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ABSTRACT

Signals in response to time-localized events of a common phe-
nomenon tend to exhibit a common shape, but with variable time
scale, amplitude, and delay across trials in many domains. We
develop a new formulation to learn the common shape and vari-
ables from noisy signal samples with a Bayesian signal model and
a Markov chain Monte Carlo inference scheme involving Gibbs
sampling and independent Metropolis-Hastings. Our experiments
with generated and real-world data show that the algorithm is robust
to missing data, outperforms the existing approaches and produces
easily interpretable outputs.

Index Terms— time-response signal, multiple alignment,
Markov chain Monte Carlo, outsourcing

1. INTRODUCTION

Responses over time to singular events are studied in many domains,
for example, the electric potential in the brain of a subject who has
been presented with a visual stimulus [1], the financial performance
of a company that has agreed to an outsourcing engagement [2], and
the vital signs of a patient who has been administered a medication.
Such signals tend to exhibit a common ‘shape’ or structure, but show
variability in amplitude, delay, and time scale across subjects, com-
panies, or patients. Given a set of noisy signal samples, we would
like to infer the common shape and also understand the variability
associated with shifts and scalings of time and amplitude.

The general signal model that we focus on is:

ri(t) = Aif(bit+ di) + noise(t), i = 1, . . . , n, (1)

where ri(t) is the time-response signal to an event for trial i,
f(t) is the common shape of the signals, and Ai, bi and di are
amplitude scale, time scale and time shift parameters. Given
{r1(t), . . . , rn(t)}, the general goal is to understand the nature
of the time response by determining f(t) and characterizing the
variability of A, b and d.

The problem considered here is different from that considered
in dynamic time warping, see [3] and references therein, in two
ways. First, we consider signals with large amounts of additive
noise, whereas dynamic time warping is best suited to signals with
little to no noise. Second, we are aiming for interpretability through
a specific parameterization with A, b and d, which is not the case
with dynamic time warping.

The work of Listgarten et al., which considers a hierarchical
Bayesian approach for the alignment of several time series, works
well with noisy signals including the type considered in this paper
[4, 5]. The latent trace that is learned in that work has a similar role
as f(t) in (1). However, the other model parameters learned in that
work are difficult to interpret in comparison to the three scale and

shift parameters in (1); also nonuniform scalings of time are pro-
duced, which may be undesirable in many applications.

Additionally, dynamic time warping and the approach of List-
garten et al. are not applicable when there are missing data values
in the measured time-response signals. In light of shortcomings of
existing approaches such as limited robustness to noise and miss-
ing values, nonuniform time scalings in solutions, and difficult in-
terpretability of solution parameters, we propose a new inference
approach built around a hierarchical Bayesian extension of the sig-
nal model (1). To make the model tractable, we take f(t) to be a
spline function. Such a Bayesian signal processing model, with ran-
dom variables for shifts and scalings of time and amplitude as well
as a common spline function, has not been considered in the liter-
ature before. We formulate a Markov chain Monte Carlo (MCMC)
method incorporating Gibbs sampling and the Metropolis-Hastings
algorithm for inference [6].

Simply averaging the n signals at each time has been a standard
technique in neurophysiology for decades [1], and is used elsewhere
as well. We compare the proposed method to simple averaging and
the method of Listgarten et al. [4], and find the proposed method to
be superior to these other two approaches on data generated from the
model. Moreover, we find the proposed method to perform better on
real-world data from a business analytics application (see Sec. 5).
We focus on the business analytics application due to space con-
straints; others, such as the aforementioned neurophysiology appli-
cation may also be considered [1].

2. HIERARCHICAL BAYESIAN SIGNAL MODEL

As discussed in Sec. 1, the general signal model that we consider is
given by (1). The particular noise we consider is zero-mean white
Gaussian noise with variance σ2. The whiteness of the noise in the
model introduces statistical independencies among times which we
take advantage of in inference. The particular form of the common
shape f(t) we consider is a piecewise polynomial spline with a fixed
number of knots m. Let the times of the knots be t1, t2, . . . , tm,
and the values of the common shape function at those times be
f1, f2, . . . , fm. The value f(t̃) at a time point t̃ other than the knots
may be interpolated given f1, . . . , fm. The fixed parameterization
for f(t) in terms of f1, . . . , fm permits us to develop a tractable
inference procedure. The signal ri(t) is measured at li (not nec-
essarily uniformly spaced) time points t

(i)
1 , . . . , t

(i)
li

and is denoted
r
(i)
1 , . . . , r

(i)
li

. The number of measured points and their times may
be different for different trials, and different from the common shape
function.

