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ABSTRACT
Machine learning models are prone to biased decisions due to biases
in the datasets they are trained on. In this paper, we introduce a
novel data augmentation technique to create a fairer dataset for
model training that could also lend itself to understanding the type
of bias existing in the dataset i.e. if bias arises from a lack of rep-
resentation for a particular group (sampling bias) or if it arises
because of human bias reflected in the labels (prejudice based bias).
Given a dataset involving a protected attribute with a privileged
and unprivileged group, we create an “ideal world” dataset: for ev-
ery data sample, we create a new sample having the same features
(except the protected attribute(s)) and label as the original sample
but with the opposite protected attribute value. The synthetic data
points are sorted in order of their proximity to the original training
distribution and added successively to the real dataset to create
intermediate datasets. We theoretically show that two different
notions of fairness: statistical parity difference (independence) and
average odds difference (separation) always change in the same
direction using such an augmentation. We also show submodular-
ity of the proposed fairness-aware augmentation approach that
enables an efficient greedy algorithm. We empirically study the
effect of training models on the intermediate datasets and show
that this technique reduces the two bias measures while keeping
the accuracy nearly constant for three datasets. We then discuss the
implications of this study on the disambiguation of sample bias and
prejudice based bias and discuss how pre-processing techniques
should be evaluated in general. The proposed method can be used
by policy makers—who want to use unbiased datasets to train ma-
chine learning models for their applications—to add a subset of
synthetic points to an extent that they are comfortable with to
mitigate unwanted bias.
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1 INTRODUCTION
Fairness in machine learning has been a growing and interesting
field of research. The existence of unwanted discrimination by ma-
chine learning models (e.g. demonstrated in [5]), has led to the
development of measures that can be used to quantify such bias,
along with techniques to combat such biases. The definitions used
to understand the bias in such models can be broadly categorized
into three types: independence, separation and sufficiency. Specifi-
cally, a classifier satisfies independence if the protected attribute
(such as race or gender) for which the model may be biased is in-
dependent of the classifier decision. Separation is satisfied if the
classifier decision is independent of the protected attribute condi-
tioned on the true label. Sufficiency is satisfied if the true label is
independent of the protected attribute conditioned on the classi-
fier prediction. It has been shown that unless ideal conditions are
met, the three definitions are mutually incompatible [12]. Details
on these fairness criteria, both mathematically and with respect
to different worldviews, may be found in [2, 25] along with def-
initions of associated fairness metrics (such as statistical parity
difference for independence, average odds difference for separation,
and calibration for sufficiency).

Using these definitions, several techniques have been proposed
that help satisfy the various criteria of fairness for machine learning
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models to reduce bias, and such techniques can be broadly catego-
rized into: pre-processing, in-processing and post-processing [8, 21].
In this paper, we focus on a pre-processing technique that aims to
modify the dataset that is being used to train the model, to minimize
the bias existing in the model. A simple pre-processing technique
could be fairness through unawareness, where a protected attribute
is simply not considered for training a model. However, this ap-
proach might still result in biases through other features that may
be correlated with the protected attribute [14].

Previous methods that pre-process data include modifying the
dataset by sampling or reweighing the training samples [17], chang-
ing individual data records [15], using t-closeness [22], optimizing
using a multi-objective loss function [6], adversarial debiasing [27],
fairness GAN [23], optimized score transformation [24], removing
disparate impact [11], and learning fair representations [26]. How-
ever, many of these are either very complicated or not intuitive to
understand, especially for a policy maker with limited knowledge
of machine learning. We introduce a simple and effective technique
that tries to minimize the bias by augmenting the dataset with
synthetic points, such that the overall dataset represents a more
equitable world, where the level of augmentation can be decided
by domain experts or policy makers.

Apart from simply measuring bias, it is also important to under-
stand the reason for the bias that arises in the data and hence the
model, to be able to facilitate better dataset collection. Many types
of biases can arise in a model [2, 3], and some effort has been under-
taken towards understanding the reason behind them, both from
an optimization perspective [7] and a causal inference perspective
[20]. In this paper, we consider two out of the many possible types
of bias 1) Prejudice-based bias: Also known as label bias, this exists
when human biases affect the labels and 2) Sample bias: This type
of bias may exist when a certain group is under-represented in
the dataset, because of a non-uniform data collection strategy. We
show experimentally how the data augmentation technique can
lend itself towards answering if the bias arises because of prejudice
or sample bias.

