
Dataflow representation
of data analyses: Toward
a platform for collaborative
data science
Data science plays an increasingly important role in solving today’s
scientific and social challenges. To promote progress toward a cure
for multiple sclerosis, the Accelerated Cure Project has created an
open repository of biological and survey data on patients with
multiple sclerosis. Similar large-scale repositories are being created
in other domains. As the open, data-driven model of science
proliferates, the research community faces a growing need for a
cloud platform for collaborative data science. Such a platform should
facilitate collaboration between domain experts and data scientists
and possess artificial intelligence capabilities for organizing,
recommending, and manipulating data analyses. In this paper, we
present some foundational technologies motivated by this vision. Our
system automatically extracts a high-level dataflow graph from a
data analysis. This graph describes how data flows through an
analysis pipeline, including which statistical methods are used and
how they fit together. The system requires no special annotations from
the data analyst and consumes analyses written in Python using
standard tools, such as Scikit-learn and Statsmodels. In this paper,
we explain how our system works and how it fits into our larger
vision for a collaborative data science platform.
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1. Introduction
Data science—the umbrella discipline encompassing

machine learning, statistics, and computing on data—plays

an increasingly important role in solving today’s scientific

and social challenges. A new brand of data-intensive

science is enabled by the growing availability of data,

collected from high-throughput measurement devices and

massive observational sources. Large-scale, open-access

data repositories are being created in many scientific

domains. For instance, the Accelerated Cure Project (ACP)

has created an open repository of biological and survey data

on people afflicted with multiple sclerosis (MS). Its mission

is to drive progress toward a cure for the disease. Yet the

success of data-intensive science is by no means assured.

It will require not just data sharing but effective

collaboration between domain experts and data scientists.

Moreover, the products of collaborative research must be

shared effectively with research scientists, clinicians,

policymakers, and other stakeholders. All these activities

are complicated by inefficiencies in the scientific process.

Although improvements in computing and information

technology have enabled remarkable progress in the

sciences, the scientific process itself has often failed to keep

pace with these developments. Scientific papers are

published in electronic formats designed to closely emulate

a traditional physical paper. These unstructured data

formats, while comfortable to human readers, do not lend

themselves to machine consumption. As a result, automated

processing of the scientific literature is challenging.

Searching and indexing are limited by the inherent

difficulties of natural language processing. Organizing a

body of scientific work or conducting a statistical meta-

analysis requires painstaking human labor, as the original

datasets may be unavailable or the data analyses poorly

documented. Scientific reproducibility is hindered for the

same reasons. Meanwhile, according to a recent estimate

[1], the scientific literature is growing exponentially at a

rate of about 9% per year, which amounts to a doubling inDigital Object Identifier: 10.1147/JRD.2017.2736278
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size about every 8 years. A new paper is published in a

scientific journal roughly every 20 seconds [2]. The growth

of science will only exacerbate the challenge of organizing,

assimilating, and utilizing new scientific knowledge.

As a step toward addressing these challenges, we

envision a cloud platform for collaborative data science, a

single space for domain experts, data scientists, and other

stakeholders to share datasets and data analyses. It should

be equipped with artificial intelligence capabilities for

organizing, recommending, and manipulating data analyses,

as well as suggesting relevant datasets or potential

collaborators. To enable such features, the platform must

possess a high-quality, machine-interpretable representation

of its contents, particularly its data analyses. In this work,

we propose and implement a foundational technology for

automatically extracting a machine representation of a data

analysis. The representation is a dataflow graph that

captures important steps of the analysis, such as loading

data and fitting statistical models, and shows how the steps

compose to form an analysis pipeline.

The potential utility of our dataflow representation is

illustrated by the following hypothetical scenario. Suppose

a user Alice performs a clustering analysis on some gene

expression data hosted on the platform. Because the dataset

is very high-dimensional, she decides to reduce its

dimensionality using sparse principle components analysis

(sparse PCA) before applying k-means clustering.

Internally, the platform constructs a dataflow representation

of her analysis, which shows how the data is loaded,

transformed using sparse PCA, and then clustered using k-

means clustering. It happens that another user, Bob, has

already attempted a similar analysis of this dataset, except

that he uses (standard) PCA instead of sparse PCA. The

platform identifies these two similar analyses, using its

internal representations, and notifies Alice that Bob’s

preexisting work may be relevant. Alice follows up on this

suggestion, requesting more information. The platform

extracts the clusterings from the respective analyses and

displays a comparison using popular metrics like the Rand

index. It turns out that the clusterings are quite different,

perhaps owing to the high dimensionality of data. Intrigued,

Alice investigates further and reaches out to Bob for

discussion.