There are 3n+m random variables in the model we would like
to infer, namely (Ai, bi, di), i = 1, . . . , n and fj , j = 1, . . . ,m.
Uninformative priors are taken for the fj . The priors of the scale
and shift variables, p(Ai; θA), p(bi; θb) and p(di; θd) with hyperpa-
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Fig. 1. Graphical model representation of proposed hierarchical
Bayesian signal model.

rameters θA, θb and θd, are the same for all i and are given later in
the paper. A graphical model representation of the signal model is
provided in Fig. 1. Plate notation is used in the figure to indicate
repetition of the variables for each trial, i = 1, . . . , n. Let A denote
all the variables A1, . . . , An, b denote all the variables b1, . . . , bn,
and d denote all the variables d1, . . . , dn.

Due to the additive Gaussian noise, the conditional pdf of fj ,

p
(
fj |A,b,d, f1, . . . , fj−1, fj+1, . . . , fm, r

(1)
1 , . . . , r

(n)
ln

)
,

is Gaussian. The mean and variance of this Gaussian may be de-
rived based on spline interpolation formulas. For example with a
piecewise linear f(t), letting

T −

ij = {k | tj−1 < bit
(i)
k + di < tj},

T +
ij = {k | tj < bit

(i)
k + di < tj+1},

τ−

ijk =
bit

(i)
k

+di−tj
tj−1−tj

,

τ+
ijk =

bit
(i)
k

+di−tj
tj+1−tj

,

the mean of the Gaussian is∑n
i=1

(∑
T

−

ij
r
(i)
k −Aifj−1τ

−

ijk +
∑

T
+
ij

r
(i)
k −Aifj+1τ

+
ijk

)
∑n

i=1

(∑
T

−

ij
|Ai|(1− τ−

ijk) +
∑

T
+
ij

|Ai|(1− τ+
ijk)

) ,

(2)
and the variance is

σ2∑n
i=1

(∑
T

−

ij
(Ai(1− τ−

ijk))
2 +

∑
T

+
ij
(Ai(1− τ+

ijk))
2
) . (3)

With a linear spline, fj depends on fj−1 and fj+1, but not the other
values of the shape function; this may or may not be true with other
interpolating splines.

Ai depends on the measurements, bi and di of trial i as well as
the common fj values, but not on the measurements, bi and di of any
other trial i′ �= i. Similarly for bi and di. The conditional densities
of the scale and shift variables, due to the white Gaussian noise, are:

p
(
Ai | bi, di, f1, . . . , fm, r

(i)
1 , . . . , r

(i)
li

)

∝ exp

(
−

1

2σ2

li∑
k=1

(
r
(i)
k −Aif

(
bit

(i)
k + di

))2
)
, (4)

p
(
bi | Ai, di, f1, . . . , fm, r

(i)
1 , . . . , r

(i)
li

)

∝ exp

(
−

1

2σ2

li∑
k=1

(
r
(i)
k −Aif

(
bit

(i)
k + di

))2
)
, (5)

and

p
(
di | Ai, bi, f1, . . . , fm, r

(i)
1 , . . . , r

(i)
li

)

∝ exp

(
−

1

2σ2

li∑
k=1

(
r
(i)
k −Aif

(
bit

(i)
k + di

))2
)
. (6)

In (4)–(6), the f(bit
(i)
k + di) terms involve spline interpolation.

3. MCMC SAMPLING

The new hierarchical Bayesian signal model set forth in the previous
section factors in such a way (illustrated in Fig. 1) that lends itself
to inference via Gibbs sampling [6]. Each of the 3n + m random
variables is sampled in turn, conditioned on all of the other variables
and the measured time-response signals.

The fj are sampled within a Gibbs iteration according to

p
(
fj |A,b,d, f1, . . . , fj−1, fj+1, . . . , fm, r

(1)
1 , . . . , r

(n)
ln

)
,

which are Gaussians with means and variances discussed in the pre-
vious section.

