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ABSTRACT 

In our previous work we have presented an approach to learn in­
terpretable classification rules using a Boolean compressed sensing 
formulation. Our approach uses a linear programming (LP) relax­
ation and allows us to find interpretable (sparse) classification rules 
that achieve good generalization accuracy. However, the resulting 
LP representation for problems with either a large number of sam­
ples or large number of continuous features tends to become chal­
lenging for off-the-shelf LP solvers. We have explored a screening 
approach which allows us to dramatically reduce the number of ac­
tive features without sacrificing optimality. In this work we explore 
reducing the number of samples in a sequential setting where we 
can certify reaching a near-optimal solution while only solving the 
LP on a small fraction of the available data points. In a batch setting 
this approach can dramatically reduce the computational complexity 
of the rule-learning LP formulation. In an online setting we derive 
stochastic upper and lower bounds on the the LP objective for unseen 
samples. This allows early stopping when we detect that the classi­
fier will not change significantly with additional samples. The upper 
bounds are related to the learning curve literature in machine learn­
ing, and our lower bounds appear not to have been explored. Finally, 
we discuss a quick approach to compute the complete regularization 
path balancing rule interpretability versus accuracy. 

Index Terms- Linear programming duality, rule learning, row 
sampling, sparse signal approximation, supervised classification 

1. INTRODUCTION 

One of the guiding principles for successful applications of machine 
learning is Occam's razor: among the models that are supported by 
the data, pick the one that is the simplest. In addition to ensuring 
that the observed empirical loss on the training set will be a good 
predictor (generalize) to the error on the test set, keeping the model 
simple helps it to be interpretable, i.e. able to provide intuition to the 
human analysts examining it. We restrict ourselves to binary classi­
fication rules, and study the question of how much data is sufficient 
to learn a classification rule under a budget of interpretability. In 
particular, via linear programming (LP) duality theory we can detect 
when we have obtained a sufficient number of training examples to 
learn a near-optimal classification rule. 

In recent work [1] , a formulation for learning interpretable clas­
sification rules was proposed based on tools of Boolean compressed 
sensing. Classification rules on their own are already among the 
most well accepted and trusted classification techniques by practi­
tioners, precisely due to the insight they provide. The formulation 
in [1] goes a step further by explicitly balancing the objectives of in­
terpretability (as encoded by the sparsity in the number of terms used 

by the rule) versus classification accuracy, and models this problem 
as a binary optimization problem with a Lasso-like LP relaxation. 

We assume that we have access to a sequence of Li.d. train­
ing samples (features and labels) for a binary classification problem. 
This can be viewed either as an online classification setting, or as 
a way to obtain a near-optimal classification rule while examining 
only a small subset of the data in a batch setting. By considering 
the linear program based on the available samples as part of a big­
ger LP based on all the available samples, we can develop upper and 
lower bounds on the objective function for the bigger LP by care­
fully extending the solution of the smaller LP. We consider two ways 
to measure the duality gap, one for the stochastic setting where we 
compute the expected size of the duality gap, and another where we 
can compute the duality gap exactly by an inexpensive linear scan of 
the remaining samples not used in the smaller LP. 

In related work, the learning curve literature in machine learn­
ing [2-5] has considered how the generalization error evolves as a 
function of the received number of samples. In the context of ordi­
nary (non-Boolean) compressed sensing, [6] has developed sequen­
tial tests to establish that a sufficient number of measurements has 
been obtained to recover the correct sparse signal (or its accurate 
approximation). A somewhat different flavor of reducing the num­
ber of training samples for support vector machine classi fication uses 
screening techniques to identify those training samples that are guar­
anteed to not join the support vector set [7]. Our previous work 
on screening for Boolean compressed sensing-based rule learning 
screened the features, not the training samples [8]. 

