∣ . (3)

This metric is motivated by the “80% rule.” The combination of (3) and (1) generalizes the extended
lift criterion proposed in the literature [Pedreschi et al., 2012], while the combination of (3) and (2)
generalizes selective and contrastive lift. The latter combination (2), (3) is used in the numerical
results in Section 4. We note that the selection of a ‘fair’ target distribution pYT

in (1) is not
straightforward; see Žliobaitė et al. [2011] for one such proposal. Despite its practical motivation, we
alert the reader that (3) may be unnecessarily restrictive when q is low.

In (1) and (2), discrimination control is imposed jointly with respect to all protected variables, e.g.
all combinations of gender and race if D consists of those two variables. An alternative is to take
the protected variables one at a time, and impose univariate discrimination control. In this work, we
opt for the more stringent joint discrimination control, although legal formulations tend to be of the
univariate type.

Formulations (1) and (2) control discrimination at the level of the overall population in the dataset.
It is also possible to control discrimination within segments of the population by conditioning on
additional variables B, where B is a subset of X and X is a collection of features. Constraint (1)
would then generalize to J

(
pŶ |D,B(y|d, b), pYT |B(y|b)

)
≤ εy,d,b for all d ∈ D, y ∈ {0, 1}, and

b ∈ B. Similar conditioning or ‘context’ for discrimination has been explored before in Hajian and
Domingo-Ferrer [2013] in the setting of association rule mining. For example, B could represent
the fraction of a pool of applicants that applied to a certain department, which enables the metric to
avoid statistical traps such as the Simpson’s paradox [Pearl, 2014]. One may wish to control for such
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variables in determining the presence of discrimination, while ensuring that population segments
created by conditioning are large enough to derive statistically valid inferences. Moreover, we note
that there may exist inaccessible latent variables that drive discrimination, and the metrics used here
are inherently limited by the available data. Recent definitions of fairness that seek to mitigate
this issue include [Johnson et al., 2016] and [Kusner et al., 2017]. We defer further investigation of
causality and conditional discrimination to future work.

II. Distortion Control. The mapping pX̂,Ŷ |X,Y,D should satisfy distortion constraints with respect
to the domain X × Y . These constraints restrict the mapping to reduce or avoid altogether certain
large changes (e.g. a very low credit score being mapped to a very high credit score). Given a
distortion metric δ : (X × Y)2 → R+, we constrain the conditional expectation of the distortion as,

E
[
δ((x, y), (X̂, Ŷ )) | D = d,X = x, Y = y

]
≤ cd,x,y ∀ (d, x, y) ∈ D × X × Y. (4)

We assume that δ(x, y, x, y) = 0 for all (x, y) ∈ X × Y . Constraint (4) is formulated with pointwise
conditioning on (D,X, Y ) = (d, x, y) in order to promote individual fairness. It ensures that
distortion is controlled for every combination of (d, x, y), i.e. every individual in the original dataset,
and more importantly, every individual to which a model is later applied. By way of contrast, an
average-case measure in which an expectation is also taken overD,X, Y may result in high distortion
for certain (d, x, y), likely those with low probability. Equation (4) also allows the level of control
cd,x,y to depend on (d, x, y) if desired. We also note that (4) is a property of the mapping pX̂,Ŷ |D,X,Y ,
and does not depend on the assumed distribution pD,X,Y .

The expectation over X̂, Ŷ in (4) encompasses several cases depending on the choices of the metric
δ and thresholds cd,x,y. If cd,x,y = 0, then no mappings with nonzero distortion are allowed for
individuals with original values (d, x, y). If cd,x,y > 0, then certain mappings may still be disallowed
by assigning them infinite distortion. Mappings with finite distortion are permissible subject to the
budget cd,x,y . Lastly, if δ is binary-valued (perhaps achieved by thresholding a multi-valued distortion
function), it can be seen as classifying mappings into desirable (δ = 0) and undesirable ones (δ = 1).
Here, (4) reduces to a bound on the conditional probability of an undesirable mapping, i.e.,

Pr
(
δ((x, y), (X̂, Ŷ )) = 1 | D = d,X = x, Y = y

)
≤ cd,x,y. (5)

III. Utility Preservation. In addition to constraints on individual distortions, we also require that
the distribution of (X̂, Ŷ ) be statistically close to the distribution of (X,Y ). This is to ensure that a
model learned from the transformed dataset (when averaged over the protected variables D) is not
too different from one learned from the original dataset, e.g. a bank’s existing policy for approving
loans. For a given dissimilarity measure ∆ between probability distributions (e.g. KL-divergence),
we require that ∆

(
pX̂,Ŷ , pX,Y

)
be small.