The Ai, bi and di are difficult to sample directly due to the spline
interpolation. For these variables, we use independent Metropolis-
Hastings sampling [7, 8]. That is, the variable is drawn indepen-
dently from its prior distribution and then accepted or rejected ac-
cording to the conditional densities (4)–(6). For example, at the cur-
rent Gibbs iteration, a candidate amplitude A

(candidate)
i is drawn

from p(Ai; θA). A(candidate)
i is accepted as A(current)

i with proba-
bility min{R, 1}, and A

(previous)
i is taken as A(current)

i with prob-
ability max{1−R, 0}, where R is the Hastings ratio

exp

(
− 1

2σ2

∑li
k=1

(
r
(i)
k −A

(candidate)
i f

(
bit

(i)
k + di

))2
)

exp

(
− 1

2σ2

∑li
k=1

(
r
(i)
k −A

(previous)
i f

(
bit

(i)
k + di

))2
) .

Since only the ratio of two conditional densities is needed, the
normalizing constant of the conditional pdf is not required. Indepen-
dent Metropolis-Hastings is less commonly used than perturbation-
based and other flavors of Metropolis-Hastings, but in the overall
problem at hand, we observe that the independent flavor works well,
with short mixing times and without getting ‘stuck.’

4. RESULTS ON GENERATED DATA

In this section, we illustrate the proposed signal processing tech-
nique on data generated from the model (1). Specifically, we use
Ai that are uniform over the interval [0.5, 1.5], bi that are uniform
over the interval [0.5, 1], and di that are uniform over the interval
[−3, 3]. The common shape is f(t) = (t3/10− t2/2− t/2)e−t/4,
the zero-mean additive white Gaussian noise has variance σ2 = 1,
and measurements are taken for all n trials at times t = 1, 2, . . . , 16.
Note that in generating the data, f(t) is not a spline; however, we use
a piecewise linear f(t) in the MCMC inference. One realization of
the data for n = 100 is shown in Fig. 2(a).
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Fig. 2. Generated data (a) response signals, (b) aligned with [4], (c)
aligned with proposed MCMC inference, and (d) the averages of (a)
in green, (b) in cyan, and (c) in red along with the true f(t) in blue.

n = 50 n = 100 n = 200 n = 400

simple avg 2.11 (0.63) 2.05 (0.42) 2.00 (0.32) 1.98 (0.27)
Listgarten 1.67 (0.60) 1.58 (0.44) 1.51 (0.38) 1.53 (0.33)
HB MCMC 1.24 (1.28) 0.51 (0.41) 0.37 (0.24) 0.24 (0.14)

Table 1. Mean-squared error between true f and estimate for dif-
ferent n averaged over 50 instances of data with standard deviation
over the instances in parentheses.

We compare simple averaging, the method of [4], and the pro-
posed MCMC method. The response signals are aligned based
on parameters that are learned using both [4] and the proposed
method, as shown in Fig. 2(b)–(c), with the averages of those
aligned signals shown in Fig. 2(d). The proposed method has the
smallest mean-squared error, whereas simple averaging has the
largest. Mean-squared error results are presented in Table 1 for the
three approaches for different values of n. The proposed MCMC
method is superior across all values of n and significantly improves
as we increase n. Simple averaging is the worst, and the method of
Listgarten et al. is only slightly better.

The proposed MCMC method is also able to handle missing val-
ues in the data, by just treating a signal with missing data as one with
smaller li. The method of Listgarten et al. is not amenable to miss-
ing data. In Table 2, we give error results for different percentages
of missing data, sampled uniformly over all n and all times. The
performance of the proposed MCMC method does degrade as the
amount of missing data increases, but this degradation is minimal,
showing robustness of the algorithm.

5. RESULTS ON REAL-WORLD DATA

In this section we consider the use of our method in a business an-
alytics application. Corporate leaders are often interested in quanti-
fying an impact of a major initiative to company performance. One
such initiative is outsourcing, where an external vendor manages a
portion of the company’s operations, in order to reduce expenses and
increase earnings. Therefore, financial performance metric time sig-
nals, such as selling, general and administrative expenses (SG&A)
growth rate, and earnings before tax (EBT) growth rate, are expected
to respond to a company entering into an outsourcing engagement

0% 10% 20% 50%

simple avg 2.05 (0.42) 2.06 (0.43) 2.08 (0.42) 2.07 (0.44)
Listgarten 1.58 (0.44) — — —
HB MCMC 0.51 (0.41) 0.53 (0.41) 0.54 (0.45) 0.61 (0.52)

Table 2. Mean-squared error between true f and estimate for differ-
ent missing data percentages at n = 100 averaged over 50 instances
of data with standard deviation over the instances in parentheses.