Such use cases reveal the importance of a rich,

machine-interpretable representation of data analyses. A

simpler representation that ignored data flow, capturing

only an unordered list of statistical methods, would not be

sufficient. For instance, without knowledge of data flow, the

use of PCA as a preprocessing step in clustering, as in the

above scenario, is indistinguishable from the use of PCA as

a simple aid to visualization in exploratory data analysis.

However, these two roles are very different. Our dataflow

representation enables fine-grained semantic comparisons

and manipulations of data analyses.

This paper is an overview of our technical work in its

broader context. Future publications will single out

particular components of our system for more rigorous

treatment. The paper is organized as follows. In the

remainder of this section, we summarize our technical

contribution. Section 2 is devoted to an extended

motivation of this project. We outline a vision for a

collaborative data science platform, drawing on the

experience of the ACP, an early advocate of open, data-

driven MS research. In Sections 3 and 4, we explain the

methodology behind our system and survey the relevant

literature. Finally, we look to the future in Section 5,

describing related open problems in computer program

analysis, machine learning, statistics, and knowledge

representation.

To provide a brief summary, we start by noting that our

system automatically extracts a dataflow representation of a

data analysis, which is interpretable by machines. In the

remainder of this section, we clarify the meaning of this

sentence and illustrate it with an example. For our purposes,

a data analysis is a computer program, in the form of either

a source file or a Jupyter notebook, that executes a sequence

of data analysis tasks. (A Jupyter notebook [3, 4] is an

interactive document that interleaves computer code with

natural text, mathematical equations, and visualizations.) A

typical data analysis program might perform a clustering

analysis, fit a sparse linear regression model, or test a

statistical null hypothesis. At present we require that the

program be written in Python, but this limitation is not

fundamental; we hope to add support for R and Julia in the

near future.

The representation that we extract is a dataflow graph (or

simply flow graph), summarizing the execution of the

analysis. The flow graph is a directed acyclic graph (DAG)

whose structure will be described in detail later. Informally,

it should capture the most semantically relevant steps of the

analysis, such as: reading a data file, fitting a statistical

model, making predictions, computing error metrics and p

values, saving transformed data to a new file, and so on. In

any realistic analysis, there will also be some steps that the

system cannot interpret. For example, data munging tasks

(e.g., data cleaning, sorting, filtering, and feature

extraction) are generally not interpretable by our system.

Although we hope to improve coverage of important areas

like data munging in the future, it is unrealistic to ever

expect complete coverage. By necessity, the dataflow graph

will contain both steps that are interpretable, and steps that

are not interpretable, by the machine.

The construction of the dataflow graph is automatic in the

sense that it requires no additional annotations by the data

analyst. Stated differently, the only input to the system is

the computer program constituting the data analysis.

However, the system does rely on human annotations of

another kind, namely for the underlying analysis tools. For
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example, if the analyst fits a support vector machine (SVM)

using the Python library Scikit-learn [5], then the system’s

annotation database must include entries for the SVM

library functions. This approach to functional annotation

leads to a large gain in human efficiency, since library

annotations written by a single individual can be leveraged

by the whole community. It also supports one of our most

important design goals—to be minimally intrusive to the

workflows of experienced data analysts.

Finally, we clarify the sense in which our dataflow graph

is interpretable. To achieve our goal of producing a

machine-interpretable representation of a data analysis, it

will not suffice to merely attach labels to steps in the

analysis; the system must also “know” how these labels are

related to each other. For instance, suppose an analysis

involves a logistic regression model, to which the system

assigns the label “logistic regression.” To put this step in

context, the system should understand that logistic

regression is a type of classification model, which is in turn

a type of predictive model. Or, to take another example,

suppose two analysts each perform a clustering analysis of

the same dataset. The first uses k-means clustering,

receiving the label “k-means,” and the second uses

hierarchical clustering, receiving the label “hierarchical.”

The system should be able to recognize two instances of

clustering and compare them accordingly. To enable these

features, our system aligns the dataflow graph with a

knowledge base (or ontology) of data analysis concepts.

As an example, Figure 1 shows the dataflow graph

extracted from an exploratory data analysis of ACP survey

data on MS patients. The grey nodes represent entities

(roughly, objects in the computer program), and the green

nodes represent actions (roughly, function calls),

terminology that will be clarified in Section 3. The edges

represent inputs and outputs of actions and properties of

entities. The objective of this data analysis is to understand

how the symptoms of MS are distributed across the

population of patients and how they are related to the four

clinically recognized MS disease types. To provide context

for Figure 1, we describe the major steps of the analysis

Figure 1

Example data flow graph: Exploratory data analysis for ACP.
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here. The table of symptom indicator variables is loaded

and studied using multiple correspondence analysis (MCA),

a variant of principal components analysis (PCA) suitable

for categorical data. K-means clustering with four clusters is

then applied to the top four MCA factor scores. The

resulting clusters are visually compared with the four

disease types (loaded from a separate file) in a scatter plot

of the top two factor scores. With some effort, a human

viewer can find all this information in the dataflow graph of

Figure 1. From the perspective of machine interpretability,

the size of the dataflow graph, perhaps “uncomfortable” to

human viewers, is much less important than its meaning,

which is derived from the knowledge base.

