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ABSTRACT

This paper develops a novel optimization framework for learning
accurate and sparse two-level Boolean rules for classification, both
in Conjunctive Normal Form (CNF, i.e. AND-of-ORs) and in Dis-
junctive Normal Form (DNF, i.e. OR-of-ANDs). In contrast to
opaque models (e.g. neural networks), sparse two-level Boolean
rules gain the crucial benefit of interpretability, which is necessary
in a wide range of applications such as law and medicine and is
attracting considerable attention in machine learning. This paper
introduces two principled objective functions to trade off classifi-
cation accuracy and sparsity, where 0-1 error and Hamming loss
are used to characterize accuracy. We propose efficient procedures
to optimize these objectives based on linear programming (LP)
relaxation, block coordinate descent, and alternating minimization.
We also describe a new approach to rounding any fractional values
in the optimal solutions of LP relaxations. Experiments show
that our new algorithms based on the Hamming loss objective
provide excellent tradeoffs between accuracy and sparsity with
improvements over state-of-the-art methods.

Index Terms— Sparse Boolean Classifier, Linear Programming
Relaxation

1. INTRODUCTION

Rule-based classifiers have wide applications in various signal pro-
cessing fields such as speech recognition [1], smart grid [2], and
expert systems [3]. As an important subclass of such classifiers,
a Boolean rule connects a subset of binary input features with
the logical operators conjunction (“AND”), disjunction (“OR”), and
negation (“NOT”) to form the prediction.

This paper considers learning Boolean classifiers from a training
dataset, where the classifiers have the form of two-level Boolean
rules in CNF (AND-of-ORs) or DNF (OR-of-ANDs) [4]. In the
lower level of a CNF (DNF), disjunctions (conjunctions) of binary
features build clauses and in the upper level, the conjunction (dis-
junction) of the clauses forms the predictor. Such two level Boolean
rules are a very expressive model. In fact, if the input features
are binary and we include all negations, then two-level rules can
represent any Boolean function of the input features [5]; moreover,
continuous valued features may be incorporated by converting them
to binary with threshold comparisons.

Inspired by the fruitful exploration of sparsity in topics such as
Boolean compressive sensing and group testing [6], this work aims
to build sparse Boolean rules. Sparsity in this context yields the
benefit of interpretability, which is attracting considerable attention
in machine learning and has substantial importance in a wide range
of applications such as law and medicine [7, 8]. In these fields,
predictions from classification models are generally presented to a

human decision maker/agent who makes the final decision. Such a
decision maker often needs an understanding of the reasons for the
prediction before accepting the result; thus, high prediction accuracy
without providing the reasons is not sufficient for the model to be
trusted. For example, convincing reasons are legally required in
fraud detection [8] to establish a claim of fraud.

Learning two-level Boolean rules that are both accurate and
sparse is inherently combinatorial and NP-hard in some cases [9].
As we overview in Section 2, existing methods are mostly heuristic
and/or greedy and there has been limited work on principled yet
tractable approaches. This paper fills the gap by introducing a unified
optimization framework for learning two-level Boolean rules that
achieve good balance between accuracy and sparsity. We propose
two formulations. The objective function in the first formulation is a
weighted combination of the total number of classification errors and
the sparsity, based on which we develop an LP relaxation approach.
The second formulation replaces the 0-1 classification error with
the Hamming distance from the current rule to the closest rule that
correctly classifies a sample. Based on this second formulation,
block coordinate descent and alternating minimization algorithms
are developed. Experiments show that two-level rules can have con-
siderably higher accuracy than one-level rules. The two algorithms
based on the Hamming distance formulation obtain competitive
tradeoffs between accuracy and sparsity with improvements over
cutting edge approaches. In addition, this work tackles the issue of
fractional optimal solutions to LP relaxations and introduces a new
binarization method to convert LP solutions into binary values.

The remainder of this paper is organized as follows. Section
2 reviews existing work on two-level Boolean rule learning. After
the problem formulations in Section 3, optimization approaches
are introduced in Section 4 and evaluated in Section 5. Section 6
concludes this work.