The data augmentation technique can be described as follows:
given a dataset that contains a protected attribute (such as gender
or race), we define an “ideal world dataset” as data where different
groups within the protected attribute (such as male or female for
gender) attain the same label, irrespective of other feature values.1

To demonstrate how such an ideal dataset would be created and
useful, consider a hypothetical example, shown in Fig. 1, of the
hiring decisions of applicants for a job posting, where the protected
attribute is the applicant’s gender. While this dataset is hypotheti-
cal, it is evident that since personal bias against certain protected
attributes have been demonstrated from a psychological perspec-
tive [16], such datasets would exist in the real world. This dataset
demonstrates examples of both prejudice and sample bias. An ex-
ample of prejudice bias is that male and female clinicians with a
college degree are treated differently. The same applies for male
versus female nurses, both as a whole and when conditioned on
the high school and college graduate sub-populations. An example

1Note that if other features exist that are directly representative of the protected
attribute, and not a manifestation of indirect correlations, then these should also be
changed to ensure that the ideal world dataset is feasible. In this paper, the datasets
considered do not exhibit this property.

Occupation Education Gender Decision
Clinician College Male 1
Clinician College Female 0
Clinician High school Male 1

Nurse High school Female 1
Nurse College Female 1
Nurse College Male 0
Nurse High school Male 0
Nurse PhD Female 1

Scientist PhD Male 1
Scientist PhD Male 1

Occupation Education Gender Decision
Clinician College Female 1
Clinician College Male 0
Clinician High school Female 1

Nurse High school Male 1
Nurse College Male 1
Nurse College Female 0
Nurse High school Female 0
Nurse PhD Male 1

Scientist PhD Female 1
Scientist PhD Female 1

Original dataset (D) Synthetic dataset (S)

Figure 1: Example with original dataset D and synthetic
dataset S . Together they represent the final ideal dataset D*.

of sample bias results from the absence of data on female scientists.
Likewise, there is no data on male nurses with a PhD, nor female
clinicians with a high school diploma. A model trained on this
dataset would potentially be biased.

To address these issues, we add synthetic points with different
values for the protected gender attribute, as shown in Fig. 1. These
synthetic points along with the original ones constitute the overall
ideal dataset. This new dataset now has an equal number of males
and females, and the label no longer depends on the gender, thereby
potentially removing bias from the model that this overall dataset
is trained on.

To minimize concerns over “polluting” the dataset with many
synthetic points, we propose a data augmentation technique that
selectively adds only a subset of the synthetic points to meet the
fairness criteria while maintaining accuracy. The approach is to
successively add a set of synthetic data points to create new aug-
mented datasets, and then evaluate the model on the new datasets.
We show that by augmenting data using this technique, it reduces
bias based on two fairness definitions: statistical parity difference
and average odds difference, while keeping the accuracy nearly
constant. Theoretically, we show that the addition of any point to
the dataset would result in the simultaneous increase or decrease of
both statistical parity difference (independence) and average odds
difference (separation). Other pre-processing techniques cannot
make this guarantee. Secondly, we theoretically show that if the
data is added in a greedy way to only reduce bias (and hence only
favorable decision samples for the unprivileged group and unfavor-
able decision samples for the privileged group are considered for
augmentation), the fairness definitions are submodular and hence
we can greedily augment the dataset to reduce bias, while being
computationally efficient.

We perform experiments on successive subsets of data for three
datasets by sorting the synthetic points by a measure of how re-
alistic they are with respect to the original data and then adding
a k-percentage of these sorted synthetic points to the real data
to create a k-augmented dataset. The realism of a synthetic data
point is measured by finding cluster centers (using k-means) from
the original data and measuring the distance of every synthetic
point to these cluster centers. For example, a 1-augmented dataset
would mean that 1% of the most realistic data points from the
synthetic dataset have been added to the original dataset, while a
100-augmented dataset would be what we define as the ideal world
dataset.



The reason for performing extensive experimentation on these
subsets instead of just using the ideal world dataset (100-augmented
dataset) is two fold. First, while such an ideal world dataset might
intuitively make sense, it could raise several concerns with statis-
ticians and policy makers. Chief among these concerns would be
the thought of drastically manipulating the real-world data distri-
bution (original data) such that the model that is trained on this
new data may be highly inaccurate, or that the new model does
not reflect how humans perceive the world. In this regard, an "ideal
world" dataset from a fairness perspective would not be consid-
ered "ideal" from a statistical perspective: real-data distributions
are being altered. k-augmented datasets offer model developers a
hyper-parameter to decide the extent to which they can use the
augmentation. We show in our experiments that accuracy is not
significantly compromised, while bias is extensively reduced using
such an augmentation scheme.