2. Motivation
While it may present a worthy technical challenge, the

formation of a dataflow graph representing a data analysis is

ultimately a means, not an end. Themethodology of dataflow

representation, realized in a working prototype, belongs to a

broader vision of collaborative data science, which has not

been realized. Our system is designed to be a foundational

technology for a cloud platform for collaborative science. In

this extended motivation, we propose several requirements

for a collaborative science platform, argue that no existing

platform satisfies them, and explain how our technology

could drive a new kind of data science platform. To focus the

discussion, we consider a concrete use case in the domain of

neurodegenerative disease.

2.1. Accelerated cure project
MS is an inflammatory neurodegenerative disease of the

central nervous system. It is thought to affect over 400,000

Americans and 2.5 million people worldwide. It is the

leading non-traumatic cause of neurological disability in

young adults. Yet, despite many decades of research,

including the recent use of powerful high-throughput

techniques (genomics, proteomics, etc.), our understanding

of the etiology (causes) of this disease remains extremely

limited. Individual genetic and environmental risk factors

have been identified, but it is not known how interactions

among these factors cause the onset of the disease. The

evidence suggests that MS is an etiologically heterogeneous

and multifactorial disease; i.e., MS is not caused by any

single factor, and the set of factors that interact to cause it

varies between individuals. Likewise, the progression of the

disease and the efficacy of existing treatments are highly

variable and thought to have heterogeneous, multifactorial

underpinnings.

Understanding these complex interactions requires the

synthesis and analysis of patient data from diverse sources.

To that end, the ACP for MS has curated a large-scale,

high-quality repository of MS patient data, including

clinical records, patient self-reports, and biomarker data

(both genetic and proteonomic). The data curation strategy

of ACP has two major thrusts: first, to share ACP physical

biosamples with laboratory researchers on an open-access

basis to generate analytical data that can answer specific

questions, and second, to aggregate this analytical data

along with clinical and patient-reported data and share this

collection with data scientists on an open-access basis to

generate new insights about MS. This approach to “virtual

collaboration” allows scientists to learn from and build

upon each other’s analyses without needing to enter into

formal collaborations or legal contracts.

The efficiency of this model of collaborative science is

currently limited by the absence of suitable collaboration

technologies. It is essential to share not just the physical

biosamples and the derived datasets, but also the statistical

analyses of that data and any ensuing scientific conclusions.

All these steps of the scientific process should be integrated

within a unified, open-access knowledge sharing platform.

IBM and ACP are working together to develop such a cloud

platform, with the goal of supporting the continuing

analysis of ACP datasets by scientists worldwide.

2.2. Platform requirements
The model of MS research promulgated by ACP is

applicable more generally in the natural and social sciences.

Complex biological systems and social institutions have

resisted traditional mathematical modeling, while the

efficiency of computing and data collection technology

continually improves. These factors are driving a new kind

of data-intensive science, characterized by large datasets

and greater reliance on statistics and machine learning. The

success of this paradigm depends not just on data sharing

(important though it is), but on effective collaboration

between domain experts and data scientists. In general,

neither party—scientist or statistician—is equipped to solve

the problem individually, but must rely on the other’s

expertise. At a higher level of organization, the research

group must interact with other groups to disseminate their

findings and track progress in the field. Information

technology plays an increasingly important role in these

knowledge sharing activities.

Our thesis is that a cloud platform for collaborative data

science could lead to dramatic efficiency gains for the ACP

and for the larger scientific community. One might object

that such platforms already exist, rendering a new one

superfluous, or that existing platforms offer limited benefits,

having failed to have an impact on the scientific process to

the degree that online platforms have had an impact on

open-source software development. In response, we

propose two requirements for a collaboration platform,

which we believe to be necessary for significant efficiency

gains but which are not, to our knowledge, satisfied by any

existing offering. First, the content hosted by the platform

should not be restricted to datasets or error metrics, but

should include what is probably of greatest scientific value,
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the data analyses themselves. Second, the content should be

represented in a machine-interpretable form.

