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1 Introduction

There is a growing belief that in the face of high complexity, checklists and other simple scorecards
or algorithms can significantly improve people’s performance on decision-making tasks [1]. An
example of such a tool in medicine, the clinical prediction rule, is a simple decision-making rubric
that helps physicians estimate the likelihood of a patient having or developing a particular condition
in the future [2]. An example of a clinical prediction rule for estimating the risk of stroke is known
as the CHADS2 score [3]: the health worker determines which of five diagnostic indicators a patient
exhibits and adds the corresponding points together. (The five conditions are congestive heart failure,
hypertension, age ≥ 75, diabetes mellitus, and prior stroke.) The higher the total point value is, the
greater the likelihood the patient will develop a stroke. This rule was manually crafted by health
workers, notably contains few conditions, and is extremely interpretable by people.

Recent machine learning research has attempted to learn clinical prediction rules that generalize
accurately from large-scale electronic health record data rather than relying on manual develop-
ment [4, 5]. The key aspect of the problem is maintaining the simplicity and interpretability of the
learned rule: similar to the hand-crafted version rather than a complicated, uninterpretable ‘black-
box’ model. Such transparency is critical for trust and adoption by users, and is not exhibited by
models from, e.g., deep learning, ensemble methods, or even l1-regularized logistic regression.

In this work, we build upon our recent research on the supervised learning of interpretable classifica-
tion rules using Boolean compressed sensing ideas [6, 7]. With the same goal as [4, 5], we develop
a method for learning interpretable clinical prediction rules using sparse signal representation tech-
niques. In our previous work, the form of the classifier was a sparse AND-rule or OR-rule ( “1-of-N”
and “N -of-N” rule tables), whereas here, we focus on “M -of-N” rule classifiers that provides a
close match to a clinical decision rule. In [6], the Boolean compressed sensing formulation had a
close connection with the group testing problem whereas here, the connection is to the threshold
group testing (TGT) problem [8].

2 Formulation

We first introduce TGT (without a gap). Let n, m, and d denote the total number of subjects, the
number of tests, and the number of defectives, respectively. Let A ∈ {0,1}m×n be a binary matrix,
representing the assignment of subjects to each test: for 1 ≤ i ≤ m and 1 ≤ j ≤ n, A(i, j) = 1
if the jth subject is present in the ith test and A(i, j) = 0, otherwise. Let Dt be the true set of
defectives and let wt ∈ {0,1}

n be the binary vector representing which subject is a defective; also,
let y ∈ {0,1}m be the binary vector representing the error-free results of the tests. In the TGT model,
one has

y = fη(Awt), (1)
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Figure 1: (a) Phase transition diagram for LP recovery of TGT models (with known ground-truth)
with different number of non-zeros M vs. the number of samples: n = 50, N = 10. A is i.i.d. binary
with 0.25 probability of 1. (b) Learned clinical prediction rule from WDBC data set.

where fη(⋅) is a quantizing function with threshold η, such that fη(x) = 0 if x < η and fη(x) = 1 if
x ≥ η. The goal is to recover the unknown vector w (and also η if needed) given the test matrix A and
the vector of test results y. This model is a special case of semi-quantitative group testing [9, 10].

In clinical prediction rule learning, the goal is to learn an interpretable function ŷ(⋅) ∶ X → {0,1},
given m labeled training samples {(x1, y1), . . . , (xm, ym)}, where xi ∈ X are features and yi ∈
{0,1} are Boolean labels indicating the presence or absence of a medical condition.1 To formulate
this problem as TGT, we form the vector of test results according to y(i) = yi, i = 1,2, . . . ,m; also,
we form the test matrix A according to A(i, j) = aj(xi), where aj(⋅) ∶ X → {0,1}, j = 1, . . . , n,
are simple Boolean terms (e.g. age ≥ 75). Furthermore, we assume that at most d simple Boolean
terms, govern the relationship between the labels and the features, i.e. ∣Dt∣ ≤ d, and this sparse set
of terms are encoded in the unknown sparse vector wt. In addition, we assume that this relationship
has the form of a “M -of-N” rule table; in other words, yi = 1 if at least M terms of C are satisfied
and yi = 0, otherwise. Therefore, by setting η =M and d = N , we can write this relationship as (1).
Consequently, in order to find the set of interpretable rules corresponding to a “M -of-N” rule table,
we need to recover the sparse vector wt given A and y.

A vector w that satisfies the constraints imposed by the TGT model in (1), must also satisfy the pair
of ordinary linear inequalities APw ≥ η1 and AZw < η1, where P = {i∣y(i) = 1} is the set of
positive tests, Z = {i∣y(i) = 0} is the set of negative tests, and AP and AZ are the corresponding
subsets of rows of A. The vector 1 is an all-one vector. For sparsity, we minimize the `1 norm of w:

min ∥w∥1 (2)
s.t. wj ∈ {0,1}, j = 1, . . . , n

APw ≥ η1, AZw < η1.

In practical scenarios, the sets P and Z result from noisy labels and thus, we may introduce slack
variables as in [6]. If η is unknown, we treat it as a free variable and jointly solve (2) with the
extra constraint 1 ≤ η ≤ n. In general, the problem may be optimized using integer-programming
solvers. For medium-sized data sets with a few thousand examples, the solution can often be ob-
tained efficiently using branch and bound. We can also relax the binary constraints on the wj to
interval constraints 0 ≤ wj ≤ 1 to obtain a linear program (LP). Under favorable conditions when the
A matrix satisfies (d, η)-disjunctness [11], we can show that this LP relaxation produces integral
solutions. Phase transition diagrams for sparse-rule recovery are shown in Fig. 1(a).

We illustrate the promise of this approach by applying it to the breast cancer diagnosis problem
using the Wisconsin Diagnostic Breast Cancer data set from the UCI Machine Learning Repository.
The clinical prediction rule that is learned from the data set is given in Fig. 1(b). The learned rule
requires that at least 3 of the 5 conditions are satisfied to diagnose a positive case. The training error
for this M-of-N rule is 2.8%. The proposed approach may also be applied to other clinical data sets
for learning prediction rules for other health conditions.

1Note that in typical group testing formulations, the presence or absence of disease in patients is encoded in
w, but here it is given in y.
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