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I. INTRODUCTION

There is a growing belief that in the face of high complexity,
checklists and other simple scorecards or algorithms can significantly
improve people’s performance on decision-making tasks [1]. An
example of such a tool in medicine, the clinical prediction rule, is
a simple decision-making rubric that helps physicians estimate the
likelihood of a patient having or developing a particular condition
in the future [2]. An example of a clinical prediction rule for
estimating the risk of stroke, known as the CHADS2 score, is shown
in Table I [3]. The health worker determines which of the five
diagnostic indicators a patient exhibits and adds the corresponding
points together. The higher the total point value is, the greater the
likelihood the patient will develop a stroke. This rule was manually
crafted by health workers and notably contains few conditions with
small integer point values and is extremely interpretable by people.

Recent machine learning research has attempted to learn clinical
prediction rules that generalize accurately from large-scale electronic
health record data rather than relying on manual development [4],
[5]. The key aspect of the problem is maintaining the simplicity and
interpretability of the learned rule: similar to the hand-crafted version
rather than a complicated, uninterpretable ‘black-box’ model. Such
transparency is critical for trust and adoption by users, and is not
exhibited by models from, e.g., l1-regularized logistic regression [6].

In this work, we build upon our recent research on the super-
vised learning of interpretable classification rules using Boolean
compressed sensing ideas [7]. With the same goal as [4], [5], we
develop a method for learning interpretable clinical prediction rules
using sparse signal representation techniques. In that previous work
of ours, the form of the classifier was a sparse AND-rule or OR-
rule whereas here, we would like to find a sparse set of medical
conditions or features with small integer coefficients that are added
together to produce a score. Such a model is between the “1-of-N”
and “N -of-N” forms implied by OR-rules and AND-rules. In [7],
the Boolean compressed sensing formulation had a close connection
with the group testing problem whereas here, the connection is to the
semiquantitative group testing (SQGT) problem [8].

II. FORMULATION

We first introduce SQGT. Let A ∈ [q]m×n be a q-ary test matrix,
where [q] = {0, 1, . . . , q − 1}. Let w ∈ [2]n be an unknown sparse
binary vector and let y ∈ [Q]m be a Q-ary vector representing the
results of tests. We assume that y = fη(Aw), where fη(·) is a
quantizing function with thresholds η = {η0 = 0, η1, η2, . . . , ηQ}.
More precisely, fη(x) = r if ηr ≤ x < ηr+1. Note that we have
the standard binary group testing problem used in [7] when q = 2,
Q = 2, η1 = 1, and η2 = ∞. Throughout the remainder of this
paper, we assume that Q = 2; however, the formulation and the
algorithm can be generalized to include Q > 2.

In clinical prediction rule learning, the goal is to learn an in-
terpretable function ŷ(·) : X → {0, 1}, given m labeled training

samples {(x1, y1), . . . , (xm, ym)}, where xi ∈ X are features and
yi ∈ [2] are Boolean labels indicating the presence or absence of a
medical condition.1 We form a matrix A with elements aij = aj(xi),
where aj(·) : X → [q], j = 1, . . . , n, are Boolean terms (e.g. age
≥ 75) multiplied by small positive integers. In particular, there may
be several columns of A corresponding to the same Boolean term
with different positive integer multiples to allow the determination of
point values in the clinical prediction rule.

In the framework of [7], ŷ is encoded by w, the sparse solution
or approximation to the Boolean matrix-vector product equation y =
A∨w, which leads to a “1-of-N” rule table. We generalize this model
to “M -of-N” rule tables, which classify a sample as y = 1 if at least
M out of N terms are satisfied. For a fixed properly chosen value
of M , one can easily follow the SQGT notation with two thresholds
where η1 = M and η2 = ∞.

A vector w that satisfies the constraint imposed by the SQGT
model with thresholds η1 = M and η2 = ∞, must also satisfy the
pair of ordinary linear inequalities APw ≥ M1 and AZw < M1,
where P = {i|yi = 1} is the set of positive samples, Z = {i|yi = 0}
is the set of negative samples, and AP and AZ are the corresponding
subsets of rows of A. To learn the prediction rule solution, we apply
two relaxations: first, we minimize the l1 norm instead of minimizing
||w||0, and second, relax the binary constraint on w. If M or an
estimate of M is known in advance, we formulate the problem as

min

n∑
j=1

wj (1)

s.t. 0 ≤ wj ≤ 1, j = 1, . . . , n

APw ≥ M1, AZw < M1,

We also introduce slack variables as in [7]. If M is unknown, we
treat it as a free variable and jointly solve (1) with the extra constraint
1 ≤ M ≤ n(q − 1).

III. DISCUSSION

We have generalized [7] for the important task of learning inter-
pretable clinical prediction rules that are the sum of point values. The
formulation is more compact than [4], [5] and can be theoretically
analyzed from the perspective of SQGT [8]. As a toy example, Fig. 1
demonstrates the effect of knowing a good estimate of M for recovery
on the probability of error for two alphabet sizes, q = 2, 3.

An interesting extension is to let η1 = M be learned from the
training samples rather than being chosen by the user. In this case,
the problem can be formulated as a joint learning problem in which
η1 = M and w (and the N of the “M -of-N”) are learned. Given that
M = 1 is one of the possible choices for this joint learning problem,
it is clear that the rules learned using this approach will outperform
the rules learned from the approach in [7].

1Note that in typical group testing formulations, the presence or absence
of disease in patients is decoded to w, but here it is given in y.



TABLE I: CHADS2 Clinical Prediction Rule for Stroke Risk

Condition Points
congestive heart failure 1

hypertension 1
age ≥ 75 1

diabetes mellitus 1
prior stroke, transient ischemic attack, or thromboembolism 2
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(b) q = 3

Fig. 1: Average probability of error vs. m for different alphabet sizes
using 500 random trials. In each trial, n = 50, N = 10, and the true
value of the threshold Mtrue = 4 were fixed; each entry of the matrix
A was generated randomly according to an independent identically
distributed (i.i.d.) distribution. For q = 2 an entry was equal to 1 with
probability 0.25 and equal to 0 otherwise. For q = 3, an entry was
equal to 2 with probability 0.1, equal to 1 with probability 0.15, and
equal to 0 otherwise. Different values of M (denoted by M̂ in the
figures) were used to recover the sparse vector w using the algorithm
formulated in (1).
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