The outline of the paper is as follows: in Section 2 we review the 
Boolean compressed sensing approach to learn interpretable classi­
fication rules. Section 3 describes our formulation for obtaining the 
duality-based bounds on optimality in the batch setting. Stochas­
tic bounds in the sequential setting are presented in Section 3.1. 
We present numerical experiments on large-scale machine learning 
datasets in Section 4 showing that one can obtain accurate near­
optimal interpretable classification rules while being trained only a 
small subset of the training samples. We also describe how to ef­
ficiently compute the solution path to balance accuracy and inter­
pretability and allow cost-sensitive classification in Section 5. 

2. LEARNING INTERPRETABLE CLASSIFICATION 

RULES VIA BOOLEAN COMPRESSED SENSING 

Interpretable classification rules, such as: 

• a breast cancer patient will not have long-term survival if she 
has greater than nine nodes and is greater than or equal to 40 
years of age and is less than 60 years of age [9]; 

• an iris is of species versicolor if its petal is less than or equal 
to 5.350 cm in length and its petal is less than or equal to 
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1.700 cm in width and its petal is greater than 0.875 cm in 
width [1]; and 

• a salesman will voluntarily resign if his job role is specialty 
software sales rep and his base salary is less than or equal to 
$75,168 and his months since promoted is less than or equal 
to 30 and his months since promoted is greater than 13 and 

his compensation plan is not quota-based [10], 

are often more actionable and trusted by human decision makers than 
more opaque classification algorithm outputs (e.g. neural networks, 
random forests) because they can be easily understood [1, 9, 11]. 

In [1] , we posed the interpretable classification rule learning 
problem as one of Boolean compressed sensing (CS), which attempts 
to recover a sparse binary vector from a collection of binary mea­
surements which computes disjunctions of subsets of its entries [12-
15]. Viewing these measurements as matrix multiplication by a bi­
nary sensing matrix in the Boolean algebra, where disjunction and 
conjunction replace linear algebraic addition and multiplication, es­
tablishes a close connection to traditional CS [16]. Sparsity comes 
into the rule learning formulation because the three terms in the can­
cer survival example, the three terms in the botany example, and the 
five terms in the worker attrition example are selected from a large 
dictionary of potential terms. Non-zero entries in a sparse binary 
vector dictate which terms are included in the decision rule, and all 
other potential terms correspond to zeros in the vector. 

Formally, in the supervised classification problem, we are given 
m i.i.d. labeled training samples {(Xl, Y1), . . .  , (Xm, Ym)}, where 
the Xi E X are the features and the Yi E {O, I} are the Boolean 
labels. We would like to learn a function yO : X -+ {O, I} that 
will accurately generalize to classify unlabeled feature vectors drawn 
from the same distribution as the training samples. We represent 
individual Boolean terms derived from the features, such as 'patient 
is less than 30 years of age,' by functions aj (.) : X -+ {O, I}, j = 
1, . . .  ,n. Then for each of the training samples, we can calculate the 
truth value for each of the terms, leading to an m x n truth table A 
with entries aij = aj (Xi). Writing the true labels of the training set 
as a vector y E {O, l}m, we have: 

y = A V wEBn, (1) 

where w E {O, l}n is the sparse vector to be learned that indicates 
which terms are included in the decision rule, and n is noise that 
flips some values through the exclusive disjunction operation. The 
notation y = A V w is shorthand for: 

n 
Yi = V aij /\ Wj, i = 1, . . .  , m. 

j=l 
(2) 

As in the standard sparse signal recovery problem, we would 
like to find w satisfying (1) while keeping Ilwllo and the noise n 
small. Expressing the Boolean constraint y = A V w through or­
dinary linear equalities and inequalities, relaxing the fo problem to 
the f1 problem, relaxing the binary constraint on the vector w to 
o ::; w ::; 1, and introducing slack variables to account for noise, 
the rule learning problem is captured in the following LP [1] : 

n m 
min LWj +AL�i 

j=l i=l 
s.t. 0 ::;  Wj ::; 1, j = 1, . . .  ,n 

o ::; �i ::; 1, i E P, 0 ::;  �i, i E Z 

Apw +f.p ;::: 1 
Azw = f.z, 

(3) 