Optimization Formulation. Putting together the considerations from the three previous subsections,
we arrive at the optimization problem below for determining a randomized transformation pX̂,Ŷ |X,Y,D

mapping each sample (Di, Xi, Yi) to (X̂i, Ŷi):

min
pX̂,Ŷ |X,Y,D

∆
(
pX̂,Ŷ , pX,Y

)
s.t. J

(
pŶ |D(y|d), pYT

(y)
)
≤ εy,d and

E
[
δ((x, y), (X̂, Ŷ )) | D = d,X = x, Y = y

]
≤ cd,x,y ∀ (d, x, y) ∈ D × X × Y,

pX̂,Ŷ |X,Y,D is a valid distribution. (6)

We choose to minimize the utility loss ∆ subject to constraints on individual distortion (4) and
discrimination (we use (1) for concreteness, but (2) can be used instead), since it is more natural to
place bounds on the latter two.

The distortion constraints (4) are an essential component of the problem formulation (6). Without
(4) and assuming that pYT

= pY , it is possible to achieve perfect utility and non-discrimination
simply by sampling (X̂i, Ŷi) from the original distribution pX,Y independently of any inputs, i.e.
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pX̂,Ŷ |X,Y,D(x̂, ŷ|x, y, d) = pX̂,Ŷ (x̂, ŷ) = pX,Y (x̂, ŷ). Then ∆(pX̂,Ŷ , pX,Y ) = 0, and pŶ |D(y|d) =

pŶ (y) = pY (y) = pYT
(y) for all d ∈ D. Clearly, this solution is objectionable from the viewpoint of

individual fairness, especially for individuals to whom a subsequent model is applied since it amounts
to discarding an individual’s data and replacing it with a random sample from the population pX,Y .
Constraint (4) seeks to prevent such gross deviations from occurring. The distortion constraints may,
however, render the optimization infeasible, as illustrated in the SM.

3 Theoretical Properties

I. Convexity. We show conditions under which (6) is a convex or quasiconvex optimization problem,
and can thus be solved to optimality. The proof is presented in the SM.

Proposition 1. Problem (6) is a (quasi)convex optimization if ∆(·, ·) is (quasi)convex and J(·, ·) is
quasiconvex in their respective first arguments (with the second arguments fixed). If discrimination
constraint (2) is used in place of (1), then the condition on J is that it be jointly quasiconvex in both
arguments.

II. Generalizability of Discrimination Control. We now discuss the generalizability of discrimi-
nation guarantees (1) and (2) to unseen individuals, i.e. those to whom a model is applied. Recall
from Section 2 that the proposed transformation retains the protected variables D. We first consider
the case where models trained on the transformed data to predict Ŷ are allowed to depend on D.
While such models may qualify as disparate treatment, the intent and effect is to better mitigate
disparate impact resulting from the model. In this respect our proposal shares the same spirit with
‘fair’ affirmative action in Dwork et al. [2012] (fairer on account of distortion constraint (4)).

Assuming that predictive models for Ŷ can depend on D, let Ỹ be the output of such a model
based on D and X̂ . To remove the separate issue of model accuracy, suppose for simplicity that the
model provides a good approximation to the conditional distribution of Ŷ , i.e. pỸ |X̂,D(ỹ|x̂, d) ≈
pŶ |X̂,D(ỹ|x̂, d). Then for individuals in a protected group D = d, the conditional distribution of Ỹ
is given by

pỸ |D(ỹ|d) =
∑
x̂

pỸ |X̂,D(ỹ|x̂, d)pX̂|D(x̂|d) ≈
∑
x̂

pŶ |X̂,D(ỹ|x̂, d)pX̂|D(x̂|d) = pŶ |D(ỹ|d). (7)

Hence the model output pỸ |D can also be controlled by (1) or (2).

On the other hand, if D must be suppressed from the transformed data, perhaps to comply with legal
requirements regarding its non-use, then a predictive model can depend only on X̂ and approximate
pŶ |X̂ , i.e. pỸ |X̂,D(ỹ|x̂, d) = pỸ |X̂(ỹ|x̂) ≈ pŶ |X̂(ỹ|x̂). In this case we have

pỸ |D(ỹ|d) ≈
∑
x̂

pŶ |X̂(ỹ|x̂)pX̂|D(x̂|d), (8)

which in general is not equal to pŶ |D(ỹ|d) in (7). The quantity on the right-hand side of (8) is less
straightforward to control. We address this question in the SM.