Since these requirements are not universally recognized,

we offer a few points in their defense. Why is it essential to

host complete data analyses, rather than summary statistics

like the prediction error on held-out data? Under the

challenge model of data science, organizers define a

prediction problem, and teams throughout the world

compete to achieve the best error rate. The paradigmatic

platform in this class is Kaggle, with variations offered by

Driven Data [6] (with a focus on social good), Dream

Challenges [7, 8] (with a focus on systems biology and

translational medicine), and OpenML [9] (with a focus on

open science). Naturally, this model is well-suited to

questions that can be neatly formulated as supervised

learning problems. Such questions occur infrequently in the

sciences. More often, scientific questions are open-ended,

multifaceted, and irreducible to a single real number

captured by a loss function. With this view, data analysis is

an open-ended activity that may involve (informal)

exploratory data analysis and (formal) statistical inference

beyond prediction. A successful platform for collaborative

science will capture these activities. Consequently it must

publish complete data analyses in addition to whatever error

metrics are deemed appropriate.

Machine interpretability of the platform’s content is

important for several reasons. First, consider the scale of

science. The exponential growth of science, cited in Section

1, makes it ever more difficult for researchers to track the

progress of their own field, much less other, related fields.

Machines could conceivably help researchers filter and

organize the body of scientific knowledge, but this is only

possible insofar as the content is intelligible to machines.

Machine interpretability is also related to another

requirement for scientific publication: reproducibility. Our

system requires that the analysis code be both available and

executable, the same requirements posed by reproducibility.

More generally, the rigidity of machine formats promotes

detail and precision in the description of scientific work.

This is useful for reproducibility and hence for science as a

whole, provided that the additional burden placed on human

researchers is tolerable.

Among existing platforms, challenge platforms like

Kaggle store error metrics for the uploaded models. These

metrics are obviously machine interpretable and are utilized

to create public leaderboards of the best models. But as we

have seen, the challenge platforms do not meet the first

requirement. There is a different category of cloud

platforms that treat data analyses as “first-class citizens.”

These platforms are designed to make existing distributed

computing frameworks, such as Hadoop and Spark, and

data analysis environments, such as Jupyter Notebook and

R Studio, conveniently available on the cloud. Some

exemplars of this rapidly growing space are Domino Data

Lab, IBM Data Science Experience, and Microsoft Azure

Machine Learning. These platforms do not form useful

machine representations of their content. We are not aware

of any existing platform that satisfies both our requirements.

2.3. Platform features
Having motivated our hypothetical platform in the abstract,

we now consider some specific features that could be

enabled by a high-quality, machine-interpretable

representation of a data analysis. An obvious first

application is a sophisticated query engine. On a platform

using our system, users could ask queries like “Find all

analyses that take dataset D as input, perform clustering

analysis, and output three clusters” or “Find all plots of

variable X against variable Y (drawn from dataset D).” It is

impossible to make such highly structured queries using

existing indexes like Google Scholar.

More ambitiously, the machine representations could

serve as input to artificial intelligence or machine learning

algorithms that operate on data analyses. For instance, we

envision a recommender system that automatically

identifies relevant data analyses or potential collaborators

on the basis of shared datasets, methodology, and social

connections. Likewise, we could try to identify analyses

with a novel (but fruitful) methodology, a form of outlier

detection. One might even try to develop an automated,

personalized system for organizing and summarizing a

body of scientific work. At present, such surveys must be

conducted at great cost by human subject-matter experts.

All of these features operate on existing data analyses

created by human scientists. In another frontier of artificial

intelligence, called computational creativity [10, 11],

machines play an active role in the creation of new content.

The platform could modify existing analyses, replacing

certain steps with semantically compatible ones (e.g.,

replacing k-means clustering with hierarchical clustering),

or even generate entirely original analyses. The new

analyses would be evaluated by some combination of

novelty and quality metrics, where novelty is measured with

respect to existing analyses on the platform. We note that

creative applications require a bidirectional representation:

the high-level dataflow graph must be converted back into

executable computer code. This capability, interesting in its

own right, is not currently supported by our system.

3. Dataflow representation of data analyses
In this section, we elaborate on our technical contribution, a

method for automatically creating dataflow representations

of data analyses. We will focus on the architecture of our

system, describing its major components and how they

interact. Due to space limitations, we will treat the

underlying algorithms only briefly, eschewing both

mathematical formalism and implementation detail.

IBM J. RES. & DEV. VOL. 61 NO. 6 PAPER 9 NOVEMBER/DECEMBER 2017 E. PATTERSON ET AL. 9 : 5



In the summary of Section 1, we spoke of “the” dataflow

graph, but there are actually three different dataflow graphs

in our system, which we call the raw flow graph, the

annotated flow graph, and the semantic flow graph. In the

rest of paper, we will generally use these more precise terms

to refer to the dataflow graphs. The semantic flow graph is

the final output of our system and is exemplified in Figure 1

above. The other two graphs are intermediate forms.

The relations between the three graphs are shown in

Figure 2, which schematizes the architecture of our system.

A runtime environment for data analysis, such as the Python

interpreter, supplies a stream of trace events to the system.

