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Abstract An important problem in the context of supervised machine learning is
designing systems which are interpretable by humans. In domains such as law,
medicine, and finance that deal with human lives, delegating the decision to a
black-box machine-learning model carries significant operational risk, and often
legal implications, thus requiring interpretable classifiers. Building on ideas from
Boolean compressed sensing, we propose a rule-based classifier which explicitly
balances accuracy versus interpretability in a principled optimization formulation.
We represent the problem of learning conjunctive clauses or disjunctive clauses as
an adaptation of a classical problem from statistics, Boolean group testing, and apply
a novel linear programming (LP) relaxation to find solutions. We derive theoretical
results for recovering sparse rules which parallel the conditions for exact recovery of
sparse signals in the compressed sensing literature. This is an exciting development
in interpretable learning where most prior work has focused on heuristic solutions.
We also consider a more general class of rule-based classifiers, checklists and
scorecards, learned using ideas from threshold group testing. We show competitive
classification accuracy using the proposed approach on real-world data sets.
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DList: Decision lists algorithm
ILPD: Indian liver patient dataset
Ionos: Ionosphere dataset
IP: Integer programming
kNN: The k-nearest neighbor algorithm
Liver: BUPA liver disorders dataset
LP: Linear programming
Parkin: Parkinsons dataset
Pima: Pima Indian diabetes dataset
RuB: Boosting approach rule learner
RuSC: Set covering approach rule learner
SCM: Set covering machine
Sonar: Connectionist bench sonar dataset
SQGT: Semiquantitative group testing
SVM: Support vector machine
TGT: Threshold group testing
Trans: Blood transfusion service center dataset
TrBag: The random forests classifier in Matlab’s TreeBagger class
UCI: University of California Irvine
WDBC: Wisconsin diagnostic breast cancer dataset

1 Introduction

A great variety of formulations have been developed for the supervised learning
problem, but the most powerful among these, such as kernel support vector
machines (SVMs), gradient boosting, random forests, and neural networks are
essentially black boxes in the sense that it is difficult for humans to interpret them.
In contrast, early heuristic approaches such as decision lists that produce Boolean
rule sets [9, 10, 44] and decision trees, which can be distilled into Boolean rule
sets [43], have a high level of interpretability and are still widely used by analytics
practitioners for this reason despite being less accurate. It has been frequently noted
that Boolean rules with a small number of terms are the most well-received, trusted,
and adopted outputs by human decision makers [32].

We approach this problem from a new computational lens. The sparse signal
recovery problem in the Boolean algebra, now often known as Boolean compressed
sensing, has received much recent research interest in the signal processing literature
[2, 8, 21, 27, 34, 38, 46]. The problem has close ties to classic nonadaptive group test-
ing [16, 17], and also to the compressed sensing and sparse signal recovery literature
[6]. Building upon strong results for convex relaxations in compressed sensing, one
advance has been the development of a linear programming (LP) relaxation with
exact recovery guarantees for Boolean compressed sensing [34].1 In this chapter,

1Other approaches to approximately solve group testing include greedy methods and loopy belief
propagation; see references in [34].
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we use the ideas of Boolean compressed sensing to address the problem of learning
classification rules based on generalizable Boolean formulas from training data,
thus drawing a strong connection between these two heretofore disparate problems.
We develop a sparse signal formulation for the supervised learning of Boolean
classification rules and develop a solution through LP relaxation.

The primary contribution of this work is showing that the problem of learning
sparse conjunctive clause rules and sparse disjunctive clause rules from training
samples can be represented as a group testing problem, and that we can apply an
LP relaxation that resembles the basis pursuit algorithm to solve it [35]. Despite
the fact that learning single clauses is NP-hard, we also establish conditions under
which, if the data can be perfectly classified by a sparse Boolean rule, the relaxation
recovers it exactly. To the best of our knowledge, this is the first work that combines
compressed sensing ideas with classification rule learning to produce optimal sparse
(interpretable) rules.

Due to the practical concern of classifier interpretability for adoption and impact
[24, 49], there has been a renewed interest in rule learning that attempts to retain
the interpretability advantages of rules, but changes the training procedures to be
driven by optimizing an objective rather than being heuristic in nature [3, 14, 23, 28,
31, 45]. Set covering machines (SCM) formulate rule learning with an optimization
objective similar to ours, but find solutions using a greedy heuristic rather than the
LP relaxation that we propose [39]. Local analysis of data [5] also considers an
optimization formulation to find compact rules, but they treat positive and negative
classes separately and do not explicitly balance errors vs. interpretability. Maximum
monomial agreement [19] also uses linear programming for learning rules, but they
do not encourage sparsity. Two new interpretable rule learning methods which have
substantially more complicated optimization formulations appeared after the initial
presentation of this work [48, 50, 54].

In addition to considering ordinary classification rules, we show that the connec-
tion to sparse recovery can shed light on a related problem of learning checklists and
scorecards, which are widely used in medicine, finance and insurance as a simple
rubric to quickly make decisions. Such scorecards are typically constructed manu-
ally based on domain expert intuition. We show that the problem of automatically
learning checklists from data can also be viewed as a version of Boolean sparse
recovery, with strong connections to the threshold group-testing problem.

In today’s age of big data, machine learning algorithms are often trained in the
presence of a large number of features and a large number of samples. In our
proposed LP formulation, this results in a large number of variables and a large
number of constraints, i.e., columns and rows in the sensing matrix (using the
terminology of compressed sensing). We would like to be able to reduce the number
of columns and rows before solving the LP for tractability.

The certifiable removal of variables that will not appear in the optimal solution
is known as screening [11, 20, 33, 51–53, 55–57]; in this chapter, we develop novel
screening tests for Boolean compressed sensing and nonadaptive group testing [12].
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Specifically, we develop two classes of screening tests: simple screening rules that
arise from misclassification error counting arguments, and rules based on obtaining
a feasible primal-dual pair of LP solutions.

Additionally, we develop a novel approach to reduce the number of rows [13].
In a sequential setting, we can certify reaching a near-optimal solution while
only solving the LP on a small fraction of the available samples. Related work
has considered progressive cross-validation error and argues that when this error
‘stabilizes’ while being exposed to a stream of i.i.d. training samples, then the
classifier reaches near-optimal test classification accuracy [4]. The learning curve
literature in machine learning has considered how the generalization error evolves as
a function of the received number of samples [29, 40, 42]. In the context of ordinary
(non-Boolean) compressed sensing, [36] has developed sequential tests to establish
that a sufficient number of measurements has been obtained to recover the correct
sparse signal.