III. Training and Application Considerations. The proposed optimization framework has two
modes of operation (Fig. 1): train and apply. In train mode, the optimization problem (6) is solved in
order to determine a mapping pX̂,Ŷ |X,Y,D for randomizing the training set. The randomized training

set, in turn, is used to fit a classification model fθ(X̂,D) that approximates pŶ |X̂,D, where θ are the
parameters of the model. At apply time, a new data point (X,D) is received and transformed into
(X̂,D) through a randomized mapping pX̂|X,D. The mapping pX̂|D,X is given by marginalizing

over Y, Ŷ :

pX̂|D,X(x̂|d, x) =
∑
y,ŷ

pX̂,Ŷ |X,Y,D(x̂, ŷ|x, y, d)pY |X,D(y|x, d). (9)

Assuming that the variable D is not suppressed, and that the marginals are known, then the utility
and discrimination guarantees set during train time still hold during apply time, as discussed above.
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However, the distortion control will inevitably change, since the mapping has been marginalized over
Y . More specifically, the bound on the expected distortion for each sample becomes

E
[
E
[
δ((x, Y ), (X̂, Ŷ )) | D = d,X = x, Y

]
| D = d,X = x

]
≤
∑
y∈Y

pY |X,D(y|x, d)cx,y,d , cx,d .

(10)
If the distortion control values cx,y,d are independent of y, then the upper-bound on distortion set
during training time still holds during apply time. Otherwise, (10) provides a bound on individual
distortion at apply time. The same guarantee holds for the case when D is suppressed.

IV. Robustness to Mismatched Prior Distribution Estimation. We may also consider the case
where the distribution pD,X,Y used to determine the transformation differs from the distribution
qD,X,Y of test samples. This occurs, for example, when pD,X,Y is the empirical distribution computed
from n i.i.d. samples from an unknown distribution qD,X,Y . In this situation, discrimination control
and utility are still guaranteed for samples drawn from qD,X,Y that are transformed using pŶ ,X̂|X,Y,D,
where the latter is obtained by solving (6) with pD,X,Y . In particular, denoting by qŶ |D and qX̂,Ŷ
the corresponding distributions for Ŷ , X̂ and D when qD,X,Y is transformed using pŶ ,X̂|X,Y,D, we

have J
(
pŶ |D(y|d), pYT

(y)
)
→ J

(
qŶ |D(y|d), pYT

(y)
)

and ∆
(
pX,Y , pX̂,Ŷ

)
→ ∆

(
qX,Y , qX̂,Ŷ

)
for n sufficiently large (the distortion control constraints (4) only depend on pŶ ,X̂|X,Y,D). The next
proposition provides an estimate of the rate of this convergence in terms of n and assuming pY,D(y, d)
is fixed and bounded away from zero. Its proof can be found in the SM.

Proposition 2. Let pD,X,Y be the empirical distribution obtained from n i.i.d. samples that is used to
determine the mapping pŶ ,X̂|X,Y,D, and qD,X,Y be the true distribution of the data, with support size

m , |X ×Y ×D|. In addition, denote by qD,X̂,Ŷ the joint distribution after applying pŶ ,X̂|X,Y,D to

samples from qD,X,Y . If for all y ∈ Y , d ∈ D we have pY,D(y, d) > 0, J
(
pŶ |D(y|d), pYT

(y)
)
≤ ε,

where J is given in (3), and

∆
(
pX,Y , pX̂,Ŷ

)
=
∑
x,y

∣∣∣pX,Y (x, y)− pX̂,Ŷ (x, y)
∣∣∣ ≤ µ,

with probability 1− β,

max
{
J
(
qŶ |D(y|d), pYT

(y)
)
− ε,∆

(
qX,Y , qX̂,Ŷ

)
− µ

}
.

√
m

n
log
(

1 +
n

m

)
− log β

n
. (11)

Proposition 2 guarantees that, as long as n is sufficiently large, the utility and discrimination control
guarantees will approximately hold when pX̂,Ŷ |Y,X,D is applied to fresh samples drawn from qD,X,Y .
In particular, the utility and discrimination guarantees will converge to the ones used as parameters in

the optimization at a rate that is at least
√

1
n log n. The distortion control guarantees (4) are a property

of the mapping pX̂,Ŷ |Y,X,D, and do not depend on the distribution of the data. The convergence rate
is tied to the support size, and for large m a dimensionality reduction step may be required to assuage
generalization issues. The same upper bound on convergence rate holds for discrimination constraints
of the form (2).