Trace events are emitted for each function call and

matching function return. The system processes these

events in an online fashion, building up the raw dataflow

graph as the analysis executes. The raw graph is a directed

graph whose vertices represent function calls and whose

edges represent objects passed between them. The “raw”

graph is so called because it is low-level, language-

dependent, and generally uninterpretable. For a typical data

analysis encountered in practice, which involves not just

statistical modeling but also data cleaning and preparation,

the raw graph will contain hundreds or thousands of nodes.

This representation is too large and detailed to be readily

interpretable by humans, yet too unstructured to be

interpretable by machines.

The subsequent stages of the pipeline transform the raw

graph into more useful representations. These stages use

auxiliary information from an annotation database for

statistical software and a knowledge base of universal

statistical concepts. First, the annotated graph is constructed

from the raw graph by attaching annotations to functions

and objects that have entries in the annotation database. In

addition, subgraphs of unannotated vertices are collapsed

into single vertices. The latter transformation tends to

greatly reduce the size of the graph, as most function calls

are unannotated. In the final stage, the semantic graph is

created from the annotated graph by using information in

the annotations to identify specific language and library

constructs with universal concepts from the knowledge

base. Unlike the raw and annotated graphs, the semantic

flow graph is independent of the particular language (such

as Python or R) and libraries (such as Scikit-learn or

StatsModels) used to implement the data analysis.

From an architectural point of view, we emphasize that

our system is modular. It is possible for the research

community to build on some components of our system

while ignoring or replacing others. For example, a

researcher could retain our generic system for functional

annotation without adopting our knowledge representation

formalism. Consequently, although we have designated the

raw and annotated graphs as “intermediate forms,” we

regard them as having independent interest.

In the remaining subsections, we describe the raw,

annotated, and semantic dataflow graphs in greater detail. In

Section 4, we situate our work within the relevant literature.

3.1. Raw flow graph
The raw flow graph is a nested directed acyclic graph

(DAG) that captures the dataflow within a single run of a

computer program. (Throughout the paper, the word

“graph” should be understood as “multigraph”, i.e., a graph

that can have multiple edges and self-loops.) The vertices of

the raw graph are in one-to-one correspondence with the

function calls made during the run and are labeled by the

name of the called function. Here the word “function”

should be interpreted in the sense of programming

languages, not mathematics. Thus, in a typical object-

oriented programming language, our usage of “function”

encompasses static methods, instance methods, object

attribute accessors, container accessors (indexing), and

built-in unary and binary operators. Of course, the precise

scope of “function” depends on the target programming

language, but roughly speaking our usage encompasses any

reusable computational unit.

In the raw graph, there is a directed edge from vertex u to

vertex v if the function call v takes as an input an object

which is an output of the function call u. The edge is labeled

with an ID that uniquely identifies the object being passed

from u to v, as well as the name of the object’s type. We

insist that the object ID be unique across the entire program

run, not just unique among all existing objects at the time of

the function call. In particular, this means that object IDs

cannot be memory addresses (since memory is reused).

Nonetheless, in practice a mapping is maintained between

object IDs and memory addresses.

To accommodate the hierarchical structure of computer

programs, the raw graph is also equipped with hierarchical,

or nested, structure. Specifically, each vertex of the graph

may itself be a DAG, and so on recursively. (The notion of

a nested graph is natural and appears frequently in

computing practice, e.g., in the graph serialization protocol

GraphML [12] and in the graph visualization software

Graphviz [13]. Precise mathematical formulations are

relatively rare, but see the recent work on operads [14, 15].)

The hierarchical structure of the raw graph reflects the

Figure 2

Schematic of dataflow graph pipeline.
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hierarchical structure of computer programs, in which

functions can invoke other functions. Our system captures

the internal structure of some functions, called

analyzable, and ignores the internal structure of others,

called unanalyzable. When an unanalyzable function is

called, an ordinary vertex, with no nested structure, is

created in the graph. When an analyzable function is

called, a vertex containing a nested graph is created.

The graph construction algorithm then operates on the

nested graph until the original function returns. In this

way, the nesting of the raw flow graph mirrors the call

stack of the computer program.

Whether a function is analyzable is determined by both

technical constraints and performance considerations. For

instance, in Python it would be challenging to trace the

execution of extension code written in C or Fortran. Such

functions are therefore unanalyzable. Aside from this

constraint, we have chosen to designate user-defined

functions as analyzable and library functions as

unanalyzable. (By “user-defined” functions, we mean

functions defined in the data analysis script or notebook,

and by “library” functions, we mean functions defined in

the standard library or in external libraries like Scikit-learn

and Matplotlib.) In effect, this convention ensures that only

user code is traced.

An example of a raw dataflow graph is shown in Figure 3.