2. REVIEW OF EXISTING WORK

The two-level Boolean rules in this work are examples of sparse
decision rule lists [10], which have been extensively studied in
machine learning and a number of strategies have been proposed [5].
The covering strategy [10, 11] sequentially constructs each clause in
a two-level rule; in each step, it learns a new clause generally in
a greedy manner, and then removes the newly covered samples or
adjusts the weights on all samples for future steps. The bottom-up
strategy [12] successively combines more specific clauses into more
general clauses according to local criteria like pairwise similarity. A
more flexible multi-phase strategy [13] is to first discover a large set
of candidate local patterns (i.e. clauses), then heuristically select a
subset of informative clauses, and finally construct a two-level rule
by considering the selected clauses as new binary features. A fourth
strategy is to convert trained decision trees into decision lists [14].
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Unlike our proposed approach, the above strategies lack a single,
principled objective function to drive rule learning. Moreover,
they employ heuristics that leave room for improvements on both
accuracy and rule simplicity.

There has been some prior work on optimization-based for-
mulations for rule learning. To our best knowledge, the most
relevant prior work is [15], where an LP formulation using the
Boolean compressed sensing framework is proposed to learn a
clause, based on which two other algorithms are used for rule
set learning, namely set covering and boosting. Although we
apply this clause learning method as a component in some of our
algorithms, there are significant differences between the current
work and [15]. Compared with a single clause which represents
only a subset of Boolean functions, two-level rules are significantly
more expressive (i.e. they can represent all Boolean functions) and
much more challenging to learn. In addition, the greedy style of
the set covering method in [15] leaves room for improvement, and
the additive combination of clauses in boosted classifiers reduces
interpretability. Another work on DNF learning [16] provides
a mixed integer program (MIP) formulation named OOA and a
different heuristic formulation OOAx. The MIP in OOA is similar to
our first formulation with the 0-1 error but without the relaxation to
LP, which may thus result in quite high computational complexity.
OOAx is similar to the multi-phase strategy [13] in using heuristic
approaches to discover and select clauses before an optimization
formulation is used to build a DNF with the selected clauses.

3. PROBLEM FORMULATION

We consider a standard binary supervised classification setting,
where a training dataset has n labeled samples; the ith sample has a
binary label yi ∈ {0, 1} and in total d binary features1 ai,j ∈ {0, 1}
(1 ≤ j ≤ d). The goal is to learn a classifier ŷ(·) in the Conjunctive
Normal Form (AND-of-ORs) that can generalize well to unseen
feature vectors sampled from the same distribution as the training
dataset. In the lower level of the rule, we form each clause by the
disjunction of a selected subset of input features; in the upper level,
the final predictor is formed by the conjunction of all clauses. Denote
the maximum number of clauses by R. Letting the binary decision
variables wj,r ∈ {0, 1} represent whether to include the jth feature
in the rth clause, the output of the rth clause for the ith sample is

v̂i,r =

d∨
j=1

(ai,jwj,r) , for 1 ≤ i ≤ n, 1 ≤ r ≤ R. (1)

Then, the predictor ŷi satisfies

ŷi =

R∧
r=1

v̂i,r, for 1 ≤ i ≤ n. (2)

To mitigate the need for careful specification of the model parameter
R, a mechanism to “disable” a clause can be introduced to reduce
the total number of actual clauses if the assigned R is too large.
For a CNF rule, a clause can be regarded as disabled if its output is
always 1. Thus, we can pad the input feature matrix with a trivial
“always true” feature ai,0 = 1 for all samples, and also include the
corresponding decision variables w0,r for all clauses; if w0,r = 1,
then the rth clause has output 1 and is thus disabled in the CNF
rule. The sparsity cost for w0,r can be lower than other variables

1We assume the negation of each feature is included as another input
feature; if not, we can pad the input features with negations.

or even zero. This mechanism can also be regarded as a part of the
regularization, whereby the cost of activating a clause is weighed
against the accuracy improvement that it brings.