Secondly, we show that data augmentation has a surprising side-
effect of potentially helping discover the type of bias existing in
the data. If a small subset of the most realistic points being added
results in a significant decrease in bias, a sampling bias may exist
in the data, since collecting more realistic data could potentially fix
the bias. If, however, adding a large set of synthetic points does not
cause the bias to reduce, this could be indicative of prejudice based
bias existing in the original data, since the points that lead to the
decrease in bias are unrealistic with respect to the original dataset,
and hence the unprivileged group has possibly been discriminated
against by being assigned more unfavorable labels. To the best
of our knowledge, this is the first such simple data augmentation
strategy that mitigates bias while also suggesting the type of bias
in the data.

The contributions of our work can be summarized as follows:

• A new data augmentation technique to mitigate bias and
uncover the type of bias in the data.

• Theoretical guarantee on coincident change of two different
fairness measures with this augmentation scheme.

• Proof of submodularity of fairness metrics under conditions.
• Discussion on the evaluation of pre-processing based tech-
niques.

2 THEORY
Consider an original dataset D composed of features X , a binary
protected attribute A, and a binary label Y that is used to train a
machine learning modelM for a classification problem.

Definition 1: For a datasetD with a binary protected attributeA,
an ideal world datasetD* is such thatD* = D∪S , where S represents
a set of synthetic points added such that SX = DX , SY = DY and
SA , DA.

That is, the ideal dataset contains the original dataset combined
with the set of points (synthetic data) that have the same features
X and label Y , but a different protected attribute A.

Lemma 1: A model trained on the ideal dataset with perfect
accuracy will satisfy independence, separation, calibration, and
counterfactual fairness [19].

The mathematical definitions and proofs for this lemma are
given in the appendix2, but it is intuitive to expect so since both
independence and conditional independence in all forms would be
satisfied for a classifier with perfect accuracy.

In this paper, we measure independence using statistical parity
difference:

SPD = P(Y ′ = 1 | A = 0) − P(Y ′ = 1 | A = 1). (1)

We measure separation using the average odds difference, i.e., the
sum of the differences between the true positive and false positive
rates between groups:

AOD =0.5(P(Y ′ = 1 | Y = 1,A = 0)
− P(Y ′ = 1 | Y = 1,A = 1)
+ P(Y ′ = 1 | Y = 0,A = 0)
− P(Y ′ = 1 | Y = 0,A = 1))

(2)

Where A = 0 represents an unprivileged group and A = 1
represents a privileged group, Y = 0 is an unfavorable outcome
and Y = 1 is a favorable outcome and Y ′ represents the model
prediction.

2.1 Creating multiple synthetic datasets
Creating such an ideal dataset D* raises concerns in real-world
deployment since the following questions arise: 1) Fabricating train-
ing points leads to a training distribution that does not represent
the real world. Would a policy maker be comfortable with this?
2) Would creating such training points lead to a loss in accuracy?
Hence, we do not pose this method as an automatic pre-processing
step that can be carried out without human intervention. Instead,
we augment the original dataset D in increments such that at every
step k , we select the top k% points from S and create a new dataset
Dk such that the k% points are the most realistic points with respect
to the original training distribution, from S . Hence D0 = D and
D100 = D*. A policy maker can then see the effect of training the
model on every Dk datasets on the accuracy and fairness metrics.
Showing such an analysis is helpful to gain people’s trust in the
augmentation technique, select a possible level of augmentation, as
well as to figure out the type of bias in the dataset, as shown in the
experiments.

To sort the synthetic set S in order of most to least realistic data
points, we use k-means on the original dataset D, such that a set of
cluster centers are defined for every protected attribute value and
every label value (i.e. for every combination of A and Y ), and the
inverse of the maximum distance to any cluster center for a point
in the synthetic dataset having the same A and Y values is used as
a score of how realistic the point is.

More formally, for every A = a and Y = y combination in D, we
find l cluster centers {c1, c2, . . . , cl } and then assign a realism score
to a synthetic datapoint p from S having A = a and Y = y as:

Realism(p) =
1

max{d(c1,p),d(c2,p), . . . ,d(cl ,p)}
(3)

Then, based on the score assigned to every datapoint, S is sorted,
and to build an intermediate dataset Dk , the top k% points from
2The appendix can be found at: https://drive.google.com/open?id=1ZrEcNbH52801bLjyVMcWH-
40PLas11du



this sorted synthetic dataset are selected to augment D. Note than
any other measure of realism can also be considered (such as the
distance between data distributions).