The raw graph associated with our exploratory analysis of the

MS data (Figure 1) is too large and complex to have didactic

value or fit comfortably onto the page. Instead, we show

the raw graph derived from the Python program in

Listing 1. In this toy example, a tabular dataset is read

from a CSV file, a linear regression is fit, and the

training error is computed in two different metrics, mean

squared error and mean absolute error. The reader will

notice that the raw graph is not readily interpretable,

even for such a trivial program. In this example, the raw

graph has no nested structure.

To faithfully extract a dataflow representation of a

computer program, one must confront not only practical

software engineering issues, but also several fundamental

challenges. These conceptual challenges arise because there

are essential differences between the paradigms of

imperative, object-oriented programming and dataflow

programming. Space does not permit a thorough discussion,

but we will outline two important challenges only partly

addressed in our work.

The most glaring mismatch between a programming

language for data analysis and our dataflow programming

model is that the former is usually imperative, while the

latter is purely functional. In other words, objects are

mutated in typical computer programs, while mutation does

not belong to the specification of the raw flow graph. Our

system handles mutation within a function by adding a new

output to the function for each mutated object. That sounds

Figure 3

Example raw flow graph: Fitting and evaluating a linear model for supervised learning.

Listing 1 Python code: Fitting and evaluating a linear

model for supervised learning.

import pandas as pd

from sklearn import linear_model,

metrics

# Load the diabetes data

diabetes ¼ pd.read_csv(‘diabetes.csv’)

# OLS using all predictors

X ¼ diabetes.drop(‘y’, 1)

y ¼ diabetes[‘y’]

lm ¼ linear_model.LinearRegression()

lm.fit(X, y)

# Compute error metrics

y_hat ¼ lm.predict(X)

l1_err ¼ metrics.mean_absolute_error(y, y_hat)

l2_err ¼ metrics.mean_squared_error(y, y_hat)
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simple, but complications arise because some mutations are

implicit. For example, if a column in a data frame is

mutated via a reference to that column, then the containing

data frame should be regarded as mutated as well. At

present, our system can detect only direct mutations.

Furthermore, we rely on annotations to capture mutations

from within unanalyzable function calls.

A second conceptual challenge is the representation of

control flow in the dataflow graph. Most languages have

control flow structures for conditional branching (if

statements), looping (for and while statements), and

recursion. Of these categories, only recursion is naturally

represented in dataflow graphs, as a special case of

hierarchical function composition. Traditional for and

while loops are particularly awkward due to their

inherently imperative nature [16]. Our system “solves” the

problem of control flow by ignoring it: it captures only the

function calls actually invoked during the execution of the

program, not those that might have been invoked on

different input data. Thus, given a branch statement, the

system captures only the executed branch, and given a loop,

the system captures the unrolled sequence of iterations.

This limitation, while important, is not as severe as might

initially be supposed. A typical computer program, say a

GUI (graphical user interface) application or a web server,

is expected to run on many different user inputs and behave

differently each time. A semantic representation of these

programs that failed to capture control flow would be totally

inadequate. In contrast, data analyses are usually created for

and attached to specific datasets. As a requirement of

scientific reproducibility, we expect that if the program is

run repeatedly on the same data, it will produce the same

result each time. It is therefore reasonable to ask what

actually did happen on given data, rather than what might

have happened on different data. Of course, we might prefer

to ask both questions simultaneously. We leave that

possibility to future work.

3.2. Annotated flow graph
The annotated flow graph is derived from the raw graph by

attaching annotations to recognized functions and objects.

In contrast to the raw graph, objects are represented not by

edges but by a new type of vertex. The annotated graph is

thus a bipartite DAG, whose two types of vertices we shall

call entities and actions. We adopt this more abstract

terminology because a single action in the annotated graph

can correspond to multiple function calls in the raw graph,

as we shall explain. In this subsection, we summarize our

system’s annotation database and the major steps in the

construction of the annotated flow graph.

An entry in the annotation database is simply a JavaScript

Object Notation (JSON) document identifying a library

class or function by its full name. Examples of class and

function annotations are shown in Listings 2 and 3. In the

case of a class, individual attributes or slots of the class can

be annotated; in the case of a function, arguments and

return values can be annotated. The annotation system is

integrated with the object-oriented programming model.

For instance, the annotation in Listing 3 applies to the fit

method of any class inheriting both the base class

BaseEstimator and the mixin class

RegressorMixin. When multiple annotations match the

same class or method, the most specific annotation is

selected. Aside from these features, the content of the

annotation is basically arbitrary at this stage. In particular,

the type field in the annotations is used to construct the

semantic graph, but plays no role in the annotation process.

There are two major steps in the transformation of the

raw graph to the annotated graph. First, annotations are

attached to vertices (function calls) and edges (objects) in

the raw graph by matching their full names to entries in the

Listing 2 Example annotation: k-means

clustering class in Scikit-learn.