We demonstrate the proposed approach on several real-world data sets and find
that the proposed approach has better accuracy than heuristic decision lists and
has similar interpretability. The accuracy is in fact on par with less interpretable
weighted rule set induction, and not far off from the best non-interpretable classi-
fiers. We find that our screening tests are able to safely eliminate a large fraction of
columns, resulting in large decreases in running time. We also find that through our
row sampling approach, we are able to obtain accurate near-optimal interpretable
classification rules while training on only a small subset of the samples.

The remainder of this chapter is organized as follows. In Sect. 2 we provide a
brief review of group testing and formulate supervised binary classification as a
group testing problem. In Sect. 3, we present an LP relaxation for rule learning and
show that it can recover rules exactly under certain conditions. Section 4 extends
the discussion to scorecards. Section 5 develops screenings tests and row sampling.
Empirical evaluations on real-world data are given in Sect. 6. We conclude with a
summary and discussion in Sect. 7.

2 Boolean Rule Learning as Group Testing

In this section, we formulate the problem of learning sparse AND-clauses such as:

height � 6 feet AND weight > 200 pounds

and OR-clauses such as:

Smoke D True OR Exercise D False OR Blood Pressure D High

from training data via group testing.
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Fig. 1 Illustration of group
testing, y D A _ w:
measurements y are Boolean
combinations of the sparse
unknown vector w. Matrix A
specifies which subjects
participate in which pooled
test

= V

2.1 The Group Testing Problem

Group testing [16] was developed during World War II, when the US military
needed to conduct expensive medical tests on a large number of soldiers. The key
idea was that if the test was performed on a group of soldiers simultaneously, by
combining their blood samples into a pooled test, the cost could be dramatically
reduced. Consider an m � n Boolean matrix A, where the rows represent different
pools (subsets of subjects) and the columns represent the subjects. An entry aij is
one if subject j is part of a pool i and zero otherwise. The true states of the subjects
(unknown when conducting the tests) are represented by vector w 2 f0; 1gn. Group
testing, in which the result of a test is the OR of all subjects in a pool, results in a
Boolean vector y 2 f0; 1gm. We summarize the result of all m tests using:

y D A _ w; (1)

which represents Boolean matrix-vector multiplication, i.e.,

yi D
n_

jD1

aij ^ wj: (2)

We illustrate this idea in Fig. 1. In the presence of measurement errors,

y D .A _ w/ ˚ n; (3)

where ˚ is the XOR operator and n is a noise vector.
Once the tests have been conducted, the objective is to recover w from A and

the measured y. The recovery can be stated through the following combinatorial
optimization problem:

min kwk0 such that y D A _ w; w 2 f0; 1gn: (4)

In the presence of noise we use parameter � to balance sparsity of w and the errors n:

min
w

�kwk0 C
X

ni such that y D .A _ w/ ˚ n; w; n 2 f0; 1gn: (5)
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2.2 Supervised Classification Rule Formulation

We have described group testing; now we show how the formulation can be adapted
to rule-based classification. The problem setup of interest is standard binary super-
vised classification. We are given m labeled training samples f.x1; y1/; : : : ; .xm; ym/g
where the xi 2 X are the features in some discrete or continuous space X
and the yi 2 f0; 1g are the Boolean labels. We would like to learn a function
Oy.�/ W X ! f0; 1g that will accurately generalize to classify unseen, unlabeled
feature vectors drawn from the same distribution as the training samples.

In rule-based classifiers, the clauses are made up of individual Boolean terms,
e.g., ‘weight > 200.’ Such a term can be represented by a function a.x/ mapping the
feature vector to a boolean number. To represent the full diversity and dimensions
of the feature space X , we have many such Boolean terms aj.�/ W X ! f0; 1g,
j D 1; : : : ; n. For each continuous dimension of X , these terms may be comparisons
to several suitably chosen thresholds. Then for each of the training samples, we can
calculate the truth value for each of the terms, leading to an m � n truth table A with
entries aij D aj.xi/.

Writing the true labels of the training set as a vector y, we can write the same
expression in the classification problem as in group testing (3): y D .A _ w/ ˚ n.
In the classification problem, w is the binary vector to be learned that indicates the
rule. The nonzero coefficients directly specify a Boolean clause classification rule
which can be applied to new unseen data. This clause is a disjunctive OR-rule. In
most of the rule-based classification literature, however, the learning of AND-clauses
is preferred. This is easy to handle using DeMorgan’s law. If we complement y and
A prior to the learning, then we have:

y D A ^ w , yC D AC _ w: (6)

Hence, our results apply to both OR-rules and AND-rules; we focus on the
conjunctive case for the remainder of the chapter.

For interpretability and generalization, we are specifically interested in compact
Boolean rules, i.e., we would like w to be sparse, having few non-zero entries.
Therefore, the optimization problem to be solved is the same as for group testing (4).
We describe our proposed solution next.

3 LP Relaxation

The group testing problem appears closely related to the compressed sensing
(CS) problem from the signal processing literature [6]. Both group testing and
compressed sensing involve sparse signal recovery, but group testing uses Boolean
algebra instead of the typical real-valued linear algebra encountered in CS. In this
section, based on their close connection, we show that suitably modified, efficient
LP relaxations from compressed sensing can be used to solve the group testing
problem, and hence also the classification rule learning problem.
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3.1 Boolean Compressed Sensing-Based Formulation

Compressed sensing attempts to find an unknown high-dimensional but sparse real-
valued vector w from a small collection of random measurements y D Aw, where
A is a random matrix (e.g., with i.i.d. Gaussian entries). The problem is to find
the sparsest solution, min kwk0 such that y D Aw. It looks very close to group
testing (4), except that y; A, and w are real-valued, and Aw denotes the standard
matrix-vector product in linear algebra. In compressed sensing, the most popular
technique for getting around the combinatorial `0 objective is to relax it using the
convex `1-norm. This relaxation, known as basis pursuit, results in the following
optimization problem:

min kwk1 such that y D Aw; (7)

where y, w, and A are all real-valued and the product Aw is the standard matrix-
vector product. This optimization problem (7) is a linear program and can be solved
efficiently. It has been shown that under certain conditions on the matrix A and
sparsity of w, the `0 solution and the `1 solution are equivalent. The work of [34]
extends the basis pursuit idea to Boolean algebras.

