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ABSTRACT

We introduce the Fairness GAN, an approach for generating a dataset that is
plausibly similar to a given multimedia dataset, but is more fair with respect to
protected attributes in decision making. We propose a novel auxiliary classifier
GAN that strives for demographic parity or equality of opportunity and show em-
pirical results on several datasets, including the CelebFaces Attributes (CelebA)
dataset, the Quick, Draw! dataset, and a dataset of soccer player images and the
offenses they were called for. The proposed formulation is well-suited to absorb-
ing unlabeled data; we leverage this to augment the soccer dataset with the much
larger CelebA dataset. The methodology tends to improve demographic parity and
equality of opportunity while generating plausible images.

1 INTRODUCTION

Automated essay scoring in high-stakes educational assessment (Shermis, 2014; Perelman, 2014)
and automated employment screening based on voice and video (Shahani, 2015; Chandler, 2017) are
examples of decision making with multimedia inputs supported by machine learning algorithms that
raise concern about perpetuating and scaling unwanted bias present in historical data and running
afoul of, e.g., Title VI (education) and Title VII (employment) of the Civil Rights Act of 1964 in the
United States.

Systematic discrimination against groups defined by protected attributes such as race, gender, caste
and religion that directly prevents favorable outcomes such as being hired, paroled, or given a loan
has always been a problem in human decision making, but has come to the fore as such decision mak-
ing is being shifted from people to machines (Williams et al., 2018). This realization has spurred a
recent flurry of research in the data mining and machine learning literature. Designing the right goals
and arriving at the right problem formulation is the first step towards learning a automatic decision
making system (Passi and Barocas, 2019). It is now well-known that there are three main classes
of intervention to introduce fairness into supervised machine learning pipelines: pre-processing,
in-processing, and post-processing (d’Alessandro et al., 2017).

Much of the fairness literature focuses on structured data. Specifically, existing pre-processing
approaches have not been applied to multimedia data and are usually not scalable to the high di-
mensionality that comes with such data. Moreover, the subset of existing pre-processing methods
that generate a new dataset by editing feature values are unlikely to produce realistic pre-processed
datasets when applied to multimedia data even if they could scale. (The algorithms of Kamiran
and Calders (2012), which do not work with the features, are the only ones of which we are aware
that can be tractably applied to high-dimensional data.) To address these limitations, we propose a
new debiasing approach based on generative adversarial networks (GANs) (Goodfellow, 2017). We
name this methodology the Fairness GAN.

Recent contributions examining fairness from the perspective of adversarial learning include Ed-
wards and Storkey (2016), Beutel et al. (2017), Zhang et al. (2018), Madras et al. (2018), Wadsworth
et al. (2018), Celis and Keswani (2019), and Adel et al. (2019). These methods are similar to our
proposed approach by including a classifier trained to perform as poorly as possible on predicting
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the outcome from the protected attribute, but are different from our proposed method in two key
ways. First, they are not intended to create a releasable new dataset that plausibly approximates a
given original biased dataset but with more favorable fairness metrics; they are intended for learning
fair latent representations that are not in the same space as the given original, which restricts the
transparency of the transformation and the flexibility in the use of the dataset. As such, they are
not GANs with a real/fake discriminator component that aims to generate realistic samples. Second,
they are applied to low-dimensional structured data or word embeddings.

The method of Edwards and Storkey (2016) provides fairness in the sense of demographic parity;
Beutel et al. (2017) allows for fairness in the sense of equality of opportunity; and Zhang et al.
(2018) (and its simplification by Wadsworth et al. (2018)) further allows for fairness in the sense
of equality of odds. Herein, we propose versions of the Fairness GAN for the first two of these
definitions and leave equality of odds for future work.

The existing methods (Edwards and Storkey, 2016; Beutel et al., 2017; Zhang et al., 2018; Madras
et al., 2018) can handle the case when the protected attribute is known only for a subset of samples
and Madras et al. (2018) additionally considers transfer learning. In our work, we consider a similar
but distinct case that is relevant because we are attempting to generate plausible signals: the dataset
labeled with outcomes and protected attributes is small, but there exists a much larger multimedia
dataset with similar features but no outcomes. Here our solution is to augment the dataset for training
the generator with samples from the larger dataset.