2.2 Effect of augmentation on fairness
definitions

Theorem 1: If the augmentation of a datasetD by a point p leads to
an increase in the statistical parity difference for a classifier trained
on D ∪ p, it would lead to an increase in the average odds differ-
ence, and vice versa. Conversely, if the statistical parity difference
decreases for the classifier trained on the dataset D ∪p, the average
odds difference will also decrease, and vice versa. That is, when pre-
processing using data augmentation, independence and separation
measures would increase or decrease simultaneously.

The proof for the theorem is given in the Appendix. This theorem
is crucial, since using such a data augmentation technique does not
require considering two types of fairness definitions (independence
and separation): reducing one measure will always reduce the other,
and hence from a pre-processing perspective, the two definitions
are coincident and a policy maker who may be unfamiliar with the
variety of fairness definitions would only need to be concerned
about one of them without worrying about the other, something
that other pre-processing techniques do not guarantee.

2.3 On greedy fairness-aware data
augmentation

For certain critical applications such as criminal justice, a policy
maker might be concerned with purely minimizing the bias in their
dataset by adding a minimum subset of points from the synthetic
set S . This case of greedy subset selection for bias reduction comes
at a risk of being computationally expensive, since every possible
subset would have to be considered and the model would have to
be trained for each possible subset. We prove, however, that for
SPD the function is submodular for the purpose of bias reduction,
and hence we have guarantees on the computational complexity
of this approach, allowing a feasible solution. The proof trivially
extends to AOD as well.

Theorem 2: Let us denote the finite set of data points from S
such that they belong to the favorable unprivileged or unfavorable
privileged groups as α . If Ω is the set of all subsets that always
contains D along with a random set from α , i.e., Ω = {ω : ω =
{D,α ′}s .t .α ′ ⊆ α } and let f = SPD, f : 2Ω− > R, then f is
submodular.

The proof is given in the Appendix. This allowsmodel developers
to greedily find the minimum set of data points that can allow the
overall model to be less biased significantly faster if it is important
to consider a minimum subset, since submodular functions can lead
to faster computation than pure brute force methods [13].

3 EXPERIMENTS
To perform experiments on the proposed method, three datasets are
considered: UCI Adult dataset [18], COMPAS dataset [1] and the
German Credit dataset [9]. Each of these datasets contains at least
one protected attribute. All three datasets have been studied for
demonstrating bias with respect to at least one protected attribute,
specifically in [4] and the associated open-source notebooks, and

we consider the same versions of the datasets and logistic regres-
sion models as is available in their open-source implementation.
For the UCI Adult dataset, we consider both the gender and race
protected attributes individually, where the race protected attribute
is considered to demonstrate bias disambiguation. We consider the
race protected attribute for the COMPAS dataset and the age pro-
tected attribute for the German Credit dataset. Details on datasets
and for sorting the synthetic dataset using cluster centers are given
in the appendix.

3.1 Bias mitigation
The plots for the three datasets are shown in Fig. 2. The x-axis
represents the percentage of the most realistic points being added,
where we train the model from scratch for every 1% increment.
Hence, 0 represents the original model, 100 represents all real and
synthetic points considered together (“ideal world dataset”), and
as an example, the 32% mark represents a model trained with all
real points and 32% of the most realistic points from the synthetic
dataset. The two-sided y-axis represents a measure of balanced
accuracy on the left, and fairness measure on the right. The blue
line in each plot corresponds to accuracy, while the red and green
lines correspond to AOD and SPD, respectively.

As we can see, the SPD and AOD follow a very similar plot
with each percentage of synthetic data added. consistent with our
theoretical proof, while accuracy decreases slightly for all three
datasets. Note that the accuracy and bias metrics in these figures are
measured by averaging over multiple runs by considering a holdout
test set for one run and changing it for different runs. This holdout
set is from the unaugmented data only and is not used to train any
of the models. We discuss other ways of evaluating fairness based
on different types of test sets in Section 3.4. A value of 0 for both
AOD and SPD measures is optimal, indicating no bias. For a 100%
accurate classifier, the value of these measures would always be 0
at the 100% x-axis mark. However, since the classifiers considered
here are not perfect, the 100% mark isn’t fairness-optimal. We find
that while for the German and Adult datasets, bias decreases and
approaches near optimumwith the addition of synthetic data points,
the bias does not decrease significantly for the COMPAS dataset.
To follow a pre-processing technique that can effectively reduce
bias for this dataset, we consider the COMPAS dataset and add
only favorable unprivileged and unfavorable privileged samples
(as opposed to any type of synthetic data being added) from the
synthetic dataset (and recommend model developers to do this for
fairness critical applications). The result of doing this is shown in
Fig. 3. As we can see, the bias is now significantly reduced without,
once again, significantly compromising on accuracy.