The challenge in compressed sensing is with the combinatorial nature of the
`0 objective. Additionally, in the Boolean setting, Eq. (1) is not a set of linear
constraints. However, if a vector w satisfies the constraint that y D A _ w, then
it also satisfies the pair of ordinary linear inequalities APw � 1 and AZ w D 0;

where P D fijyi D 1g is the set of positive tests, Z D fijyi D 0g is the set of
negative (or zero) tests, and AP and AZ are the corresponding subsets of rows of
A. We refer to the jth column of A; AP and AZ as aj; aj

P and aj
Z , respectively.

The vectors 1 and 0 are all ones and all zeroes, respectively. These constraints can
be incorporated into an LP. Thus the Boolean `1 problem is the integer program (IP):

min
nX

jD1

wj (8)

s:t: wj 2 f0; 1g; j D 1; : : : ; n

APw � 1

AZ w D 0:

Because of the Boolean integer constraint on the weights, the problem (8) is NP-
hard. We can further relax the optimization to the following tractable LP2:

2Instead of using LP, one can find solutions greedily, as is done in the SCM, which gives a log.m/

approximation. The same guarantee holds for LP with randomized rounding. Empirically, LP tends
to find sparser solutions.
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min
nX

jD1

wj (9)

s:t: 0 � wj � 1; j D 1; : : : ; n

APw � 1

AZ w D 0:

If non-integer wj are found, we either simply set them to one, or use randomized
rounding. An exact solution to the integer LP can be obtained by branch and bound.3

Slack variables may be introduced in the presence of errors, when there may not
be any sparse rules producing the labels y exactly, but there are sparse rules that
approximate y very closely. This is the typical case in the supervised classification
problem. The LP is then:

min �

nX

jD1

wj C
mX

iD1

�i (10)

s:t: 0 � wj � 1; j D 1; : : : ; n

AZ w D �Z ; 0 � �i; i 2 Z :

APw C �P � 1; 0 � �i � 1; i 2 P

The regularization parameter � trades training error and the sparsity of w.

3.2 Recovery Guarantees

We now use tools from combinatorial group testing [16, 17] to establish results for
exact recovery and recovery with small error probability in AND-clause learning via
LP relaxation. First, we introduce definitions from group testing.

Definition 1 A matrix A is K-separating if Boolean sums of sets of K columns are
all distinct.

Definition 2 A matrix A is K-disjunct if the union (boolean sum) of any K columns
does not contain any other column.

Any K-disjunct matrix is also K-separating. The K-separating property for A
is sufficient to allow exact recovery of w with up to K nonzero entries, but in
general, requires searching over all K-subsets out of n [16]. The property of K-

3Surprisingly, for many practical datasets the LP formulation obtains integral solutions, or requires
a small number of branch and bound steps.
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disjunctness, which can be viewed as a Boolean analog of spark [15], is a more
restrictive condition that allows a dramatic simplification of the search: a simple
algorithm that considers rows where yi D 0 and sets all wj where aij D 1 to zero
and the remaining wj to one, is guaranteed to recover the correct solution. For non-
disjunct matrices this simple algorithm finds feasible but suboptimal solutions.

We recall a lemma on exact recovery by the LP relaxation.

Lemma 1 ([34]) Suppose there exists a w� with K nonzero entries and y D A_w�.
If the matrix A is K-disjunct, then LP solution Ow in (9) recovers w�, i.e., Ow D w�.

This lemma was presented in the group testing context. To apply it to rule
learning, we start with classification problems with binary features in which case,
the matrix A simply contains the feature values.4 A simple corollary of Lemma 1 is
that if A is K-disjunct and there is an underlying error-free K-term AND-rule, then
we can recover the rule exactly via (9).

A critical question is when can we expect our features to yield a K-disjunct
matrix?

Lemma 2 Suppose that for each subset of K C 1 features, we find at least one
example of each one of the 2KC1 possible binary .K C 1/-patterns among our m
samples. Then the matrix A is K-disjunct.

Proof Note that there are 2KC1 possible binary patterns for K features. Suppose
that on the contrary the matrix is not K-disjunct. Without loss of generality, K-
disjunctness fails for the first K columns covering the .K C 1/-st one. Namely,
columns a1; : : : ; aKC1 satisfy aKC1 � [K

kD1ak. This is clearly impossible, since by
our assumption the pattern .0; 0; : : : ; 0; 1/ for our K C 1 variables is among our m
samples. ut

To interpret the lemma: if features are not strongly correlated, then for any fixed
K, for large enough m we will eventually obtain all possible binary patterns. Using
a simple union bound, for the case of uncorrelated equiprobable binary features, the
probability that at least one of the K-subsets exhibits a non-represented pattern is
bounded above by

�n
K

�
2K.1 � .1=2/K/m. Clearly as m ! 1 this bound approaches

zero: with enough samples A is K-disjunct.
These results also carry over to approximate disjunctness [35] (also known as

a weakly-separating design) to develop less restrictive conditions when we allow a
small probability of recovery error [37, 41].

In the case of classification with continuous features, we discretize feature
dimension xj using thresholds �j;1 � �j;2 � � � � � �j;D such that the columns
of A corresponding to xj are the outputs of Boolean indicator functions
Ixj��j;1 .x/; : : : ; Ixj��j;D.x/; Ixj>�j;1 .x/; : : : ; Ixj>�j;D.x/. This matrix is not disjunct

4In general it will contain the features and their complements as columns. However, with enough
data, one of the two choices will be removed by zero-row elimination beforehand.
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because, e.g., Ixj>�j;1 .x/ � Ixj>�j;2 .x/. However, without loss of generality, for each
feature we can remove all but one of the corresponding columns of A as discussed
in Sect. 5.1. Through this reduction we are left with a simple classification problem
with binary features; hence the results in Lemma 1 apply to continuous features.

3.3 Multi-Category Classification

Extending the proposed rule learner from binary classification to M-ary classifica-
tion is straightforward through one-vs-all and all-vs-all constructions, as well as a
Venn diagram-style approach in which we expand the y and w vectors to be matrices
Y D �

y1 � � � ydlog2 Me� and W D �
w1 � � � wdlog2 Me�. We briefly explain how this can

be done for M D 4 classes with labels c1; : : : ; c4. We first construct the label matrix
with value 1 in y1 if a sample has label c1 or c2 and zero otherwise. Similarly,
an element of y2 takes value 1 if a sample has label c1 or c3 and zero otherwise.
The problem of interest then becomes Y � A _ W. The constraints in the LP
relaxation become AP1w1 � 1, AP2w2 � 1, AZ1w1 D 0, and AZ2w2 D 0, where
P1 D fijy1;i D 1g, P2 D fijy2;i D 1g, Z1 D fijy1;i D 0g, and Z2 D fijy2;i D 0g.
From a solution w1, w2, we will have two corresponding AND-rules which we denote
r1, r2. A new sample is classified as c1 if r1 ^ r2, as c2 if r1 ^ :r2, as c3 if :r1 ^ r2,
and as c4 if :r1 ^ :r2.