where the regularization parameter A trades training error and the 
sparsity of w (sparsity provides generalizability and interpretabil­
ity), 1 is the vector of all ones of appropriate dimension, P indexes 
the set of positive training samples, Z indexes the set of zero-valued 
training samples, Ap and Az are the corresponding rows of A, and 
f.p and f.z are the corresponding slack variables. When we con­
strain the variables W in the LP in (3) to be binary, we get an integer 
program (IP), which is the true problem to be solved; solving LP 
yields a lower bound on the optimal solution value of IP, and one 
can obtain an approximate solution to IP by rounding an optimal so­
lution of LP, or an exact solution to IP via branch-and-bound. The 
learned decision rule y( x), which is a conjunction of Boolean terms, 
is obtained from the LP solution w [1]. 

The LP becomes very large when the number of samples m is 
very large. We address this issue in this paper through row sampling, 
as discussed in the next section. 

3. ROW SAMPLING 

We describe how to find interpretable rules but avoid solving very 
large LPs. Suppose that we have a large number in of samples avail­
able, and we believe that we can learn a near-optimal interpretable 
classifier from a much smaller subset of m « in samples. We 
proceed to develop a certificate which shows that when m is large 
enough, the solution of the LP in (3) on the smaller subset of sam­
ples also achieves a near optimal solution on the full data-set. 

To compare the solutions of LPs defined with different number 
of samples, we divide the objective by the number of samples to 
obtain error rates rather than raw errors. Also, as we have seen in [8] 
we can drop the upper bounds on � and w without affecting the 
solution: 

1 . 
-mm 
m w,e 

s.t. 0 ::;  Wi, ° ::; �j,j = 1, . . .  , n, i = 1, . . .  , m 

Apw +f.p ;::: 1 
Azw = f.z. 

(4) 

Let (wm, em) and (w'n, fn) be the optimal solutions for the small 
LP with m samples, and large LP with in samples in (4). Let fm 
and fm be the corresponding (scaled) optimal objective values, and 
let f::' and f:h be the corresponding IP optimal objective values. 
We denote the data-matrices for small LP as A, Ap, Az and the 
data matrices for the large LP as A, Ap, Az. The first m rows of 
A constitute A and the first p entries of Ap form Ap. Since we 
have error rates in the objective, we can compare objective values 
for different values of m, and we have that fm -+ fm as m -+ in. 

We would like to bound Ifm - fm I and If::' - f:h I without solv­
ing the large LP and IP respectively. We consider two scenarios: in 
a deterministic scenario we allow a simple linear scan over the re­
maining samples that is much cheaper than solving the large LP. For 
the stochastic scenario in Section 3.1 we receive a small number of 
additional i.i.d. samples to evaluate the expected duality gap. We 
first consider the deterministic case and show how to extend the pri­
mal and the dual solutions of the small LP and obtain both a lower 
and an upper bound on the solution of the large LP and IP. 

To create a feasible primal solution for the large LP we can ex­
tend the vector wm from the small LP by computing the associated 
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Fig. 1. Illustration of upper and lower bounds on the rule-learning 
LP and IP objective values for the UCI Adult classification dataset. 
We obtain tight bounds using only a small fraction of the data. 

errors on the large LP: e2 = Azwm and 

if Apwm;::: 1 

otherwise. 

This pair (wm, fn) is feasible for the large LP and the objective 
value provides an upper bound on fm. Similarly one can extend an 
IP solution of the small IP and get an upper bound on fln. 

To find a lower bound on f m we extend the dual solution of the 
small LP to give a feasible (but generally sub-optimal) dual solution 
of the large LP. Recall the dual formulation for the LP in (4), where 
/-t are the dual variables: 

1 
-max 
m 

s.t. 0 ::;  f.Li ::; 1, i = 1, . . .  ,p 

T I T /-t Ap ::; �In + 1 Az. 

(5) 

Suppose that flP is the optimal dual solution to the small LP. 
Note that the number of variables in the dual for the large LP in­
creases from p to p and the scale factor on the objective changes 
from 1.. to -b. 