In certain cases, DNF rules could be more natural than CNF. A
CNF learning algorithm can learn DNF by De Morgan’s laws:

y =

R∨
r=1

( ∧
j∈Cr

xj

)
⇔ y =

R∧
r=1

( ∨
j∈Cr

xj

)

where y and xj mean the negation of binary variables y and xj ,
respectively, and Cr is the index set of features selected in the rth

clause. To learn a DNF rule with a CNF learning algorithm, we can
first negate both features and labels of all samples, then learn a CNF
rule with the negated features and labels, and finally use the decision
variables wj,r with the original features to construct a DNF rule.
Since the formulations of CNF are slightly more concise, Sections 3
and 4 focus on CNF only.

Two formulations are introduced with different accuracy costs
in Section 3.1 and 3.2, respectively.

3.1. Formulation with 0-1 Error

A natural choice for the accuracy term in the objective is the total
number of misclassifications (i.e. 0-1 error for each sample). With
the sparsity cost as the sum of the number of features used in each
clause, a formulation is as below

min
wj,r

n∑
i=1

|ŷi − yi|+ θ ·
R∑
r=1

d∑
j=1

wj,r (3)

s.t. ŷi =

R∧
r=1

(
d∨
j=1

(ai,jwj,r)

)
, for 1 ≤ i ≤ n, (4)

wj,r ∈ {0, 1}, for 1 ≤ j ≤ d, 1 ≤ r ≤ R.

3.2. Formulation with Minimal Hamming Distance

Instead of using the 0-1 error to measure accuracy, it may be
desirable to have a more fine-grained measure such as the minimal
Hamming distance. As an example, consider two CNF rules, both
with two clauses, predicting the same sample with ground truth label
yi = 1. Suppose both clauses in the first rule predict 0, while only
one clause in the second rule predicts 0 and the other predicts 1.
Although both rules misclassify this sample after taking “AND” of
their two clauses, the second rule is closer to correct than the first
one. If we use an iterative algorithm to refine the learned rule, it
might be beneficial for the accuracy cost term to favor the second
rule in this example, which could push the solution towards being
correct. An additional motivation for the Hamming loss is to avoid
identical (and thus redundant) clauses by training each clause with a
different subset of samples, as done in [10, 11].

In this second formulation, the accuracy cost for a single sample
is the minimal Hamming distance from a given CNF rule to an ideal
CNF rule, where the latter means a rule that correctly classifies this
sample. The Hamming distance between two CNF rules is the total
number ofwj,r that are different in the two rules. An intuitive expla-
nation of this minimal Hamming distance is the smallest number of
modifications (i.e. negations) of the current rule wj,r that are needed
to correct a misclassification on a sample, i.e. how far is the rule
from being correct.

For mathematical formulation, we introduce ideal clause outputs
vi,r with 1 ≤ i ≤ n and 1 ≤ r ≤ R to represent a CNF rule that



correctly classifies the ith sample. The values of vi,r are always
consistent with the ground truth labels, i.e. yi =

∧R
r=1 vi,r for all

1 ≤ i ≤ n. We let vi,r have a ternary alphabet {0, 1,DC}, where
vi,r = DC means that we “don’t care” about the value of vi,r . With
this setup, if yi = 1, then vi,r = 1 for all 1 ≤ r ≤ R; if yi = 0, then
vi,r0 = 0 for at least one value of r0, and we can have vi,r = DC
for all r 6= r0. In implementation, vi,r = DC implies the removal
of the ith sample in the training or updating for the rth clause, which
leads to a different training subset for each clause.

Denote ηi as the minimal Hamming distance from the current
CNF rule wj,r to an ideal CNF rule for the ith sample. We derive ηi
for positive and negative samples, respectively. Since yi = 1 implies
vi,r = 1 for all r, for each clause with output 0 in the current rule,
at least one positive feature needs to be included to match vi,r = 1.
Thus, the minimal Hamming distance for a positive sample is the
number of clauses with output 0:

ηi =

R∑
r=1

max

{
0,

(
1−

d∑
j=1

ai,jwj,r

)}
, for yi = 1.