4 Learning Scorecards Using Threshold Group Testing

We now build upon our approach to learn sparse Boolean AND or OR rules
and develop a method for learning interpretable scorecards using sparse signal
representation techniques. In the face of high complexity, checklists and other
simple scorecards can significantly improve people’s performance on decision-
making tasks [26]. An example of such a tool in medicine, the clinical prediction
rule, is a simple decision-making rubric that helps physicians estimate the likelihood
of a patient having or developing a particular condition in the future [1]. An example
of a clinical prediction rule for estimating the risk of stroke, known as the CHADS2

score, is shown in Table 1 [25]. The health worker determines which of the five
diagnostic indicators a patient exhibits and adds the corresponding points together.
The higher the total point value is, the greater the likelihood the patient will develop
a stroke. This rule was manually crafted by health workers and notably contains few
conditions with small integer point values and is extremely interpretable by people.

Recent machine learning research has attempted to learn clinical prediction
rules that generalize accurately from large-scale electronic health record data rather
than relying on manual development [31, 48]. The key aspect of the problem is
maintaining the simplicity and interpretability of the learned rule to be similar to
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Table 1 CHADS2 clinical
prediction rule for estimating
risk of stroke

Condition Points

Congestive heart failure 1

Hypertension 1

Age � 75 1

Diabetes mellitus 1

Prior stroke, transient ischemic attack,
or thromboembolism

2

the hand-crafted version, in order to enable trust and adoption by users in the health
care industry. We again employ sparsity as a proxy for interpretability of the rules.

In the previous sections, the form of the classifier we considered was a sparse
AND-rule or OR-rule whereas here, we would like to find a sparse set of conditions
or features with small integer coefficients that are added together to produce a score.
Such a model is between the “1-of-N” and “N-of-N” forms implied by OR-rules and
AND-rules, with N active variables. With unit weights on the columns of A it can
be viewed as an M-of-N rule. For learning Boolean rules, our Boolean compressed
sensing formulation had a close connection with the group testing problem whereas
here, the connection is to the semiquantitative group testing (SQGT) problem, or
more precisely to its special case of threshold group testing (TGT) [21].

4.1 Threshold Group Testing

We start by describing the TGT model and then show how to formulate the
interpretable rule learning problem as TGT. Let n, m, and d denote the total number
of subjects, the number of tests, and the number of defectives, respectively. As we
defined in Sect. 2.1, A 2 f0; 1gm�n is a binary matrix representing the assignment of
subjects to each test, and y 2 f0; 1gm is the binary vector representing the error-free
results of the tests. Let Dt be the true set of defectives and binary vector wt 2 f0; 1gn

represent which subject is a defective. In the TGT model, one has

y D f�.Awt/; (11)

where f�.�/ is a quantizing function with threshold �, such that f�.x/ D 0 if x < �

and f�.x/ D 1 if x � �. The goal is to recover the unknown vector w given the test
matrix A and the vector of test results y.
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4.2 LP Formulation for Threshold Group Testing

First, we start by considering the simplest model in which there are no errors
in the vector of labels, and the threshold � is known in advance. In this case,
and given that wt is a sparse vector, one can find the sparsest binary vector that
satisfies (11). However, this combinatorial problem is not computationally feasible
for large datasets.

To overcome this problem, we use a similar relaxation to the one used in Sect. 3.1.
We note that a vector w that satisfies the constraints imposed by the TGT model
in (11), must also satisfy the pair of ordinary linear inequalities:

APw � �1; (12)

AZ w < �1; (13)

where, same as before, P D fijy.i/ D 1g and Z D fijy.i/ D 0g are the sets of
positive and negative tests. Using a convex l1-norm instead of jjwjj0, and relaxing
the binary constraint we obtain

min jjwjj1 (14)

s:t: 0 � w.j/ � 1; j D 1; : : : ; n (15)

APw � �1; (16)

AZ w � .� � 1/1; (17)

In presence of noise, we introduce slack variables � to allow violation of a small
subset of the constraints. We also allow the threshold � to not be known a priori,
and learn it from data. We propose the following formulation to jointly find the
threshold � and the defective items (or our interpretable rules):

min jjwjj1 C �jj�jj1 (18)

s:t: 0 � w.j/ � 1; j D 1; : : : ; n

0 � �.i/ � 1; i 2 P

0 � �.i/; i 2 Z

APw C �P � �1;

AZ w � �1;

0 � � � n:
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4.3 Learning Scorecards with Threshold Group Testing

Our goal is to learn an interpretable function Oy.�/ W X ! f0; 1g, given m labeled
training samples f.x1; y1/; : : : ; .xm; ym/g. To formulate this problem as TGT, we
form the vector of test results according to y.i/ D yi, i D 1; 2; : : : ; m; also, we
form the test matrix A according to A.i; j/ D aj.xi/, where aj.�/ W X ! f0; 1g,
j D 1; : : : ; n, are simple Boolean terms (e.g. age � 75). Furthermore, we assume
that at most d simple Boolean terms govern the relationship between the labels and
the features, i.e. jDtj � d, and this sparse set of terms are encoded in the unknown
sparse vector wt. In addition, we assume that this relationship has the form of a
“M-of-N” rule table; in other words, yi D 1 if at least M terms of N are satisfied
and yi D 0, otherwise. Therefore, by setting � D M and d D N, we can write
this relationship as (11). Consequently, in order to find the set of interpretable rules
corresponding to a “M-of-N” rule table, we need to recover the sparse vector wt

given A and y.

4.4 Theoretical Guarantees for TGT

We now summarize results on recovery of sparse rules in the threshold group
testing formulation, which generalize our results in Sect. 3.2. We start by defining
a generalization of binary d-disjunct codes [30] which is studied under different
names in the literature such as cover-free families (e.g. see [7, 18, 47]).

Definition 1 A matrix A 2 Œ2�m�n is a .d; �/-disjunct matrix if for any two disjoint
sets of column-indices Cz and Co,5 where jCzj D d��C1, jCoj D �, and Co \Cz D
¿, there exists at least one row indexed by r such that

A.r; j/ D 1 8j 2 Co;

A.r; j/ D 0 8j 2 Cz:

Using .d; �/-disjunctness, the following theorem can be established using results
in [21].