The GAN literature includes approaches for conditional manipulation of multimedia data (Perarnau
et al., 2016), unpaired translation (Zhu et al., 2017), and their combination (Lu et al., 2017), which
have some relationship to the method proposed herein. One differentiating aspect of our work is that
we do not have a collection of samples from a target distribution that we are trying match. Also,
we are never in position to manually manipulate or change the value of some descriptive attribute of
the multimedia data, and in fact our work right now is limited to the setting in which all predictive
features are multimedia ones: there are no other metadata-like features. Additionally, in the fairness
setting, there are objective measures of quality that are defined over a collection of samples and
cannot be judged on a single sample alone.

One very recent piece of work by Xu et al. (2018) is also a GAN for fairness developed concurrently
with our work. Their architecture is developed for low-dimensional structured data and only applies
to demographic parity. While our work is geared towards high dimensional image data and apart
from demographic parity our architecture also supports equality of opportunity. Another major
difference is the way the demographic parity is imposed. We are striving for independence between
the outcome Y and the protected variable C therefore the fairness discriminator is only fed the
outcome Y . This helps in retaining information about the protected variable C such as gender in the
generated image X and preserving the natural image structure. This crucially enables the use of the
generated fair image datasets for downstream tasks.

We experiment with several datasets, including the CelebFaces Attributes (CelebA) dataset (Liu
et al., 2015), a dataset of images of soccer players (Silberzahn et al., 2017), and the Quick, Draw!
dataset of hand-drawn sketches.1 Further discussion about datasets is provided in the data descrip-
tion section.

2 FAIRNESS DEFINITIONS

Consider the classification task of predicting a true outcome Y ∈ {0, 1} from features X . The
prediction is denoted Ŷ . Consider also a protected attribute C ∈ {0, 1}. The fairness notion demo-
graphic parity is defined as:

Pr[Ŷ | C = 0] = Pr[Ŷ | C = 1], (1)

i.e. equality of selection rates across the two groups delineated by the protected attribute. The
fairness notion equality of opportunity is defined as:

Pr[Ŷ | C = 0, Y = 1] = Pr[Ŷ | C = 1, Y = 1], (2)

1https://github.com/googlecreativelab/quickdraw-dataset
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i.e. equality of false negative rates across the two groups. In order to quantify how close we are to
achieving these, we will take the absolute difference of the left-hand side and right-hand side of (1)
or (2), respectively.

3 AC-GAN BACKGROUND

The AC-GAN was recently developed to improve the training of GANs for image synthesis when
the images come with a class label C such as ‘monarch butterfly,’ ‘daisy,’ and ‘grey whale’ (Odena
et al., 2017). As in all GANs, the AC-GAN has a discriminator D(·) and a generator G(·) that
work against each other, and are trained using so-called ‘real’ samples distributed according toXreal.
Every generated sample is a function of a noise realization z and additionally a class label realization
c, i.e. Xfake = G(c, z).2 The objective functions for training the generator and discriminator are
composed of the typical GAN objective, the log-likelihood of the correct source S ∈ {real, fake}:

LS = E[logP (S = real | Xreal)] + E[logP (S = fake | Xfake)] (3)
as well as the log-likelihood of the correct class:

LC = E[logP (C = c | Xreal)] + E[logP (C = c | Xfake)]. (4)
The discriminator maximizes LS + LC and the generator minimizes LS − LC .

4 FAIRNESS GAN FORMULATION

The proposed Fairness GAN builds upon the AC-GAN. Notational differences are as follows. First,
instead of using C to indicate a class label, we use C to denote the protected attribute label such as
gender or caste. Second, we have an additional outcome variable Y which is the decision such as
hiring or loan approval.