For yi = 0, we first consider for fixed r the minimal Hamming
distance between the rth clauses only of the current rule and an ideal
rule where vi,r = 0. We need to negate wj,r in the current rule for
j with wj,r = ai,j = 1 to match vi,r = 0, and thus the minimal
Hamming distance of this clause is

∑d
j=1 ai,jwj,r . Then, since

vi,r = 0 needs to hold for at least one value of r while all other
vi,r can be DC, the minimal Hamming distance of the CNF rule is
given by the minimum over r, i.e. setting vi,r0 = 0 with

r0 = argmin
1≤r≤R

(
d∑
j=1

ai,jwj,r

)
. (5)

Combining all analysis above, the new formulation with the
minimal Hamming distance cost is as below

min
wj,r

n∑
i=1

ηi + θ ·
R∑
r=1

d∑
j=1

wj,r (6)

s.t. ηi =
R∑
r=1

max

{
0,

(
1−

d∑
j=1

ai,jwj,r

)}
, for yi = 1,

ηi = min
1≤r≤R

(
d∑
j=1

ai,jwj,r

)
, for yi = 0, (7)

wj,r ∈ {0, 1}, for 1 ≤ j ≤ d, 1 ≤ r ≤ R.

The binary variables wj,r can be relaxed to 0 ≤ wj,r ≤ 1. The
minimum over r in (7) implies the non-convexity of such continuous
relaxation with R > 1, making the exact solution challenging.

Letting R = 1 in formulation (6), it can be seen that we recover
the formulation for one-level rule learning in [15].

To simplify description of algorithms later, we show a formu-
lation (8) below, which is equivalent to (6) but involves both vi,r
and wj,r . Taking the minimization over vi,r in (8) with fixed wj,r

eliminates the variables vi,r , and (8) becomes identical to (6).

min
wj,r, vi,r

n∑
i=1

R∑
r=1

[
1vi,r=1 ·max

{
0,

(
1−

d∑
j=1

ai,jwj,r

)}

+ 1vi,r=0 ·
d∑
j=1

ai,jwj,r

]
+ θ ·

R∑
r=1

d∑
j=1

wj,r (8)

s.t.

R∧
r=1

vi,r = yi, for 1 ≤ i ≤ n, (9)

vi,r ∈ {0, 1,DC}, for 1 ≤ i ≤ n, 1 ≤ r ≤ R,
wj,r ∈ {0, 1}, for 1 ≤ j ≤ d, 1 ≤ r ≤ R.

4. OPTIMIZATION APPROACHES

This section discusses various optimization approaches to the two-
level rule learning problem. Based on the formulation in Section
3.1, we develop an LP relaxation approach in Section 4.1. Based
on the formulation in Section 3.2, we propose the block coordinate
descent algorithm in Section 4.2 and the alternating minimization
algorithm in Section 4.3 for the objective (8). All algorithms use LP
relaxations and the dimensions of the resulting LPs are analyzed in
Section 4.4. Section 4.5 considers the binarization problem for the
case of non-binary solutions to LPs.

4.1. Two-level Linear Programming Relaxation

This approach considers the 0-1 error formulation (3) and applies the
idea of replacing binary operations “AND” and “OR” with linear-
algebraic operations. Since “AND” and “OR” are defined only on
binary inputs, there are various interpolations of these functions to
the continuous domain, and both convex and concave interpolations
exist for both operators. The “OR” function has the following
interpolations [17]

d∨
j=1

xj = max
1≤j≤d

{xj} = min

{
1,

d∑
j=1

xj

}
,

where the first is convex and the second is concave, both of which are
the respective tightest interpolations. The logical “AND” operator
also has the tightest convex and concave interpolations as [17]

d∧
j=1

xj = max

{
0,

(
d∑
j=1

xj

)
− (d− 1)

}
= min

1≤j≤d
{xj}.