{

“language”: “python”,

“package”: “sklearn”,

“id”: “k-means”,

“class”:

“sklearn.cluster.k_means_.KMeans”,

“slots”: {

“n-clusters”: “get_params.

n_clusters”,

“clusters”: “labels_”,

“centers”: “cluster_centers_”

},

“type”: “k-means”

}

Listing 3 Example annotation: Fit method

for regression models in Scikit-learn.

{

“language”: “python”,

“package”: “sklearn”,

“id”: “fit-regression”,

“class”: [

“sklearn.base.BaseEstimator”,

“sklearn.base.RegressorMixin”

],

“method”: “fit”,

“inputs”: {

“model”: “self”,

“predictors”: 1,

“response”: 2

},

“outputs”: {

“model”: “self”

},

“type”: “fit-supervised”

}
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annotation database, as sketched above. Second, the

topology of the graph undergoes several transformations to

promote interpretability. A new class of entity vertices is

created to represent objects. Sequences of unannotated

function calls are merged into a single action vertices,

provided that all ancestor-descendant relations between

annotated function calls are preserved. Unannotated actions

missing either annotated inputs or annotated outputs are

removed entirely. In realistic data analyses most function

calls are unannotated, so these transformations tend to

dramatically simplify the structure of the graph.

3.3. Semantic flow graph
The semantic flow graph is derived from the annotated

graph by aligning it with a knowledge base of data analysis

concepts. It is the final output of our system. We have

already seen an example semantic graph (under the name

“dataflow graph”) in Figure 1. A second example,

corresponding to the Python program in Listing 1, is shown

in Figure 4. In this subsection, we elaborate on our

formalism for knowledge representation. Our exposition

will be terse, as this component of our system is under

active development. We hope to provide a more satisfactory

treatment in a future publication.

The knowledge base utilized by our system is an ontology

log (or olog) [17, 18]. The olog formalism reinterprets the

classic idea of a semantic network [19] in the language of

category theory. An olog contains types (which taxonomize

the objects in the ontology), aspects (which define

functional relationships between types), and facts (which

represent equivalences between aspects). Mathematically,

an olog is a category whose objects are types; morphisms

are aspects; and commutative diagrams are facts. More

information is available in the original paper [17], which is

readable without prior knowledge of category theory.

We have begun to create an ontology log of the concepts

of data analysis. Its types include both entities, such as data

tables and statistical models, and actions, such as reading a

data file or fitting a model. Figure 5 shows a selection of

the clustering methods in the olog. This excerpt of the olog

models “is-a” relationships (agglomerative clustering is a

type of a hierarchical clustering) and “has-a” relationships

(a k-means clustering model has centers or centroids),

among other kinds of relationships.

A salient feature of ologs is that they can be equippedwith

instance data (ormodels). Intuitively, a model of an olog is an

instantiation its types, loosely analogous to how objects in an

object-oriented programming language instantiate their

classes. Inmathematical terms, a model of an olog is a functor

from the olog to the category of sets. With this definition, the

semantic flow graph is just a model of (instance data for) the

data analysis olog. It is constructed from the annotated flow

graph using the type information in the annotations.

4. Related work
Our system automatically constructs a dataflow

representation of a data analysis by tracing the flow of objects

at runtime. Thus, there are two essential elements in our work:

(i) describing a data analysis as a flow graph, and (ii) tracing

Figure 4

Example semantic flow graph: Fitting and evaluating a linear model for

supervised learning.
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data flow in a computer program. Naturally, there is some

prior work in both of these areas. However, to our knowledge,

we are the first to combine these elements to produce a fully

automated system for summarizing a data analysis. In this

subsection, we review related work in these two areas. Prior

work on data science platforms is reviewed in Section 2.

Regarding the first element, we should acknowledge the

obvious fact that many data analysis environments

explicitly represent analyses as dataflow graphs. Almost

always, these environments are software applications with

graphical interfaces, not programming languages; examples

include open-source software like Knime and Orange and

commercial offerings like SPSS Modeler and RapidMiner.

Graphical environments for scientific workflow

management— such as Galaxy [20], Kepler [21], and

Taverna [22]—belong to a related category, as they often

include data analysis functionality. In this paper, we focus

exclusively on the programming language model of data

analysis, in particular the Python language.

To some extent, our goal of recording the steps of a data

analysis is shared by the field of data provenance. The

provenance of a data resource includes its origin and the

process of transformation by which it was derived [23].