The objective of the Fairness GAN is to take a given real dataset (Creal, Xreal, Yreal) and learn to gen-
erate debiased data (Xfake, Yfake) such that the joint distribution of the features and outcome of the
generated data (conditioned on the protected attribute) is close to that of the real data while yielding
decisions that have either demographic parity or equality of opportunity. Ideally, the outcome pro-
duced by the data generator would be independent of the conditioning protected attribute; we pursue
this ideal by reversing the motive of the AC-GAN and introducing an auxiliary classifier trained to
predict outcome from protected attribute as poorly as possible.

The generator of the Fairness GAN produces both the features and outcome variables:
(Xfake, Yfake) = G(c, z). It contains two variations of the log-likelihoods of the correct source,
one pair for joint (X,Y ) samples with source variable SJ :

LR
SJ

= E[logP (SJ = real | Xreal, Yreal)] (5)

LF
SJ

= E[logP (SJ = fake | Xfake, Yfake)], (6)
and one pair for multimedia X features alone with source variable SX :

LR
SX

= E[logP (SX = real | Xreal)] (7)

LF
SX

= E[logP (SX = fake | Xfake)]. (8)

We include a pair of class-conditioned losses to add structure to the GAN and help with training and
generating plausible images. These objective functions are the same as in the AC-GAN:

LR
C = E[logP (C = c | Xreal)] (9)

LF
C = E[logP (C = c | Xfake)]. (10)

Finally and most importantly, for fairness, we include a pair of losses to encourage demographic
parity:

LR
DP = E[logP (C = c | Yreal)] (11)

LF
DP = E[logP (C = c | Yfake)]. (12)

2We have overloaded the variable C because it will take the role of the protected attribute in the proposed
Fairness GAN.

3



Published as a workshop paper at ICLR 2019

The argument supporting these terms is the same as given by Zhang et al. (2018).

The discriminator maximizes:

LD = LR
SJ

+ LF
SJ

+ LR
SX

+ LF
SX

+ LR
C + LR

DP ,

and the generator minimizes:

LG
DP = LF

SJ
+ LF

SX
− LF

C + LF
DP .

To summarize, the discriminator cost term (LD) that is being maximized contains the standard AC-
GAN terms for the discriminator plus the fairness term. The first two terms (LR

SJ
+ LF

SJ
) are the

expected probability of the discriminator assigning the correct source label (real or fake) to the joint
samples (X ,Y ). The next two terms (LR

SX
+ LF

SX
) are the expected probability of the discriminator

assigning the correct source label using only X . We found that having these terms separately on
X helped image quality in general. The fifth term (LR

C) is typical in AC-GAN; it ensures that the
discriminator can determine the conditioning variable C from X . The last term (LR

DP ) is to train the
discriminator to predict the conditioning variable from the outcome Y alone for real data.

The generator cost term (LG
DP ), that is being minimized, consists of the standard AC-GAN terms

for the generator plus the fairness term. The first term (LF
SJ

) and second term (LF
SX

) leads to the
misclassification of the fake joint (X ,Y ) andX samples by the discriminator, respectively. The third
term (LF

C) is typical in AC-GAN; it ensures that the discriminator can determine the conditioning
variable C from fake X (generated images). The last term (LF

DP ) is aimed at reducing the ability
of the discriminator to correctly predict the conditioning variable from the outcome Y alone for
generated dataset. At convergence, the generator produces (X,Y ) pairs where the Y alone cannot
lead to good prediction of the protected variable C.

For equality of opportunity, we take a cue from Beutel et al. (2017) and Zhang et al. (2018), and
activate the fairness loss on the generator only for samples where Yfake = 1. In the binary case,
where Yfake ∈ [0, 1], the generator minimizes:

LG
EOPP = LF

SJ
+ LF

SX
− LF

C + YfakeL
F
DP .