Since the predictor ŷi of the two-level rule in (4) is a com-
position of “AND” and “OR” operators, it is possible to properly
interpolate it using both a convex function and a concave function by
composing the individual interpolations of the two operators. From
(1) and (2), a convex interpolation of ŷi is

ŷi = max

{
0,

(
R∑
r=1

max
1≤j≤d

{ai,jwj,r}

)
− (R− 1)

}
,

and a concave interpolation can be obtained similarly.
Denote the 0-1 error cost for the ith sample as ψi , |ŷi − yi|.

Since the errors ψi in (3) should be minimized, if yi = 1, then
ψi = 1 − ŷi and thus we need the concave interpolation for ŷi; if
yi = 0, then ψi = ŷi and thus the convex interpolation is needed.



Finally, the formulation in (3) can be exactly converted into a mixed
integer program:

min
wj,r,ψi,βi,r

n∑
i=1

ψi + θ ·
R∑
r=1

d∑
j=1

wj,r (10)

s.t. ψi ≥ 0, ∀i,

ψi ≥ 1−
d∑
j=1

ai,jwj,r, for yi = 1, ∀r,

ψi ≥

(
R∑
r=1

βi,r

)
− (R− 1), for yi = 0,

βi,r ≥ ai,jwj,r, for yi = 0, ∀j, ∀r,
wj,r ∈ {0, 1}, ∀j, ∀r.

Relaxing the decision variables to 0 ≤ wj,r ≤ 1 leads to an LP.
Unfortunately, numerical results suggest that this LP relaxation

is likely to have fractional values in the optimal solution wj,r , pos-
sibly due to the gap between the convex and concave interpolations.

4.2. Block Coordinate Descent Algorithm

We now propose an algorithm which considers the decision variables
in a single clause (wj,r with a fixed r) as a block of coordinates,
and performs block coordinate descent to minimize the Hamming
distance cost function in (8). Each iteration updates a single clause
with all the other clauses fixed, using the one-level rule learning
algorithm in [15]. We denote r0 as the clause to be updated.

The optimization of (8) even with (R − 1) clauses fixed still
involves a joint minimization over wj,r0 and the ideal clause outputs
vi,r for yi = 0 (vi,r = 1 for yi = 1 and thus fixed), so the exact
solution could still be challenging. To simplify, we fix the values of
vi,r for yi = 0 and r 6= r0 to the actual clause outputs v̂i,r in (1)
with the current wj,r (r 6= r0). Now we assign vi,r0 for yi = 0:
if there exists vi,r = v̂i,r = 0 with r 6= r0, then this sample is
guaranteed to be correctly classified and we can assign vi,r0 = DC
to minimize the objective in (8); in contrast, if v̂i,r = 1 holds for all
r 6= r0, then the constraint (9) requires vi,r0 = 0.

This derivation leads to the updating process as follows. To
update the rth0 clause, we remove all samples that have label yi = 0
and are already predicted as 0 by at least one of the other (R − 1)
clauses, and then update the rth0 clause with the remaining samples
using the one-level rule learning algorithm.

There are different choices of which clause to update in an
iteration, such as cyclical or random updating. We can also try the
update for each clause and then greedily choose the one with the
minimum cost, as is used in our experiments.

The initialization of wj,r also has different choices. For ex-
ample, one option is the set covering method, as is used in our
experiments. Random or all-zero initialization can also be used.

4.3. Alternating Minimization Algorithm

This section proposes the alternating minimization algorithm that
uses the Hamming distance formulation (8). It alternately minimizes
with respect to the decision variables wj,r and the ideal clause
outputs vi,r . Each iteration has two steps: update vi,r with the
current wj,r , and update wj,r with the new vi,r . The latter step is
simpler and will be first discussed.