Theorem 1 Let A be a .d; �/-disjunct binary matrix. The LP formulation (14)–(17)
will uniquely identify the true set of defectives, i.e. Ow D wt, as long as � � jDtj � d.

The main idea in proving this theorem is that we introduce a reversible transfor-
mation that converts the TGT model into another model resembling the Boolean
compressed sensing formulation. Given this new formulation, we prove that the LP
relaxation can uniquely identify the defectives, hence recovering the sparse set of
rules.

5Here, the subscript “z” stands for zero and “o” stands for one.
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5 Screening and Row Sampling

The formulation (10) produces an LP that becomes challenging for data sets with
large numbers of features and large numbers of thresholds on continuous features.
Our aim in this section is to provide computationally inexpensive pre-computations
which allow us to eliminate the majority of the columns in the A matrix by providing
a certificate that they cannot be part of the optimal solution to the Boolean `1-IP
in (8). The LP also becomes challenging for large numbers of training samples. We
develop an approach to only solve the LP for a subset of rows of A and obtain a
near-optimal solution to the full problem.

We first discuss screening approaches that simply examine the nonzero patterns
of A and y, and then discuss screening tests that use a feasible primal-dual pair
for the LP to screen even more aggressively. The tests can be applied separately or
sequentially; in the end, it is the union of the screened columns that is of importance.
Finally, we put forth a row sampling approach also based on feasible primal-dual
pairs.

5.1 Simple Screening Tests

We first observe that a positive entry in column aj
Z corresponds to a false alarm

error if the column is active (i.e., if the corresponding wj D 1). The potential benefit
of including column j is upper bounded by the number of positive entries in aj

P .
The first screening test is simply to remove columns in which kaj

Z k0 � kaj
Pk0.

An additional test compares pairs of columns j and j0 for different threshold
values of the same continuous feature dimension of X . We note that such columns
form nested subsets in the sense of sets of nonzero entries. If �j and �j0 are the
thresholds defining aj.�/ and aj0.�/ with �j < �j0 , then fk j xk < �jg � fk j xk < �j0g.
Looking at the difference in the number of positive entries between columns of AZ

and the difference in the number of positive entries between columns of AP , we
never select column j instead of column j0 if kaj0

Pk0 � kaj
Pk0 > kaj0

Z k0 � kaj
Z k0 by

a similar argument as before.
We consider two variations of this pairwise relative cost-redundancy test: first,

only comparing pairs of columns such that j0 D jC1 when the columns are arranged
by sorted threshold values, and second, comparing all pairs of columns for the same
continuous feature, which has higher computational cost but can yield a greater
fraction of columns screened. Although most applicable to columns corresponding
to different threshold values of the same continuous feature of X , the same test can
be conducted for any two columns j and j0 across different features.
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5.2 Screening Tests Based on a Feasible Primal-Dual Pair

We also introduce another kind of screening tests based on LP duality theory,
which can further reduce the number of columns when a primal-dual feasible pair
is available. We describe a cost-effective way to provide such primal dual pairs.
Specifically, we first reformulate (10) along with the requirement that w is a Boolean
vector as a minimum weight set cover problem. Then, if we have a feasible binary
primal solution available, we can produce certificates that wj cannot be nonzero in
the optimal solution as follows. If by setting wj D 1 and recomputing the dual, the
dual objective function value exceeds the primal objective function value, then any
solution with wj D 1 is strictly inferior to the feasible binary primal solution that
we started with and we can remove column aj. Thus a key step is finding feasible
binary primal and dual solutions on which we can base the screening. Note that
this test explicitly assumes that we want integral solutions to (10); the columns
removed would not be present in an optimal binary solution, but could be present in
an optimal fractional solution. For the sake of readability, we postpone the detailed
derivations of LP-duality based screening tests to Appendix 2.

5.3 Row Sampling

The previous section was concerned with removing columns from A whereas this
section is concerned with removing rows. Suppose that we have a large number Nm
of samples available, and we believe that we can learn a near-optimal interpretable
classifier from a much smaller subset of m 	 Nm samples. We proceed to develop
a certificate which shows that when m is large enough, the solution of (10) on the
smaller subset achieves a near optimal solution on the full data set.

To compare the solutions of LPs defined with a different number of samples,
we compare their “scaled” optimal objective values, i.e., we divide the objective
value by the number of samples (which is equal to m, the number of rows in A).
Therefore, we compute and compare error rates rather than raw errors. Let . Owm; �m/

and . Ow Nm; � Nm/ be the optimal solutions for the small LP with m samples and large LP
with Nm samples, respectively, with corresponding scaled optimal objective values fm
and f Nm. Also, matrices corresponding to the small LP are A, AP , AZ and to the
large LP are NA, NAP , NAZ . The first m rows of NA are A and the first p entries of NAP

are AP . By definition A is a submatrix of NA. Therefore, fm ! f Nm as m ! Nm and we
would like to bound jfm � f Nmj without solving the large LP.

We show how to extend the primal and the dual solutions of the small LP and
obtain both a lower and an upper bound on the scaled optimal objective value of
the large LP. To create a feasible primal solution for the large LP we can extend the
vector Owm from the small LP by computing the associated errors on the large LP:
� Nm
Z D AZ Owm and
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� Nm
P D

(
0 if AP Owm � 1

1 otherwise.

This pair . Owm, � Nm/ is feasible for the large LP and the scaled objective value provides
an upper bound on f Nm. In a similar manner, the solution to the small IP can be
extended to a feasible solution of the large IP, thereby giving an upper bound to the
optimal IP solution; note that f Nm gives a lower bound.

To find a lower bound on f Nm we extend the dual solution of the small LP to give
a feasible (but generally sub-optimal) dual solution of the large LP. We describe the
details in Appendix 3.

The discussion so far has been in the batch setting where all training samples
are available at the outset; the only goal is to reduce the computations in solving the
linear program. We may also be in an online setting where we can request additional
i.i.d. samples and would like to declare that we are close to a solution that will not
change much with additional samples. This may be accomplished by computing
expected upper and lower bounds on the objective value of the large LP as described
in [13].

6 Empirical Results

In this section, we evaluate our proposed rule-learner experimentally. After dis-
cussing implementation details, and showing a small example for illustration, we
then evaluate the performance of our rule-learner on a range of common machine
learning datasets comparing it in terms of both accuracy and interpretability to the
most popular classification methods. We then confirm the dramatic computational
advantages of column-screening and row-sampling on data-sets with a large number
of rows and columns.