Insofar as the survey [24] is representative, we would argue

that the main difference between our system and the typical

data provenance system is granularity. In data provenance,

the finest granularity of data resource is usually files or

database records, whereas our system operates on a single

file and traces arbitrary programming language objects. For

example, the StarFlow system [25] is, like our system,

aimed at data analysts and built around Python, but operates

at the level of scripts. There are some graphical

environments for data provenance that offer finer

granularity, such as VisTrails [26], but again our work

targets text-based programming languages.

Turning to the second element, the analysis and

instrumentation of computer programs is a large field of

research unto itself. In the computer science community,

dataflow analysis is usually a means to the end of building

better compilers, debuggers, and verification tools. A

dataflow analysis can involve static analysis or dynamic

analysis (or both), but the literature emphasizes static

analysis because of its relevance to optimizing compilers

[27, 28]. Static dataflow analyses are classified as

intraprocedural (within a single procedure) or

interprocedural (between procedures across the entire

program). Interprocedural analysis includes the

construction of function call graphs [29], which we discuss

below. On its own, static analysis is insufficient for our

purposes because we require information that is only

available at runtime, such as the column names of data

tables and the parameters of statistical models.

To our knowledge, the most relevant work in the area of

dynamic analysis is Adrian Lienhard’s dynamic object flow

analysis, described in a dissertation [30] and several papers

[31, 32]. Like us, he proposes to track how objects are passed

between functions at runtime. However, his approach differs

in both purpose and implementation. His primary goal is to

measure object aliasing in large object-oriented systems, as

an aid to debugging and reverse engineering. His work does

not explicitly address the problem of mapping the

(imperative) object-oriented programming model onto the

(functional) dataflow programming model. In our work, we

offer only a partial solution to that problem, which is in

general quite challenging.

Another related concept is a dynamic call graph, or a call

graph constructed at runtime. In a (context-insensitive)

function call graph [29], each vertex corresponds to a

function and there is a directed edge from vertex u to vertex v

if function u calls function v. The definition is reminiscent of

the raw dataflow graph of Section 3, but there is a crucial

difference: vertices in a call graph correspond to functions,

whereas vertices in a dataflow graph correspond to function

calls. This difference dramatically changes the structure of

Figure 5

Excerpt of clustering methods from the data analysis olog.
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the graph. In a call graph, recursive functions create self-loops

or cycles, while the dataflow graph is always acyclic, albeit

possibly nested. In general, it is not possible to reconstruct the

dataflow graph from the call graph because the latter does not

contain sufficient temporal information. This problem

remains even when the call graph is allowed to be context-

sensitive, i.e., to havemultiple vertices for a single function,

corresponding to different calling contexts (call stacks).

5. Outlook and conclusion
In this work, we have proposed and implemented a novel

method to automatically extract a machine-interpretable

representation of a data analysis.We argued that the scientific

community could profit greatly by a new kind of collaborative

data science platform, emphasizing open-ended data analysis

and rich, machine-interpretable content. Our system could

serve as a foundational technology for such a platform.

We hope that the reader shares our excitement about the

prospect of more tightly integrating information

technology, machine learning, and artificial intelligence

with the scientific process. This development is in its

nascent stage and open research and engineering problems

abound. By way of conclusion, we will highlight several

problems that have occurred to us in the course of this work.

There is considerable scope for future work even within

the confines of our technical contribution. In Section 3, we

mentioned limitations in detecting object mutations and

representing control flow in the raw dataflow graph. To

capture control flow, the existing dynamic analysis must be

supplemented with static analysis. At the higher level of

abstraction of the semantic dataflow graph, our knowledge

representation system requires further development. The

main challenge is to subsume all data analysis libraries,

whose interfaces vary widely, under a universal ontology of

data science concepts, while ensuring that the annotation

system remains simple enough to be practically useful.

More ambitiously still, one might hope to integrate domain-

specific ontologies with the data science ontology, perhaps

by attaching semantic information to specific data tables

and columns in the dataflow graph. Domain-specific

ontologies are proliferating in biology [33, 34], and we

expect their popularity to grow across the sciences.

Broadening the scope to a data science platform, how

should we utilize the dataflow graph representation to

perform the machine learning tasks sketched in Section 2,

such as recommending or organizing data analyses? In

experiments not reported here, we defined a kernel

(similarity metric) between data analyses, drawing on the

literature on graph kernels [35, 36]. We then visualized a

small number of analyses for the ACP using kernel PCA. Of

course, kernel methods are just one possible approach to an

open-ended problem, and we have not seriously attempted

to solve, or even formulate precisely, any of the machine

learning tasks mentioned above.

Many other worthy problems—in computer science,

statistics, human-computer interaction, and social science—

present themselves, but we must conclude this paper. We

see a bright future for the marriage of information

technology and science, which, despite the impact of the

internet and electronic publishing, is still in its infancy. We

hope that the communities of natural and social science,

computer science, and statistics will come together to

realize this vision.
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