3.2 Comparison to other pre-processing
technqiues

We compare the proposed approach with other pre-processing
techniques in Table 1. To run this analysis, we use the AIF360 [4]
notebook implementations for optimized pre-processing, reweigh-
ing and adversarial debiasing. We report the accuracy, SPD and
AOD for the percentage of augmentation which gives the least bias.
For the German and Adult datasets, since just adding a subset of
points in the standard fashion significantly reduces bias, we report



(a) Adult dataset, gender protected attribute

(b) COMPAS dataset, race protected attribute

(c) German Credit Dataset, age protected attribute

Figure 2: Plots for bias mitigation, where the x-axis repre-
sents the percentage of synthetic data added, the left side y-
axis and corresponding blue line is the accuracy value, and
the right side y-axis is the bias measure value where the
green line represents AOD (Eqn. 2) and the red line repre-
sents SPD (Eqn. 1).

numbers concurrent to Fig. 2c and Fig. 2a, respectively. However,
since we notice that the COMPAS dataset does not have a signif-
icant decrease using the standard method (the reasons for which
is discussed in the next section), we consider just adding the fa-
vorable unprivileged and unfavorable privileged samples from the
synthetic set to mitigate the bias, as in Fig. 3, and report the best
bias reduction measures (least bias) and corresponding accuracy for
that approach. DataAug corresponds to a holdout test set from the

Table 1: Comparison of our data augmentation based bias
disambiguation to other pre-processing techniques. For
each dataset, we report the result corresponding to the best
possible augmentation (maximum bias reduction) for two
cases: one on a test set from the original unprocessed data
called DataAug, and the second on a test set taken from the
processed (augmented data), called DataAugp (Section 3.4).
*For the COMPAS dataset, standard augmentation does not
render a significant reduction in bias (Figure 2b), we con-
sider the best result using only favorable unprivileged and
unfavorable privileged sample augmentation (Figure 3).

Method Acc. SPD AOD

Adult Raw 0.74 -0.36 -0.33
Opt. Preprocessing 0.68 -0.01 -0.05
Reweighing 0.71 -0.09 -0.03
Adv. Debiasing 0.67 -0.08 -0.04
DataAug 0.70 -0.09 -0.01
DataAugp 0.73 -0.02 0

German Raw 0.71 -0.32 -0.33
Opt. Preprocessing 0.57 -0.65 -0.63
Reweighing 0.66 -0.27 -0.29
Adv. Debiasing 0.58 0.18 0.22
DataAug 0.65 0 0
DataAugp 0.70 0 0

COMPAS* Raw 0.68 -0.3125 -0.27
Opt. Preprocessing 0.67 -0.09 -0.05
Reweighing 0.63 0.05 0.10
Adv. Debiasing 0.64 0.03 0.08
DataAug 0.67 0 0.05
DataAugp 0.67 0 0

original unproccesed data, and DataAugp corresponds to a holdout
test set from the augmented data. We discuss why we report both
in the subsection on evaluating pre-processing techniques.

As we can see, our method significantly reduces both SPD and
AOD, while keeping the accuracy nearly the same. Compared to
other methods, our approach towards adding such points to retrain
models is easier to understand, especially for policy makers, com-
pared to methods such as optimized pre-processing (does not work
well with a smaller dataset like German Credit) and adversarial
debiasing (complicated implementation). While reweighing is also
easy to understand and implement, it involves weighting existing
points and does not perform well on particular datasets, as can be
seen for the German credit dataset in Table 1. While we report the
best case results assuming that a model developer is comfortable
with any level of augmentation, a model developer gets an under-
standing of the extent to which the data is augmented to reduce
bias using the plots discussed before, and hence they can select the
extent to which modification is acceptable, thereby selecting a level
of augmentation that may not hinder accuracy significantly if that
is more critical. In fact, we can see how the extent of augmenta-
tion can vary for different datasets: for the German credit dataset,



Figure 3: COMPASdataset (race protected attribute), positive
unprivileged and negative privileged examples added

adding just around 17% most realistic points from the synthetic
dataset reduces bias to 0 and this is not true for other datasets.