6.1 Implementation Notes

As discussed in Sect. 3.1, continuous features are approached using indicator
functions on thresholds in both directions of comparison; in particular we use 10
quantile-based thresholds per continuous feature dimension. To solve the LP (10),
we use IBM CPLEX version 12.4 on a single processor of a 2.33 GHz Intel Xeon-
based Linux machine. We find the optimal binary solution via branch and bound.
For most of the examples here, the LP itself produces integral solutions. We set
the regularization parameter � D 1=1000 and do not optimize it in this work. In
addition to our single-rule learner, we also consider rule-set learners that we have
described in [35]. The set covering approach finds incorrectly classified examples
after learning the previous rule, and learns the next rule on these examples only. The
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Table 2 Tenfold cross-validation test error on various data sets

1RULE RUSC RUB DLIST C5.0 CART TRBAG KNN DISCR SVM

ILPD 0:2985 0:2985 0:2796 0:3654 0:3053 0:3362 0:2950 0:3019 0:3636 0:3002

IONOS 0:0741 0:0712 0:0798 0:1994 0:0741 0:0997 0:0655 0:1368 0:1425 0:0541

LIVER 0:4609 0:4029 0:3942 0:4522 0:3652 0:3768 0:3101 0:3101 0:3768 0:3217

PARKIN 0:1744 0:1538 0:1590 0:2513 0:1641 0:1282 0:0821 0:1641 0:1641 0:1436

PIMA 0:2617 0:2539 0:2526 0:3138 0:2487 0:2891 0:2305 0:2969 0:2370 0:2344

SONAR 0:3702 0:3137 0:3413 0:3846 0:2500 0:2837 0:1490 0:2260 0:2452 0:1442

TRANS 0:2406 0:2406 0:2420 0:3543 0:2166 0:2701 0:2540 0:2286 0:3369 0:2353

WDBC 0:0703 0:0562 0:0562 0:0967 0:0650 0:0808 0:0422 0:0685 0:0404 0:0228

boosting approach creates a classifier that is a linear combination of our single-rule
learners, by emphasizing samples that were incorrectly classified in the previous
round. We do not attempt to optimize the number of rounds of set-covering or
boosting, but leave it at T D 5 having interpretability in mind.

6.2 Illustrative Example

We illustrate the types of sparse interpretable rules that are obtained using the
proposed rule learner on the Iris data set. We consider the binary problem of
classifying iris versicolor from the other two species, setosa and virginica. Of the
four features, sepal length, sepal width, petal length, and petal width, the rule that is
learned involves only two features and three Boolean expressions:

• petal length � 5.350 cm; AND

• petal width � 1.700 cm; AND

• petal width > 0.875 cm.

6.3 Classification Performance Comparisons

As an empirical study, we consider several interpretable classifiers: the proposed
Boolean compressed sensing-based single rule learner (1Rule), the set covering
approach to extend the proposed rule learner (RuSC), the boosting approach to
extend the proposed rule learner (RuB), the decision lists algorithm in SPSS
(DList), the C5.0 Release 2.06 algorithm with rule set option in SPSS (C5.0), and
the classification and regression trees algorithm in Matlab’s classregtree function
(CART).6

6We use IBM SPSS Modeler 14.1 and Matlab R2009a with default settings.
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Table 3 Tenfold average
number of conjunctive
clauses in rule set

1RULE RUSC RUB DLIST C5.0

ILPD 1:0 1:2 5:0 3:7 11:7

IONOS 1:0 4:1 5:0 3:7 8:4

LIVER 1:0 3:5 5:0 1:1 15:3

PARKIN 1:0 3:1 5:0 1:2 7:3

PIMA 1:0 2:3 5:0 5:0 12:0

SONAR 1:0 3:9 5:0 1:0 10:4

TRANS 1:0 1:2 5:0 2:3 4:3

WDBC 1:0 4:1 5:0 3:2 7:4

We also consider several classifiers that are not interpretable: the random forests
classifier in Matlab’s TreeBagger class (TrBag), the k-nearest neighbor algorithm in
SPSS (kNN), discriminant analysis of the Matlab function classify, and SVMs with
radial basis function kernel in SPSS (SVM).

The data sets to which we apply these classification algorithms come from the
UCI repository [22]. They are all binary classification data sets with real-valued
features. (We have not considered data sets with categorical-valued features in this
study to allow comparisons to a broader set of classifiers; in fact, classification
of categorical-valued features is a setting in which rule-based approaches excel.)
The specific data sets are: Indian liver patient dataset (ILPD), Ionosphere (Ionos),
BUPA liver disorders (Liver), Parkinsons (Parkin), Pima Indian diabetes (Pima),
connectionist bench sonar (Sonar), blood transfusion service center (Trans), and
breast cancer Wisconsin diagnostic (WDBC).

Table 2 gives tenfold cross-validation test errors for the various classifiers.
Table 3 gives the average number of rules across the tenfolds needed by the different
rule-based classifiers to achieve those error rates.

It can be noted that our rule sets have better accuracy than decision lists on all
data sets and our single rule has better accuracy than decision lists in all but one
instance. On about half of the data sets, our set covering rule set has fewer rules than
decision lists. Taking the number of rules as an indication of interpretability, we see
that our set covering rule set has about the same level of interpretability as decision
lists but with better classification accuracy. (We did not optimize the number of rules
in boosting.) Even our single rule, which is very interpretable, typically has better
accuracy than decision lists with more rules.

Compared to the C5.0 rule set, our proposed rule sets are much more interpretable
because they have many fewer rules on average across the data sets considered. The
accuracy of C5.0 and our rule sets is on par, as each approach has better accuracy
on half of the data sets. The best performing algorithms in terms of accuracy are
SVMs and random forests, but we see generally quite competitive accuracy with the
advantage of interpretability by the proposed approach. On the ILPD data set, our
boosting approach has the best accuracy among all ten classifiers considered.
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6.4 Examples of Learned Rules

We now illustrate small rules learned with our approach on the ‘WDBC’ Breast
cancer classification dataset. First we use the LP relaxation in (10) with � D 2:0 to
find a compact AND-rule. The resulting rule has 5 active clauses, and the resulting
train error-rate is 0:065. The clauses are as follows:

• mean texture > 14:13 and
• mean concave points > 0:05 and
• standard error radius > 0:19 and
• standard error area > 13:48 and
• worst area > 475:18.