5 DATA DESCRIPTION

CelebA CelebA consists of 202,599 color images of the faces of celebrities downloaded from the
internet, cropped and resized to 64 pixels by 64 pixels (Liu et al., 2015). The images come with
40 binary attributes annotated by a “professional labeling company,” further described by Böhlen
et al. (2017) as “a group of 50 paid male and female participants, aged 20 to 30, and recruited from
mainland China during a 3 month development phase.”

One of the 40 attributes is male and another is attractive. In one set of experiments, we use male
as the protected attribute C ∈ {0, 1} without further delving into the social construction of gender
or commenting on why the attribute is named as it is. In another set of experiments, we use skin
tone as the protected attribute. CelebA contains multiple images of the same celebrity; we manually
annotated one image for each of the 10,177 unique celebrities and propagated the annotation to the
rest of the images. We used the Fitzpatrick skin type scale to do the annotation, with types I (ivory),
II (beige), and III (light brown) categorized asC = 0 and types IV (medium brown), V (dark brown),
and VI (very dark brown) categorized as C = 1.

We use attractive as the outcome decision Y ∈ {0, 1} and assume it represents the labeler’s judg-
ment on the celebrity’s attractiveness. Several concerns with this attribute are presented by Böhlen
et al. (2017), but we treat it as a decision just like a hiring decision or a decision to accept an
individual into a program.

Soccer (Many Analysts, One Dataset) We also consider a second dataset of images of people:
soccer players from European professional leagues along with a record of their cautionable and
sending-off offenses. This dataset was originally assembled for a unique crowdsourcing experiment
testing whether different statisticians will find evidence of racial discrimination in the calling of
offenses by referees (Silberzahn et al., 2017).
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The players have been labeled according to skin tone by two annotators, Lisa and Shareef, with five
possible values {0 (very light skin), 0.25 (light skin), 0.5 (neither light nor dark skin), 0.75 (dark
skin), 1 (very dark skin)}. We count players with average annotation value less than 0.5 as light and
players with average greater than or equal to 0.5 as dark, and use this as the protected attribute C.

The dataset contains counts of yellow cards, second yellow cards, and straight red cards given to the
player. We aggregate the count of all of these offenses over all matches and set Y = 0 for players
with more than 0.12 offenses per match and set Y = 1 for players with less than or equal to 0.12
offenses per match. The value 0.12 is fairly arbitrary, but a choice that does not lead to severe class
imbalance.

The images are a mix of action shots and posed profile pictures from which we extract faces using
a pre-trained Viola-Jones face detector and scale them to 64 pixels by 64 pixels. The face detector
does not find any faces in 5.3% of the images, without any discernible bias related to C or Y . We
drop these samples, yielding 1501 total samples in the dataset. In images that the detector finds more
than one face, we manually select the main player. We note that the profile image of the player is
not the direct basis of individual yellow cards and red cards given by the referee.

Quick, Draw! The final dataset we consider is not images of people, but sketches drawn by people.
The Google Quick, Draw! dataset contains 50 million quickly drawn sketches of objects from 345
categories.

The sketches are captured as vectors of pen movements and also released as 28 pixel by 28 pixel
bitmap images. Unfortunately, it was not clear whether the correspondence between the image and
the metadata was maintained in the released bitmap images. So, we created our own 64 pixel by 64
pixel single-channel bitmap images from the vector representation. Each sample is labeled by the
country of the user that submitted the sketch. We use this variable as the protected attribute C. We
use the binary assessment of the quality of the sketch as the decision Y (essentially a performance
evaluation that could potentially be used for evaluating candidates for employment or admission to
educational institutions). This quality assessment, the variable named ‘recognized,’ seems to be the
output of an automated decision making model, but that is irrelevant to our work and could just as
easily have been a human judgment.

We focus on the category ‘power outlet’ as it is known to have differential recognition performance
on submitters from Great Britain (poor), and Canada and the United States (good) (TailSpectrum,
2016). We use a binary C with Great Britain and Canada since the two countries have a similar
number of samples for power outlet sketches.