3.3 Bias disambiguation
We believe that this method can also lend itself to analysing the
type and extent of bias existing within the dataset. When synthetic
points are added from most realistic to least realistic in the way
that we have done, if the addition of a few percentage of synthetic
points causes a significant decrease in bias, this could be indicative
of just a sampling based bias, since collecting more realistic data
that adheres to a similar distribution would have resulted in less
discrimination. If however, the bias does not decrease significantly
with a smaller subset of realistic synthetic points being added, or
decreases predominantly with more unrealistic synthetic points,
this could be indicative of prejudice, since collecting more points in
a similar environment would not have yielded any improvements.

To demonstrate this, consider the COMPAS dataset examples in
Fig. 2 and Fig. 3 and consider the Adult dataset example in Fig. 2
and in Fig. 4. In the original plot for the COMPAS dataset Fig. 2, the
bias hardly decreases with the addition of synthetic points. Even
for Fig. 3, the bias decreases slowly with the addition of points from
most to least realistic. The COMPAS dataset has been known to be
influenced from prejudice based bias [3], and this is evident from
these plots, since standard augmentation did not help, and adding
only favorable unprivileged and unfavorable privileged points also
resulted in a slow decrease with augmentation. In contrast, consider
the UCI Adult dataset with race as the protected attribute, shown in
Fig. 4, or even the German Credit dataset in Fig. 2c. As we can see,
the addition of around 20% of the most realistic synthetic points
causes the bias to significantly reduce. Hence, collecting more data
for the unprivileged group would have potentially fixed biases
arising in the model, since adding a few realistic points helped in
reducing bias. Through these experiments, we motivate the use of
our method for disambiguating bias, potentially even at the data
collection stage, to create an evenly distributed dataset.

3.4 Evaluating pre-processing techniques
While all pre-processing techniques consider accuracy in the way
we have for the plots and the DataAug metrics (where a holdout
test set from the unprocessed data is used to evaluate the accuracy

Figure 4: Adult dataset for the race protected attribute

and other measures), there are multiple ways in which accuracy
can be calculated, and this should be an important consideration
when reporting evaluations. Since the goal here is to remove the
bias in the model by pre-processing the dataset, a natural question
arises: should accuracy be evaluated using a random set from the
processed or unprocessed data?

While the first thought would be to consider test points from un-
processed data only (since these represent true data points and this
has been followed in the literature as well), it is worth noting that
the model is now trained on a modified distribution of data, where
the modified distribution is representative of a “fairer world” [10].
However, the original dataset remains biased. Consider a simple
case where the original dataset has a sampling bias (lack of data for
a particular group G). If we use any form of pre-processing, that
should account for such a bias. However, when considering any
random test set, that would more likely contain fewer points be-
longing to groupG , since the original dataset had fewer samples for
this group to begin with. Hence even though the model is relatively
unbiased, that bias would still show in the evaluation, because of
a bias in the test set which is drawn from the real biased dataset
(data vs. model bias).

To address such concerns, we recommend two ways in which
accuracy should also be reported to understand the effect of the
pre-processing technique under consideration: 1) Report accuracy
on the entire processed dataset along with accuracy on a holdout
test set from the real data. We recommend reporting both since both
evaluations have their merits, as was discussed above. 2) Create a
curated test set from the real dataset. If the real dataset contains
sampling bias, we can potentially create test sets that do not contain
a disparity in samples to evaluate themodel.We report themeasures
for the three datasets by considering the test set from the processed
dataset in Table 1 as DataAugp, and we encourage researchers to
report both such measures in future work.

4 CONCLUSION AND DISCUSSION
In this paper, we present a simple data augmentation technique for
bias reduction and bias disambiguation. We show how the approach
guarantees a simultaneous increase or decrease in two different
notions of fairness (independence and separation), and show that
these definitions are submodular for bias mitigation and hence a



minimum subset for augmentation can be chosen efficiently. Exper-
iments are performed on three datasets and we see that our method
performs better than previous approaches to mitigate bias while
keeping accuracy nearly similar. We also show experimentally that
this method can be used to decipher the type of bias in the data.

A possible concern may be that successive augmentations and
training a model might be computationally expensive if the dataset
contains many features. For such cases, we simply recommend
augmenting with only favorable unprivileged and unfavorable priv-
ileged samples if the application is fairness critical. We intend to
now conduct a user-study to show such plots and understand the ex-
tent to which model developers and policy makers are comfortable
with such an augmentation.
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