W';; defi�e a greedy heuristic (HI) to extend flP to a feasible 
dual solution p/' of the large LP; note that * �f=l jli is a lower 
bound on the large LP and IP optimal values, i.e., on fm and fln. 
We set jlj = flj for j = 1, .. , p. We extend the remaining entries 
jlj for j = (p + 1), .. , p by setting a subset of its entries to 1 while 
satisfying (pJ5)T Ap ::; IT Az which implies the dual feasibility 
constraint. In other words the extension of p, corresponds to a subset 
R of the row indices {p + 1, . . .  , p} of Ap such that (flP)T Ap + 
�iER(Ap)i ::; IT Az. We initialize R to 0 and then simply go 

through the unseen rows of Ap in some fixed order (increasing from 
p + 1 to p), and for a row k, if 

(flP)T Ap + L(Ap)i + (Aph ::; IT Az, 
iER 

we set R to R U {k}. This first heuristic needs only a single pass 
through the matrix Ap, and is thus very fast. 

However, it does not use the optimal solution wm in any way. 
Suppose wm were an optimal solution of the large LP. Then comple­
mentary slackness would imply that if (Ap )iWm > 1, then in any 
optimal dual solution /-t, f.Li = O. Thus, assuming wm is close to an 
optimal solution for the large LP, we modify heuristic HI to obtain 
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Fig. 2. Illustration of upper and lower bounds on the rule-learning 
LP and IP objective values for the UCI Census-Income dataset. 

heuristic H2, by simply setting jlj = 0 whenever (Ap )iWm > 1, 
while keeping the remaining steps unchanged. 

3.1. Row Sampling: stochastic setting 

Now suppose that we operate in an online setting where we can re­
quest additional i.i.d. samples, and we would like to declare that 
we are close to a stationary solution, i.e. that our solution will not 
change much with additional samples. We describe how to compute 
expected upper bounds and expected lower bounds on the objective 
value of the big LP. After receiving m samples we have learned a 
classifier specified by rule wm. We can compute the expected up­
per bound on the objective value of a larger LP by drawing a small 
number in « m of additional validation samples, extending the pri­
mal solution to be feasible as we have done earlier, and evaluating 
the expected resulting errors. We consider the false positives and 
mis-detect errors separately: �:l �i = �iEZ �i + �iEP �i. 

For a fixed wm the ep errors follow an i.i.d. Bernoulli dis­
tribution, so we simply estimate the probability of error pe = 
� �iEP �i. We can use Agresti-Coull [17] confidence intervals on 
the sample binomial and its upper bound would correspond to the 
upper bound on the ep contribution to the objective. 

The errors ez in our model are in general not binary, and can 
take positive integer values. Since we know wm, the values of (i 
are bounded between 0 and Ilwm 110. Hence we can use the Hoeffd­
ing inequality [18] to obtain a confidence interval on the contribution 
of ez to the objective. The expectation is � �iEZ �i. To obtain the 
complete expectation of the objective of this feasible solution to the 
big LP (and its upper confidence bound) we simply add �A Ilwmlh 
and these two terms. 

To compute the expected lower bound we need to extend the 
dual solution when we receive additional samples to satisfy: 

15 
L f.Li(Ap)i::; IT Az - (flPf Ap. 

i=p+l 

In the stochastic setting we do not know Az or Ap and can only 
have access to the expectations. Instead of using the dual extension 
described in Section 3, we use a simpler extension that is easier to 
analyze: we set f.Li = min ( c, 1) for i = p + 1, ... , p, where 

By construction this dual extension is feasible and provides a 
lower bound on the optimal objective of the big LP: � �i jli = 
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Fig. 3. Solution path as a function of A for the Adult data-set: trading 
off classification error vs. size of the rule. 

-J.- (�i Pi: + (m - m) c) . To estimate the expected value of c and ;;: confidence bound we can use the original sample set 1, ... , m 
by splitting it into non-overlapping blocks, and evaluating sam­
ple values of c. Confidence bounds on c can be obtained from 
the sample-mean Chebyshev bound [19]. Note that since this dual 
extension is not using wm we can avoid drawing additional samples. 