With fixed values of vi,r , the minimization overwj,r is relatively
straight-forward: the objective in (8) is separated into R terms,

each of which depends only on a single clause wj,r with a fixed
r. Thus, all clauses are decoupled in the minimization over wj,r ,
and the problem becomes parallel learning of R one-level clauses.
Explicitly, the update of the rth clause removes samples with vi,r =
DC and then uses the one-level rule learning algorithm.

The update over vi,r with fixed wj,r follows the discussion in
Section 3.2: for positive samples yi = 1, vi,r = 1, and for the
negative samples yi = 0, vi,r0 = 0 for r0 defined in (5) and vi,r =
DC for r 6= r0. For negative samples with a “tie”, i.e. non-unique
r0 in (5), tie breaking is achieved by a “clustering” approach. First,
for each clause 1 ≤ r0 ≤ R, we compute its cluster center in the
feature space by taking the average of ai,j (for each j) over samples
i for which r0 is minimal in (5) (including ties). Then, each sample
with a tie is assigned to the clause with the closest cluster center in
`1-norm among all minimal r0 in (5).

Similar to the block coordinate descent algorithm, various op-
tions exist for initializing wj,r in this algorithm. The set covering
approach is used in our experiments.

4.4. Complexity of LP Formulations

We now consider computational complexity of the proposed algo-
rithms by characterizing the dimensions of the LP formulations. If
we denote n1 and n0 as the numbers of samples with yi = 1 and
yi = 0, respectively, then the two-level LP in (10) has O(Rd +
Rn0 + n) variables and O(Rn1 + Rdn0) constraints. The block
coordinate descent and the alternating minimization algorithms are
both iterative, and require solving R LPs per iteration. However,
each single LP does not use all the training samples; if nr denotes
the number of samples used for updating a clause, then the LP to
update that clause hasO(d+nr) variables andO(d+nr) constraints.
Thus, despite having to solve multiple LPs, the reduction in the
dimensions of each single LP can still result in greater overall
efficiency compared with the non-iterative two-level LP formulation.

4.5. Redundancy Aware Binarization

If the optimal solution to LP turns out to have fractional values,
then we need to convert them into binary. Empirically, the straight-
forward binarization method of comparing each wj,r from LP with
a specified threshold may result in redundant and unnecessarily
complex rules.

The following improved binarization method considers two
types of redundancies, each associated with a set of binary features
that we call a redundancy set. Among the features in each redundan-
cy set, no more than one feature will appear in any single clause of
an optimal CNF rule2.

The first type of redundancy set corresponds to nested features.
If binary features ai,j1 and ai,j2 satisfy ai,j1 ≤ ai,j2 for all samples,
then these two features cannot both appear in a single clause in the
optimal CNF rule; otherwise, removing ai,j1 from the clause keeps
the same output and improves the sparsity, leading to a better rule.
Among a nested set ai,j1 ≤ ai,j2 ≤ . . . ≤ ai,jP (∀1 ≤ i ≤ n), at
most one feature can be selected in a single clause.

The second type consists of over-complementary binary features
ai,j1 and ai,j2 that satisfy ai,j1

∨
ai,j2 = 1 (∀i). It applies when

we use the mechanism to “disable” a clause. The optimal CNF
rule cannot have both ai,j1 and ai,j2 in a single clause, otherwise
disabling this clause keeps the output and improves sparsity.

2This statement holds for both formulations (3) and (8); for simplicity, we
will focus on the formulation (3) for illustration.



Table 1. 10-fold Average Test Error Rates (unit: %). Standard Error of the Mean is Shown in Parentheses.

DATASET TLP BCD AM OCRL SC DLIST C5.0 CART
ILPD 28.6(0.3) 28.6(0.2) 28.6(0.2) 28.6(0.2) 28.6(0.2) 36.5(1.4) 30.5(2.0) 32.8(1.3)
IONOS 8.3(1.2) 9.4(1.1) 11.4(1.1) 9.7(1.5) 10.5(1.3) 19.9(2.3) 7.4(2.1) 10.8(1.2)
LIVER 44.9(0.9) 37.1(3.2) 39.1(2.5) 45.8(2.2) 41.7(2.8) 45.2(2.6) 36.5(2.4) 37.1(2.5)