6 TECHNICAL DESCRIPTION

The architecture of the generator and discriminator are based on the network structures in Miyato
et al. (2018), Miyato and Koyama (2018), and Gulrajani et al. (2017). The image generation path
of the generator transforms the noise vector into image X using a linear layer followed by 4 up-
sampling ResNet blocks (He et al., 2016). To generate class-conditional images, conditional batch
normalization is employed (Dumoulin et al., 2017). The same noise vector is passed through 2 dense
layers to generate the outcome variable Y . ReLU functions are used as the activation functions in the
intermediate layers for both the image and outcome generation paths. Meanwhile, tanh activation
is used as the last layer for both paths.

The discriminator provides four outputs: probability distribution over sources of the joint sam-
ples, probability distribution over sources of the image samples, probability distribution over classes
conditioned on image samples, and probability distribution over classes conditioned on outcome
samples: P (SJ | X,Y ), P (SX | X), P (C | X), P (C | Y ) = D(X,Y ). The first three outputs
share a common network φ(.) that transforms X . P (SX | X) and P (C | X) are obtained using
independent linear layers over φ(X). P (C | Y ) is obtained by passing Y through 2 dense layers
with ReLU activation function.

We use an architecture similar to projector discriminator (Miyato and Koyama, 2018) to obtain
P (SJ | X,Y ). First, the outcome variable Y is embedded in a space with same dimensionality as
φ(X). This is followed by combining the embeddings ofX and Y by inner product based interaction
(f(X,Y ) = YVY φ(X) +VXφ(X)) instead of the common approach of concatenation.
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male = 0 male = 0 male = 1 male = 1
attractive = 0 attractive = 1 attractive = 0 attractive = 1

Without Debiasing

Fairness GAN DP

Fairness GAN Eq Opp

Figure 1: Eigenfaces from the CelebA dataset (male, attractive).

In the case of the small cardinality soccer dataset, we leverage the much larger CelebA dataset to aid
the learning of the generator. Skin tone is the protected attribute C for both datasets, but CelebA is
unlabeled with respect to the yellow card and red card outcome Y . To overcome the lack of outcome
labels in CelebA, we tweak the discriminator loss to:

LD = LRlab

SJ
+ LF

SJ
+ LRlab+unl

SX
+ LF

SX
+ LRlab+unl

C + LRlab

DP ,

where lab denotes the labeled soccer dataset and unl denotes the unlabeled CelebA dataset.

We treat Y as a continuous variable to get around the issues of back-propagating through discrete
variables. We also soften these values to range between (−0.8, 0.8) and add stochasticity in the
form of Gaussian noise with standard deviation 0.01 for training stability. An alternative is to keep
Y discrete via the Gumbel-Softmax trick (Jang et al., 2017; Maddison et al., 2017), but given that it
is just a single scalar variable alongside a high-dimensionalX , it is simpler to treat Y as continuous.

The classifiers for evaluation have the same architecture as the discriminator output P (C | X).
For stable GAN training, the discriminator weights are regularized using spectral normalization
(Miyato et al., 2018). Cross entropy loss is used for classification losses while hinge version of the
adversarial loss is used for source (real or fake) losses (Lim and Ye, 2017). We use Adam optimizer
with hyperparameters set to β1 = 0.0 and β2 = 0.9. We also decay the learning linearly with the
initial value set to 2× 10−4.

Because of the small number of real samples in the soccer dataset, it is impractical to train a classifier
with a similar architecture to the GAN discriminator like we do with the other datasets. Therefore,
we chose to only train the weights for the final fully-connected layer and use the weights from a
classifier trained on CelebA faces for the previous layers.

We apply the Fairness GAN to the four datasets described above. We perform a random 90/10 train-
ing/testing partition of the data (70/30 partition for soccer) and use the training set for independently
learning two GANs: one with demographic parity loss and one with equality of opportunity loss.
Debiased datasets are generated from the learned generators. Then three separate classifiers are
trained on the training partition of the original data without debiasing and the two generated datasets
with debiasing. Finally, these three separate classifiers are evaluated on the same testing partition of
the original data. The reported performance is based on an average across iterations of the classifier.
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7 EMPIRICAL RESULTS

Table 1 presents the different error rates for the three classifiers conditioned on the protected at-
tribute, the overall unconditional error rate, and the values of demographic parity loss and equality
of opportunity loss for all four datasets.