4. EMPIRICAL FINDINGS 

In this section, we examine the applicability of the bounds we have 
developed on two large-scale binary classification datasets from the 
UCI Machine Learning Repository [20]. We consider the "Adult" 
dataset with 101 features and 32560 training samples and the "Cen­
sus Income" dataset with 354 features and 199522 training sam­
ples. After converting categorical features into binary indicators, 
and thresholding continuous features with 10 thresholds we obtain 
310 and 812 columns respectively in the A-matrices for the Adult 
and Census-Income data sets respectively. 

In Figure 1 we consider the smaller Adult dataset. We use reg­
ularization parameter A = 1000. The full training set (our large 
LP) has m = 32560 samples, and we plot the various bounds as a 
function of m: we show the objective value of the full LP (constant 
dashed line), and of the small LP, the upper bounds on both the LP 
and IP solutions for the full dataset, and the two dual bounds. We can 
see that the objective value of the small LP and both the LP and IP 
upper bounds quickly approach the objective value of the full LP (af­
ter about 2000 samples). The dual bounds improve with time, albeit 
slower than the upper bounds. The second dual extension approach 
provides a much tighter lower bound. 

In Figure 2 we consider the larger Census-Income dataset, again 
using A = 1000. Again we see that the small LP objective values 
and the upper bounds quickly converge to the LP objective on the full 
dataset. The dual bounds improve with additional samples, albeit at 
a slower rate. The second dual extension heuristic does not provide 
a significant gain over the first heuristic for this example, but they 
do provide very useful lower bounds. Remarkably, for both UCI 
examples the LP and IP solutions for the small LP are either the 
same or very close, allowing quick integral solution via branch and 
bound. The same holds for the LP and IP upper bounds. 

5. COMPUTING THE SOLUTION PATH 

The BCS rule-learning framework trades off the sparsity (inter­
pretability) of the rule with respect to its classification accuracy by a 
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Fig. 4. Cost sensitive classification: number of false positives and 
false negatives as a function of (3 . 

regularization parameter A in (4). A good choice of A is typically not 
known a-priori, and it may be of interest to scan through a range of 
values of A. Furthermore, for cost-sensitive classification we would 
like to quantify how the solution changes with varying costs on 
the false positive and false negative errors. This is accommodated 
by including a parameter (3 with 0 ::; (3 ::; 1 and modifying the 
objective function in (4): 

(6) 

For both of these problems it is important to have a practical way to 
quickly scan through a potential range of A and (3. For varying A, 
the optimal solution is a piecewise linear function of A which can 
in principle be obtained by parametric linear programming. For a 
simpler practical approach, sensitivity analysis techniques in linear 
programming can be used. Suppose we obtain an optimal solution 
to LP for one choice of A using the simplex algorithm implementa­
tion of a modern LP solver such as CPLEX. Changing A by a small 
amount corresponds to changing the objective function by a small 
amount. If the optimal solution to LP does not change, then the LP 
solver can simply verify optimality by recomputing the dual vector 
via one linear solve. If the optimal solution changes but the new so­
lution is close to the previous solution, then a small number of pivots 
in the simplex solver typically obtains the new optimal solution. 

In Figure 3 and 4 we evaluate the regularization path as a func­
tion of A and (3 which allows to decide on the appropriate trade-off 
between interpretability and classification errorsl, and on the bal­
ance of the positive and negative errors. The solution time for the 
entire parameter grid of 100 values of A (using CPLEX in Matlab) 
with m = 5000 took 6.19 seconds, while the single slowest A on the 
grid took 0.53 seconds, showing the value of warm-starting. 

6. CONCLUSION 

We considered learning interpretable classification rules using 
Boolean compressed sensing. For large-scale classification prob­
lems we showed how it is possible to guarantee a near-optimal 
solution after training the classifier only on a small subset of the 
available samples. We confirmed the validity of our approach on 
large scale binary classification problems from the UCI collection. 

I Adult dataset asks if a person is a high-earner. A single rule suggests 
the value of education: education:Some-col!ege True. Larger rules use many 
features suggesting which jobs to avoid: occupation:Handlers-cleaners False 
and occupation:Other-service False and workclass:Federal-gov False, . 
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