PARKIN 14.4(1.4) 12.8(2.2) 15.9(2.9) 16.4(2.1) 14.9(1.9) 25.1(3.3) 16.4(2.7) 13.9(2.9)
PIMA 26.8(1.8) 26.8(1.7) 23.8(2.0) 27.2(1.5) 27.9(1.5) 31.4(1.6) 24.9(1.7) 27.3(1.5)

SONAR 31.3(3.2) 29.8(3.0) 25.5(2.4) 34.6(2.7) 28.8(2.9) 38.5(3.6) 25.0(4.2) 31.7(3.5)
TRANS 23.8(0.8) 23.8(0.1) 23.8(0.1) 23.8(0.1) 23.8(0.1) 35.4(2.4) 21.7(1.2) 25.4(1.7)
WDBC 7.6(1.1) 6.2(1.2) 6.5(0.9) 9.3(2.0) 8.8(2.0) 9.7(0.8) 6.5(1.1) 8.4(1.0)

The new binarization approach takes the above types of redun-
dancies into account. For illustration, suppose all binary features are
obtained by thresholding continuous valued features. For a given
clause and a single continuous valued feature, we may sweep over
all non-redundant combinations of the binary features induced by
this continuous feature and obtain the one with minimal cost. We
can show that the total number of such non-redundant combina-
tions is quadratic with the number of thresholds, which guarantees
efficient sweeping. To avoid the combinatorial joint minimization
for multiple continuous features, we first sort continuous features
in decreasing order as determined by the sum of corresponding
decision variables in the optimal solution to the LP relaxation. Then
the decision variables corresponding to each continuous feature are
sequentially binarized as described above.

5. NUMERICAL EVALUATION

5.1. Setup

This section evaluates the algorithms with UCI repository datasets
[18]. To facilitate comparison with the most relevant prior work
[15], we use the same 8 datasets as in that work: Indian liver
patient dataset (ILPD), Ionosphere (Ionos), BUPA liver disorders
(Liver), Parkinsons (Parkin), Pima Indian diabetes (Pima), con-
nectionist bench sonar (Sonar), blood transfusion service center
(Trans), and breast cancer Wisconsin diagnostic (WDBC). Each
continuous valued feature is converted to binary using 10 quantile-
based thresholds.

The goal is to learn a DNF rule (OR-of-ANDs) from each
dataset. We use stratified 10-fold cross validation and then average
the test and training error rates. All LPs are solved by IBM CPLEX
version 12. The sparsity parameter is θ = A×10B where we sweep
A = 1, 2, 5 and B = −4,−3,−2,−1, 0, 1, for a total of 18 values.
We use the redundancy aware binarization and the mechanism to
“disable” a clause.

Algorithms in comparison and their abbreviations are: two-level
LP relaxation (TLP), block coordinate descent (BCD), alternating
minimization (AM), one-level conjunctive rule learning (OCRL,
equivalent to setting R = 1 for BCD or AM) and set covering
(SC), the last two from [15], decision list in IBM SPSS (DList), and
decision trees (C5.0: C5.0 with rule set option in IBM SPSS, CART:
classification and regression trees algorithm in Matlab’s classregtree
function). The maximum number of iterations in BCD and AM is
set as 100. Without loss of generality, we set the maximum number
of clauses R = 5 for TLP, BCD, AM, and SC.

We show the test error rates, the sparsity of the rules, and Pareto
fronts indicating the tradeoff between accuracy and sparsity.

5.2. Accuracy and Rule Simplicity

In this section, we apply a second cross validation within the training
partition to choose the optimal parameter θ among the 18 values
that has the highest accuracy, and then evaluate its performance on
the test partition. The mean test error rates and the standard error
of the mean are listed in Table 1. Due to space constraints, we
refer the reader to [15] for results from other classifiers that are
not interpretable; the accuracy of our algorithms is generally quite
competitive with them.