4 Experimental Results

This section provides a numerical demonstration of running the data processing pipeline in Fig. 1. Our
focus here is on the discrimination-accuracy trade-off obtained when the pre-processed data is used
to train standard prediction algorithms. The SM presents additional results on the trade-off between
discrimination control ε and utility ∆ as well as an analysis of the optimized data transformations.

We apply the pipeline to ProPublica’s COMPAS recidivism data [ProPublica, 2017] and the UCI
Adult dataset [Lichman, 2013]. From the COMPAS dataset (7214 instances), we select severity of
charge, number of prior crimes, and age category to be the decision variables (X). The outcome
variable (Y ) is a binary indicator of whether the individual recidivated (re-offended), and race is
set to be the protected variable (D). The encoding of categorical variables is described in the SM.
For the Adult dataset (32561 instances), the features were categorized as protected variables (D):
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gender (male, female); decision variables (X): age (quantized to decades) and education (quantized
to years); and response variable (Y ): income (binary).

Our proposed approach is benchmarked against two baselines, leaving the dataset as-is and sup-
pressing the protected variable D during training and testing. We also compare against the learning
fair representations (LFR) algorithm from Zemel et al. [2013]. As discussed in the introduction,
LFR has fundamental differences from the proposed framework. In particular, LFR only considers
binary-valued D, and consequently, we restrict D to be binary in the experiments presented here.
However, our method is not restricted to D being binary or univariate. Illustrations of our method on
non-binary D are provided in the SM.

The details of applying our method to the datasets are as follows. For each train/test split, we
approximate pD,X,Y using the empirical distribution of (D,X, Y ) in the training set and solve (6)
using a standard convex solver [Diamond and Boyd, 2016]. For both datasets the utility metric
∆ is the total variation distance, i.e. ∆

(
pX,Y , pX̂,Ŷ

)
= 1

2

∑
x,y

∣∣∣pX,Y (x, y)− pX̂,Ŷ (x, y)
∣∣∣, the

distortion constraint is the combination of (2) and (3), and two levels of discrimination control are
used, ε = {0.05, 0.1}. The distortion function δ is chosen differently for the two datasets as described
below, based on the differing semantics of the variables in the two applications. The specific values
were chosen for demonstration purposes to be reasonable to our judgment and can easily be tuned
according to the desires of a practitioner. We emphasize that the distortion values were not selected
to optimize the results presented here. All experiments run in minutes on a standard laptop.

Distortion function for COMPAS: We use the expected distortion constraint in (4) with cd,x,y =
0.4, 0.3 for d being respectively African-American and Caucasian. The distortion function δ has the
following behavior. Jumps of more than one category in age and prior counts are heavily discouraged
by a high distortion penalty (104) for such transformations. We impose the same penalty on increases
in recidivism (change of Y from 0 to 1). Both these choices are made in the interest of individual
fairness. Furthermore, for every jump to an adjacent category for age and prior counts, a penalty of 1
is assessed, and a similar jump in charge degree incurs a penalty of 2. Reduction in recidivism (1 to
0) has a penalty of 2. The total distortion for each individual is the sum of squares of distortions for
each attribute of X .

Distortion function for Adult: We use three conditional probability constraints of the form in (5). In
constraint i, the distortion function returns 1 in case (i) and 0 otherwise: (1) if income is decreased,
age is not changed and education is increased by at most 1 year, (2) if age is changed by a decade
and education is increased by at most 1 year regardless of the change of income, (3) if age is
changed by more than a decade or education is lowered by any amount or increased by more than 1
year. The corresponding probability bounds cd,x,y are 0.1, 0.05, 0 (no dependence on d, x, y). As a
consequence, and in the same broad spirit as for COMPAS, decreases in income, small changes in
age, and small increases in education (events (1), (2)) are permitted with small probabilities, while
larger changes in age and education (event (3)) are not allowed at all.

Once the optimized randomized mapping pX̂,Ŷ |D,X,Y is determined, we apply it to the training set to
obtain a new perturbed training set, which is then used to fit two classifiers: logistic regression (LR)
and random forest (RF). For the test set, we first compute the test-time mapping pX̂|D,X in (9) using
pX̂,Ŷ |D,X,Y and pD,X,Y estimated from the training set. We then independently randomize each

test sample (di, xi) using pX̂|D,X , preserving the protected variable D, i.e. (di, xi)
pX̂|D,X−−−−−→ (di, x̂i).

Each trained classifier f is applied to the transformed test samples, obtaining an estimate ỹi =
f(di, x̂i) which is evaluated against yi. These estimates induce an empirical posterior distribution
given by pỸ |D(1|d) = 1

nd

∑
{x̂i,di}:di=d f(di, x̂i), where nd is the number of samples with di = d.