[2]. We use the proposed signal model and inference methodology
to understand the impact of outsourcing on the future performance
of companies.

We expect outsourcing to change the growth rate of SG&A and
EBT for a period of time, with the impact taking a common shape
across companies. We also expect the amplitude of the impact to
be different and for the impact to occur on different time scales for
different companies. In addition, the data available for outsourc-
ing events is the date at which the outsourcing engagement deal was
signed, but not when the outsourcing was actually rolled out. It is
thus important to include time delay parameters in the signal model.
Performance metric measurements are quite noisy; the white Gaus-
sian model is not inappropriate in this setting and is applied because
of its mathematical convenience.

We use a uniform distribution over the interval [0, 1] as p(Ai; θA)
and a uniform distribution over the interval [1/2, 1] as p(bi; θb). The
delay prior is the following:

p(di; θd) =

⎧⎪⎨
⎪⎩
1/2, 0 < di ≤ 1

−di/4 + 3/4, 1 < di ≤ 3

0, otherwise

where time is measured in quarters of years. The p(di; θd) distri-
bution is easily sampled using Smirnov transformation of uniform
random numbers.

We show results of MCMC inference for SG&A on n = 249
companies in Fig. 3 and for EBT on n = 216 companies in Fig. 4.

Companies whose available response signals contain missing val-
ues are discarded to allow comparison with [4], which is why n is
different for the two financial metrics. Subfigure (a) shows the n
noisy signal samples and (b) shows the result of taking a simple av-
erage over the n signals at each time. Subfigure (c) shows the latent
trace obtained using [4], whereas (d) shows the median values of 500
MCMC samples of f from iterations 2501 to 3000.1

For SG&A, we see that the simple average, the latent trace, and
the median common shape f(t) are all similar looking, notably de-
creasing for about four quarters after t = 0. Expenses do decrease as
a result of outsourcing. Earnings are also impacted by outsourcing,
but less directly and with some delay. The simple average produces
a fairly noisy signal for EBT while the latent trace and median com-
mon shape are smoother. In all three plots, we see that after t = 0,
the EBT growth rate initially decreases for a couple of quarters and
then increases for a few quarters. The simple average and the median
common shape are more in line with each other than the latent trace
of [4], which is a result of [4] incorporating nonuniform scalings of
time in order to align signals. In the latent trace, the initial decrease
in EBT growth rate after t = 0 is stretched out in comparison with
other parts of the signal. In understanding the business impact of
outsourcing, such nonuniformities make interpretation difficult.

1Fig. 3(h) contains n curves which are moving window averages of Ai

over 500 MCMC samples, illustrating that the Markov chain has sufficiently
mixed at iterations 2501 to 3000.
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Fig. 3. SG&A (a) time-response signals, (b) simple average, (c)
latent trace [4], (d) median common shape f(t), (e) histogram of
median amplitudes, (f) histogram of median time scales, (g) his-
togram of median delays, and (h) moving window average of am-
plitude MCMC samples.

Another aspect of the hierarchical Bayes model is that we have
access to the highly interpretable Ai, bi, and di variables. The fig-
ures show histograms over the n companies of median Ai, bi, and
di, illustrating the variability of these parameters. Interestingly, the
distribution of the delay parameter di is approximately the same for
both SG&A and EBT, centered around one quarter after the signing
of the outsourcing deal; this indicates that the delay parameter truly
is capturing the time between the signing of the deal and the roll out.
The amplitude distributions are different, which is to be expected be-
cause outsourcing has different relative effects on SG&A and EBT
for different companies.

6. CONCLUSION

In this paper, we have developed a Bayesian inference methodology
for determining the common structure and variability of a collection
of time-response signals. It is shown to work well on generated and
real-world data, to be robust to missing data, and to produce easily
interpretable outputs including uniform time scalings.

That we see a common delay distribution between SG&A and
EBT suggests a direction for future work: extending the model to
jointly consider more than one signal per trial with common delays,
but possibly different amplitudes and time scales. Another extension
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Fig. 4. EBT (a) time-response signals, (b) simple average, (c) latent
trace [4], (d) median common shape f(t), (e) histogram of median
amplitudes, and (f) histogram of median delays.

of the model includes adding one further layer of hierarchy, by not
taking θA, θb, and θd to be fixed hyperparameters, but to be random
variables that must also be inferred. In such an extended model,
we could understand the variability of A, b, and d in a more rigorous
fashion than examining histograms such as those in Fig. 3 and Fig. 4.
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