Next we consider an M-of-N rule for the same data-set, and use the same number
of clauses. We note that the LP relaxation in fact produces fractional solutions for
this dataset, but only a small proportion of variables is fractional, and the problem
can be solved reasonably efficiently using IBM CPLEX in about 8 s. The resulting
error-rate is 0:028, an improvement over the AND-rule (N-of-N rule) with the same
number of clauses. The rule finds 5 clauses, of which at least 3 need to be active for
the classifier to return a positive label:

• mean texture > 16:58

• worst perimeter > 120:26

• worst area > 724:48

• worst smoothness > 0:12

• worst concave points > 0:18.

6.5 Screening Results

In this section, we examine the empirical performance of the screening tests on
several data sets from the UCI Machine Learning Repository [22] which have
many continuous-valued features: ionosphere (m D 351), banknote authentication
(m D 1372), MAGIC gamma telescope (m D 19;020), and gas sensor array drift
(m D 13;910). The first three are naturally binary classification problems, whereas
the fourth is originally a six class problem that we have converted into a binary
problem. The classification problem in ionosphere is to classify whether there is
structure in the ionosphere based on radar data from Goose Bay, Labrador, in
banknote is to classify genuine and forged banknotes from statistics of wavelet-
transformed images, in MAGIC is a signal detection task from measurements of
the Cherenkov gamma telescope, and in gas is to classify pure gaseous substances
using measurements from different chemical sensors. In gas, we map the class labels
ammonia, acetaldehyde and acetone to the binary class 0 and ethylene, ethanol and
toluene to the binary class 1.
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Table 4 Screening results for all pairs column comparison and enhanced primal and dual
heuristics

Data set Features Thresholds Columns

Columns
screened
by simple
tests

Columns
screened
by duality
test

Total
columns
screened

Fraction
columns
screened

Ionosphere 33 10 642 596 638 638 0:994

20 1282 1210 1271 1271 0:991

50 3202 3102 2984 3133 0:978

100 6402 6269 5968 6310 0:986

Banknote 4 10 80 40 71 71 0:888

20 160 92 142 142 0:888

50 400 259 350 355 0:888

100 800 548 700 712 0:890

MAGIC 10 10 200 188 183 188 0:940

20 400 375 369 377 0:943

50 1000 945 916 945 0:945

100 2000 1892 1799 1892 0:946

Gas 128 10 2560 1875 2242 2256 0:881

20 5120 3943 4684 4758 0:929

50 12;800 10;235 11;378 11;824 0:924

100 25;600 20;935 22;814 23;893 0:933

Table 4 gives the results with the enhanced version of the screening tests
described in Sect. 5 that compares all pairs of columns in the pairwise test.
The tables shows results for the four data sets with four different numbers of
thresholds per feature dimension. We construct the aj.x/ functions by quantile-based
thresholds, and consider both directions of Boolean functions, e.g., ‘weight � 100’
as well as ‘weight > 100.’ The results show the number of columns screened by the
simple tests alone, the number of columns screened by the duality-based test alone,
and their union in total columns screened. The tests may also be run sequentially,
but for brevity we do not discuss this here.

The first thing to note in the tables is that our screening tests dramatically reduce
the number of columns in the LP, ranging from removing 90% to over 99% of
columns of the matrix A. The fraction of columns screened is fairly stable across
the number of thresholds within a data set, but tends to slightly improve with more
thresholds. The simple tests and duality-based tests tend to have a good deal of
overlap, but there is no pattern with one being a superset of the other.

The implications for running time are presented in Table 5, where we focus on
the largest data set, gas. The first column shows the full LP without any screening.
We compare that to the total time for screening and solving the reduced LP for
the basic and enhanced screening tests. We can see that screening dramatically
reduces the total solution time for the LP. Enhanced screening, while requiring
more computation, does compensate the LP time and significantly reduces the total
running time. With 100 thresholds we solve a very large binary integer problem with
25,600 variables to optimality in under 15 s.
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Table 5 Gas data set running times in seconds for screening, solving the LP, and the total of the
two: (a) basic tests, and (b) enhanced tests

Thr. Full LP (a) Scr. (a) LP (a) Tot. (b) Scr. (b) LP (b) Tot.

10 18:58 0:34 2:47 2:81 0:74 1:38 2:12

20 39:52 0:73 3:96 4:69 1:53 1:29 2:82

50 103:46 2:01 12:12 14:13 4:03 3:56 7:59

100 215:57 4:28 24:30 28:58 8:86 5:90 14:76

Fig. 2 Illustration of upper and lower bounds on the rule-learning LP and IP objective values for
the UCI Adult (a) and Census Income (b) classification datasets. We obtain tight bounds using
only a small fraction of the data.

6.6 Row Sampling Results

In this section, we apply our row-sampling bounds from Sect. 5.3 to two large-
scale binary classification tasks from the UCI Machine Learning Repository [22]
with a large number of rows. We consider the “Adult” and the “Census Income”
datasets, which come with 32;560 and 199;522 training samples respectively. After
converting categorical and continuous features to binary (using 10 thresholds) the
101 features in “Adult” dataset and the 354 features in the “Census income” dataset
produce 310 and 812 columns in the corresponding A-matrix representations.

The results for both datasets are illustrated in Fig. 2. We plot our various bounds
as a function of m: we show the objective value of the full LP (constant dashed line),
and of the small LP, the upper bounds on both the LP and IP solutions for the full
dataset, and the two dual bounds. We can see that the objective value of the small
LP and both the LP and IP upper bounds quickly approach the objective value of
the full LP (after about 2000 samples out of 32;560 total for the Adult dataset, and
after 5000 samples out of 199;522 total for the bigger “Census income”). The dual
bounds improve with time, albeit slower than the upper bounds. The second dual
extension approach provides a much tighter lower bound for the “Adult” dataset in
plot (a), but only a very modest gain for “Census Income” in plot (b). Remarkably,
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for both UCI examples the LP and IP solutions for the small LP are either the same
or very close, allowing quick integral solution via branch and bound. The same
holds for the LP and IP upper bounds.

7 Conclusion

In this chapter, we have developed a new approach for learning decision rules
based on compressed sensing ideas. The approach leads to a powerful rule-based
classification system whose outputs are easy for human users to trust and draw
insight from. In contrast to typical rule learners, the proposed approach is not
heuristic. We prove theoretical results showing that exact rule recovery is possible
through a convex relaxation of the combinatorial optimization problem under certain
conditions. We also extend the framework to a more general classification problem
of learning checklists and scorecards, using M-of-N rule formulation. We extend
the LP formulation, and the theoretical results using ideas from Threshold Group
Testing.