Table 1: Error rates, demographic parity, and equality of opportunity.
CelebA Without Debiasing Fairness GAN DP Fairness GAN Eq Opp Reweighing

(male, attractive) male = 0 male = 1 male = 0 male = 1 male = 0 male = 1 male = 0 male = 1

False Positive Rate 0.4043 0.0927 0.5185 0.2356 0.4232 0.1672 0.1445 0.1152
False Negative Rate 0.1213 0.4222 0.1821 0.4074 0.2119 0.4373 0.3659 0.3535

Error Rate 0.2196 0.1749 0.2989 0.2785 0.2853 0.2346 0.2890 0.1746
Unconditional Error Rate 0.2023 0.2910 0.2657 0.2447

Demographic Parity 0.0447 0.0204 0.0507 0.1144
Equality of Opportunity 0.3009 0.2253 0.2253 0.0123

CelebA Without Debiasing Fairness GAN DP Fairness GAN Eq Opp Reweighing
(skin tone, attractive) dark light dark light dark light dark light

False Positive Rate 0.1186 0.2035 0.3296 0.4761 0.2896 0.3755 0.1126 0.1507
False Negative Rate 0.3099 0.1917 0.3279 0.2194 0.3652 0.2799 0.3495 0.2764

Error Rate 0.1846 0.1973 0.3290 0.3413 0.3157 0.3253 0.1943 0.2167
Unconditional Error Rate 0.1953 0.3394 0.3238 0.2132

Demographic Parity 0.0127 0.0123 0.0096 0.0224
Equality of Opportunity 0.1182 0.1085 0.0853 0.0730

Soccer Without Debiasing Fairness GAN DP Fairness GAN Eq Opp Reweighing
dark light dark light dark light dark light

False Positive Rate 0.2029 0.1428 0.1591 0.3466 0.3445 0.4814 0.2035 0.1412
False Negative Rate 0.8202 0.8089 0.8850 0.6899 0.5492 0.5651 0.7700 0.8215

Error Rate 0.5459 0.4387 0.5624 0.4991 0.4582 0.5186 0.5182 0.4434
Unconditional Error Rate 0.4602 0.5118 0.5064 0.4584

Demographic Parity 0.1072 0.0633 0.0604 0.0749
Equality of Opportunity 0.0113 0.1950 0.0160 0.0515

Quick, Draw! Without Debiasing Fairness GAN DP Fairness GAN Eq Opp Reweighing
GB CA GB CA GB CA GB CA

False Positive Rate 0.2638 0.3697 0.2951 0.3482 0.4213 0.4921 0.2844 0.3109
False Negative Rate 0.0716 0.0189 0.1957 0.1343 0.0348 0.0111 0.0645 0.0548

Error Rate 0.1096 0.0509 0.2203 0.1565 0.1113 0.0549 0.1132 0.0850
Unconditional Error Rate 0.0864 0.1938 0.0890 0.1008

Demographic Parity 0.0587 0.0638 0.0563 0.0281
Equality of Opportunity 0.0527 0.0614 0.0237 0.0096

We visualize the image samples in Figure 1 as follows. We compute the eigenfaces or eigensketches
and show the mean image in the center of a 3 by 3 grid (Turk and Pentland, 1991). The images
to the left and right show variation along the first principal component. The images to the top and
bottom show variation along the second principal component. The diagonal images show variation
along both the first and second principal components together. In Table 1, we additionally provide
a comparison to the Reweighing method of Kamiran and Calders (2012), the only existing pre-
processing method we are aware of that could tractably be applied to multimedia data (since it does
not work with the features).