For the two baselines, the above procedure is repeated without data transformation except for dropping
D throughout for the second baseline (D is still used to compute the discrimination of the resulting
classifier). Due to the lack of available code, we implemented LFR ourselves in Python and solved
the associated optimization problem using the SciPy package. The parameters for LFR were set as
recommended in Zemel et al. [2013]: Az = 50 (group fairness), Ax = 0.01 (individual fairness), and
Ay = 1 (prediction accuracy). The results did not significantly change within a reasonable variation
of these three parameters.
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Figure 2: Discrimination-AUC plots for two different classifiers. Top row is for COMPAS dataset, and bottom
row for UCI Adult dataset. First column is logistic regression (LR), and second column is random forests (RF).

Results. We report the trade-off between two metrics: (i) the empirical discrimination of the classifier
on the test set, given by maxd,d′∈D J(pỸ |D(1|d), pỸ |D(1|d′)), and (ii) the empirical accuracy, mea-
sured by the Area under ROC (AUC) of ỹi = f(di, x̂i) compared to yi, using 5-fold cross validation.
Fig. 2 presents the operating points achieved by each procedure in the discrimination-accuracy space
as measured by these metrics. For the COMPAS dataset, there is significant discrimination in the
original dataset, which is reflected by both LR and RF when the data is not transformed. Dropping the
D variable reduces discrimination with a negligible impact on classification. However discrimination
is far from removed since the features X are correlated with D, i.e. there is indirect discrimination.
LFR with the recommended parameters is successful in further reducing discrimination while still
achieving high prediction performance for the task.

Our proposed optimized pre-processing approach successfully decreases the empirical discrimination
close to the target ε values (x-axis). Deviations are expected due to the approximation of Ŷ , the output
of the transformation, by Ỹ , the output of each classifier, and also due to the randomized nature of
the method. The decreased discrimination comes at an accuracy cost, which is greater in this case
than for LFR. A possible explanation is that LFR is free to search across different representations
whereas our method is restricted by the chosen distortion metric and having to preserve the domain of
the original variables. For example, for COMPAS we heavily penalize increases in recidivism from 0
to 1 as well as large changes in prior counts and age. When combined with the other constraints in
the optimization, this may alter the joint distribution after perturbation and by extension the classifier
output. Increased accuracy could be obtained by relaxing the distortion constraint, as long as this
is acceptable to the practitioner. We highlight again that our distortion metric was not chosen to
explicitly optimize performance on this task, and should be guided by the practitioner. Nevertheless,
we do successfully obtain a controlled reduction of discrimination while avoiding unwanted deviations
in the randomized mapping.

For the Adult dataset, dropping the protected variable does significantly reduce discrimination, in
contrast with COMPAS. Our method further reduces discrimination towards the target ε values. The
loss of prediction performance is again due to satisfying the distortion and discrimination constraints.
On the other hand, LFR with the recommended parameters provides only a small reduction in
discrimination. We note that this does not contradict the results in Zemel et al. [2013], since here we
have adopted a multiplicative discrimination metric (3) whereas Zemel et al. [2013] used an additive
metric. Moreover, we reduced the Adult dataset to 31 binary features which is different from Zemel
et al. [2013] where they additionally considered the test dataset for Adult (12661 instances) also and
created 103 binary features. By varying the LFR parameters, it is possible to attain low empirical
discrimination but with a large loss in prediction performance (below the plotted range). Thus, we
do not claim that our method outperforms LFR since different operating points can be achieved by
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adjusting parameters in either approach. In our approach however, individual fairness is explicitly
maintained through the design of the distortion metric and discrimination is controlled directly by a
single parameter ε, whereas the relationship is less clear with LFR.

5 Conclusions
We proposed a flexible, data-driven optimization framework for probabilistically transforming data in
order to reduce algorithmic discrimination, and applied it to two datasets. When used to train standard
classifiers, the transformed dataset led to a fairer classification when compared to the original dataset.
The reduction in discrimination comes at an accuracy penalty due to the restrictions imposed on the
randomized mapping. Moreover, our method is competitive with others in the literature, with the
added benefit of enabling an explicit control of individual fairness and the possibility of multivariate,
non-binary protected variables. The flexibility of the approach allows numerous extensions using
different measures and constraints for utility preservation, discrimination, and individual distortion
control. Investigating such extensions, developing theoretical characterizations based on the proposed
framework, and quantifying the impact of the transformations on additional supervised learning tasks
will be pursued in future work.
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