For large scale classification problems, we have developed novel screening tests
and row sampling approaches. One class of screening tests is based on counting false
alarm and missed detection errors whereas the other class is based on duality theory.
In contrast to Lasso screening, which makes use of strong duality, the proposed tests
consider the integer nature of the Boolean compressed sensing problem to check
if the dual value is less than or equal to the optimal integer value. We developed
LP duality-based techniques to guarantee a near-optimal solution after training the
classifier only on a small subset of the available samples in both batch and online
settings.

In our empirical evaluation we have shown that the proposed algorithm is practi-
cal and leads to a classifier that has a better trade-off of accuracy with interpretability
than existing classification approaches. It produces better accuracy than existing
interpretable classifiers, and much better interpretability than the powerful black-
box classifiers such as SVMs and random forests while typically paying only minor
cost in accuracy. Furthermore, our experimental evaluation confirms the significant
gains in computational complexity of the proposed screening and row-sampling
approaches.

Appendix 1: Dual Linear Program

We now derive the dual LP, which we use in Sect. 5. We start off by giving a
reformulation of the LP in (10), i.e., we consider an LP with the same set of
optimal solutions as the one in (10). First note that the upper bounds of 1 on the
variables �i are redundant. Let . Nw; N�/ be a feasible solution of (10) without the
upper bound constraints such that N�i > 1 for some i 2 P . Reducing N�i to 1 yields a
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feasible solution (as ai Nw C N�i � 1—the only inequality �i participates in besides the
bound constraints—is still satisfied). The new feasible solution has lower objective
function value than before, as �i has a positive coefficient in the objective function
(which is to be minimized). One can similarly argue that in every optimal solution
of (10) without the upper bound constraints, we have wj � 1 (for j D 1; : : : ; n).
Finally, observe that we can substitute �i for i 2 Z in the objective function by
aiw because of the constraints aiw D �i for i 2 Z . We thus get the following LP
equivalent to (10):

min
nX

jD1

�
� C kaj

Z k1

�
wj C

pX

iD1

�i (19)

s:t: 0 � wj; j D 1; : : : ; n

0 � �i; i D 1; : : : ; p

APw C �P � 1:

The optimal solutions and optimal objective values are the same as in (10).
Writing APwC�P as APwCI�P , where I is the p�p identity matrix, jjaj

Z jj1
as 1Taj

Z , and letting � be a row vector of p dual variables, one can see that the dual
is:

max
pX

iD1

�i (20)

s:t: 0 � �i � 1; i D 1; : : : ; p

�TAP � �1n C 1TAZ :

Suppose N� is a feasible solution to (20). Then clearly
Pp

iD1 N�i yields a lower bound
on the optimal solution value of (19).

Appendix 2: Derivation of Screening Tests

Let S .j/ stand for the support of aj
P . Furthermore, let N .j/ stand for the support of

1 � aj
P , i.e, it is the set of indices from P such that the corresponding components

of aj
P are zero.

Now consider the situation where we fix w1 (say) to 1. Let A0 stand for the
submatrix of A consisting of the last n � 1 columns. Let w0 stand for the vector
of variables w2; : : : ; wn. Then the constraints APw C �P � 1 in (19) become
A0

Pw0 C�P � 1�a1
P . Therefore, for all i 2 S .1/, the corresponding constraint is

now .A0
P/iw0 C �i � 0 which is a redundant constraint as A0

P � 0 and w0; �i � 0.
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The only remaining non-redundant constraints correspond to the indices in N .1/.
Then the value of (19) with w1 set to 1 becomes

�
� C ka1

Z k1

� C min
nX

jD2

�
� C kaj

Z k1

�
wj C

X

i2N .1/

�i (21)

s:t: 0 � wj; j D 2; : : : ; n

0 � �i; i 2 N .1/

A0
N .1/w

0 C �N .1/ � 1:

This LP clearly has the same form as the LP in (19). Furthermore, given any feasible
solution N� of (20), N�N .1/ defines a feasible dual solution of (21) as

N�TAP � �1n C 1TAZ

) N�T
S .1/A

0
S .1/ C N�T

N .1/A
0
N .1/ � �1n�1 C 1TA0

Z

) N�T
N .1/A

0
N .1/ � �1n�1 C 1TA0

Z :

Therefore
P

i2N .n/ N�i is a lower bound on the optimal solution value of the LP
in (21) and therefore

� C jja1
Z jj1 C

X

i2N .1/

N�i (22)

is a lower bound on the optimal solution value of (19) with w1 set to 1. In
particular, if . Nw; N�/ is a feasible integral solution to (19) with objective function
value �.

Pn
iD1 Nwi/ C Pp

iD1
N�i, and if (22) is greater than this value, than no optimal

integral solution of (19) can have w1 D 1. Therefore w1 D 0 in any optimal solution,
and we can simply drop the column corresponding to w1 from the LP.

In order to use the screening results in this section we need to obtain a feasible
primal and a feasible dual solution. Some useful heuristics to obtain such a pair are
described in [12].

Appendix 3: Extending the Dual Solution for Row-Sampling

Suppose that O�p is the optimal dual solution to the small LP in Sect. 5.3. Note that
the number of variables in the dual for the large LP increases from p to Np and the
bound on the second constraint grows from �1n C 1TAZ to �1n C 1T NAZ .

We use a greedy heuristic to extend O�p to a feasible dual solution N�Np of the
large LP. We set N�j D O�j for j D 1; ::; p. We extend the remaining entries N�j for
j D .p C 1/; ::; Np by setting a subset of its entries to 1 while satisfying the dual
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feasibility constraint. In other words the extension of N� corresponds to a subset R
of the row indices fp C 1; : : : ; Npg of NAP such that O�T

p AP C P
i2R. NAP/i � 1T NAZ .

Having N�TAP � 1TAZ with N� extended by a binary vector implies that N� is
feasible for (20). We initialize R to ; and then simply go through the unseen rows
of NAP in some fixed order (increasing from p C 1 to Np), and for a row k, if

O�T
p AP C

X

i2R
. NAP/i C . NAP/k � 1T NAZ ;

we set R to R [ fkg. The heuristic (we call it H1) needs only a single pass through
the matrix NAP , and is thus very fast.

This heuristic, however, does not use the optimal solution Owm in any way.
Suppose Owm were an optimal solution of the large LP. Then complementary
slackness would imply that if . NAP/i Owm > 1, then in any optimal dual solution
�; �i D 0. Thus, assuming Owm is close to an optimal solution for the large LP, we
modify heuristic H1 to obtain heuristic H2, by simply setting N�i D 0 whenever
. NAP/i Owm > 1, while keeping the remaining steps unchanged.
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