On CelebA (male, attractive), we see that debiasing takes the demographic parity value from 0.0447
to 0.0204 and the equality of opportunity from 0.3009 to 0.2253. Reweighing actually makes demo-
graphic parity worse, but does an excellent job at equality of opportunity. The overall accuracy does
suffer in achieving these goals. With GAN debiasing, the false positive rate for non-males is quite
high, which actually results in more favorable outcomes for this group. (Different definitions of fair-
ness act in different, perhaps unexpected, ways (Friedler et al., 2018)). Looking at the eigenfaces,
we see that the demographic parity GAN makes both unattractive and attractive males presumably
less attractive by feminizing their features: fuller lips, less defined jawline, and bigger eyes. The
change caused by the equality of opportunity GAN is much less pronounced on the unattractive
males, which makes sense because equality of opportunity is only concerned with Y = 1. One of
the desired properties of the Fairness GAN approach is to produce a realistic dataset that can be
examined in a transparent way; our examination of lips and jawlines is exactly such a transparent
examination not possible with latent representation based approaches.

CelebA (skin tone, attractive) already has excellent demographic parity, and the GAN improves it a
bit. The GAN improves the equality of opportunity from 0.1182 to 0.0853. Here too, Reweighing
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makes demographic parity worse and has the best equality of opportunity performance. The eigen-
faces (see Figure 2 in Appendix) show that the GANs equalize the skin tones across the groups.
In fact, after debiasing for equality of opportunity, it appears that the dark attractive mean face has
slightly lighter tone than the light attractive mean face.

The soccer dataset presents an inherently difficult task because a face image is not a particularly use-
ful feature to predict cautionable and sending-off offenses. Nonetheless, even for such a challenging
dataset, the Fairness GAN does improve demographic parity quite a lot. The equality of oppor-
tunity is already extremely small, and the equality of opportunity GAN maintains a small value;
the demographic parity GAN, which does not have equality of opportunity in its objective causes
it to degrade significantly—once again illustrating that the different fairness definitions behave in
weird ways sometimes. Reweighing is poorest on this dataset. It is observed that the GANs serve to
equalize skin tone in these eigenfaces (see Figure 3 in Appendix) as well.

Finally, with the Quick, Draw! dataset, we notice that the GAN is not able to improve the demo-
graphic parity, but is able to improve the equality of opportunity from 0.0527 to 0.0237. We suspect
that too much sample distortion would be required to improve the demographic parity. The eigens-
ketches (see Figure 4 in Appendix) are very interesting to examine. The unrecognized sketches from
both Great Britain and Canada have no structure to them but the recognized sketches do: more single
socket square three-pronged patterns from Great Britain and double socket flat blade patterns from
Canada (corresponding to those countries’ respective power outlets). After debiasing, the Great
Britain eigensketches have more of the double socket character and the Canada ones have more of
the single socket square character. It is likely because of this mixture characteristic that Reweighing
is superior on this dataset.

8 CONCLUSION

In this paper, we have examined fairness in the scenario of binary classification with multimedia
features and have developed a GAN-based pre-processing approach to improve demographic parity
or equality of opportunity by learning to generate a fairer dataset in the original input feature space.
We use the proposed algorithm, the first application of GANs to algorithmic fairness, to process sev-
eral attributed image datasets with varied properties, outcome variables, and protected attributes by
adapting a unique combination of several recent techniques from the GAN literature. The empirical
results are generally positive (superior to Reweighing on face datasets for demographic parity), but
do leave room for improvement.

The work so far illuminates several directions for future research, e.g., considering other modalities
of multimedia data in addition to images, adding the equality of odds fairness definition (Zhang
et al., 2018), pursuing the Gumbel-Softmax trick for discrete outcome variables (Jang et al., 2017;
Maddison et al., 2017), and formulating a Fairness GAN for continuous protected attributes (Louppe
et al., 2017).
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A APPENDIX
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Figure 2: Eigenfaces from the CelebA dataset (skin tone, attractive).
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Figure 3: Eigenfaces from the soccer dataset.
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Figure 4: Eigensketches from the Quick, Draw! dataset’s power outlet category.
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