Table 2 provides the 10-fold average of the sparsity of the
learned rules as a measure for interpretability. No features are
counted if a clause is disabled; therefore, disabling all clauses makes
the total number of features as 0. The best algorithm for each dataset
is highlighted in bold in both tables.

Table 2. 10-fold Average Numbers of Features

DATASET TLP BCD AM SC DLIST C5.0
ILPD 4.8 0.0 0.0 0.0 5.4 45.5
IONOS 30.9 12.4 12.9 11.1 7.7 13.6
LIVER 6.5 9.3 7.7 5.2 2.2 46.6

PARKIN 9.0 8.2 12.6 3.2 2.1 16.6
PIMA 15.3 2.2 2.0 2.4 8.6 38.2

SONAR 27.8 14.2 23.6 9.0 1.9 27.3
TRANS 3.5 0.0 0.0 0.0 3.8 6.7
WDBC 21.8 13.6 11.9 8.7 4.0 15.8

Table 1 shows that two-level rules obtained by our algorithms
(TLP, BCD, and AM) are more accurate than the one-level rules from
OCRL for most datasets, which demonstrates the expressiveness of
two-level rules.

Among optimization-based two-level rule learning approaches,
BCD and AM generally have superior accuracy to TLP and SC (with
the numbers of wins/ties/loses as: BCD vs. TLP 4/3/1, AM vs.
TLP 4/2/2, BCD vs. SC 5/2/1, AM vs. SC 4/2/2). All these four
approaches substantially outperform DList in terms of accuracy on
all datasets. Compared with C5.0, BCD and AM obtain significantly
more sparse rules (i.e. higher interpretability) with quite competitive
accuracy. Compared with CART, BCD has higher or equal accuracy
on all datasets, and AM is also superior overall. In addition,
AM achieves the highest accuracy on the Pima dataset among
the interpretable models in Table 1, and BCD obtains the highest
accuracy on the Parkin and WDBC datasets.

5.3. Pareto Fronts

A DNF rule can be considered dominated by another rule if the
former has higher error rate and uses more features than the latter.
For a fixed algorithm, if we learn DNF rules with each of the 18



values of θ, then the accuracy-sparsity pairs of the DNF rules that
are not dominated by any other DNF rule constitute the Pareto front
for this algorithm, which shows the optimal tradeoff boundary in
the accuracy-sparsity space achieved by varying the regularization
parameter. The Pareto fronts of the BCD, AM, and SC algorithms
are shown in Fig. 1, where we include the results for both using and
not using the clause disabling mechanism for each algorithm. For
ease of visualization, the dominated points are not shown and non-
dominated points are connected by line segments. We use the Liver
and Pima datasets as illustrating examples.
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Fig. 1. Pareto Fronts: (a) Liver Training Error Rate, (b) Liver Test
Error Rate, (c) Pima Training Error Rate, (d) Pima Test Error Rate.
All Figures Use the Same Legends as in (a).

Comparing the Pareto fronts in Fig. 1, we can have the following
observations. For the more difficult Liver dataset where R = 5
clauses are not too many, using or not using clause disabling (i.e.
more or less regularization) accesses different parts of the accuracy-
sparsity space as shown in Fig. 1 (b). In contrast, R = 5 is already
unnecessarily large for the simpler Pima dataset, so clause disabling
allows a much improved tradeoff (Pareto fronts to the lower left in
Fig. 1 (d)). In addition, the Pareto fronts clearly show the superiority
of BCD and AM to SC.

6. CONCLUSION

Motivated by the impact of sparsity and the need for interpretable
classification models, this paper has provided two optimization-
based formulations for two-level Boolean rule learning, the first
based on 0-1 classification error and the second on Hamming
distance. These complement the more heuristic strategies in the
literature on two-level Boolean rules.

Numerical results show that two-level Boolean rules typically
have considerably lower error rate than one-level rules. In addition,
the proposed block coordinate descent and alternating minimization
algorithms provide excellent tradeoffs between accuracy and sparsi-
ty with improvements over state-of-the-art approaches.
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