
Interpretable Two-Level Boolean Rule Learning for Classification

Guolong Su GUOLONG@MIT.EDU

Massachusetts Institute of Technology, 50 Vassar St., Cambridge, MA 02139 USA

Dennis Wei DWEI@US.IBM.COM
Kush R. Varshney KRVARSHN@US.IBM.COM
Dmitry M. Malioutov DMALIOUTOV@US.IBM.COM

IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd., Yorktown Heights, NY 10598 USA

Abstract

As a contribution to interpretable machine learn-
ing research, we develop a novel optimization
framework for learning accurate and sparse two-
level Boolean rules. We consider rules in both
conjunctive normal form (AND-of-ORs) and dis-
junctive normal form (OR-of-ANDs). A princi-
pled objective function is proposed to trade clas-
sification accuracy and interpretability, where
we use Hamming loss to characterize accuracy
and sparsity to characterize interpretability. We
propose efficient procedures to optimize these
objectives based on linear programming (LP)
relaxation, block coordinate descent, and alter-
nating minimization. Experiments show that
our new algorithms provide very good tradeoffs
between accuracy and interpretability.

1. Introduction
In applications where machine learning is used to aid hu-
man decision-making, it is recognized that interpretability
of models is an important objective for establishing trust,
adoption and safety and for offering the possibility of
auditing and debugging (Freitas, 2014; Varshney, 2016;
Lima et al., 2009; Letham et al., 2012; Vellido et al., 2012).
Interpretable models can be learned directly from data or
can result from the approximation of black-box models
(Craven & Shavlik, 1996; Baesens et al., 2003).

Boolean rules are considered to be one of the most in-
terpretable classification models (Freitas, 2014). A one-
level rule is a conjunctive clause (AND-rule) or disjunctive
clause (OR-rule) whereas a two-level rule is a conjunctive

2016 ICML Workshop on Human Interpretability in Machine
Learning (WHI 2016), New York, NY, USA. Copyright by the
author(s).

normal form (CNF; AND-of-ORs) or disjunctive normal
form (DNF; OR-of-ANDs). A mathematical proxy for
interpretability of Boolean rules is sparsity, i.e. the total
number of features used in the rule (Feldman, 2000).

Learning accurate and sparse two-level Boolean rules
is a considerable challenge since it is combinatorial
(Kearns et al., 1987). Even the simpler problem of learning
a one-level rule is NP-hard (Malioutov & Varshney, 2013).
Unlike one-level rules, two-level rules can represent any
Boolean function of the input features (Fürnkranz et al.,
2012); this expressiveness of two-level rules also suggests
that they are more challenging to learn than one-level rules.
Due to this complexity, most existing solutions focus on
heuristic and greedy approaches.

The main contribution of this paper is to introduce a unified
optimization framework for learning two-level Boolean
rules that achieve good balance between accuracy and
interpretability, as measured by the sparsity of the rule. The
objective function is a weighted combination of (a) clas-
sification errors quantified by Hamming distance between
the current rule and the closest rule that correctly classifies
a sample and (b) sparsity. Based on this formulation,
block coordinate descent and alternating minimization al-
gorithms are developed, both of which use an LP relaxation
approach. Experiments show that two-level rules can have
considerably higher accuracy than one-level rules and may
show improvements over cutting edge approaches.

The two-level Boolean rules in this work are examples of
sparse decision rule lists (Rivest, 1987), which have been
extensively studied in various fields. A number of strate-
gies have been proposed (Fürnkranz et al., 2012): cover-
ing (Rivest, 1987; Clark & Niblett, 1989; Cohen, 1995;
Fürnkranz, 1999), bottom-up (Salzberg, 1991; Domingos,
1996), multi-phase (Liu et al., 1998; Knobbe et al., 2008),
and the distillation of trained decision trees into decision
lists (Quinlan, 1987). Unlike our proposed approach, the
above strategies lack a single, principled objective function

66



Interpretable Two-level Boolean Rule Learning for Classification

to drive rule learning. Moreover, they employ heuristics
that leave room for improvements on both accuracy and
rule simplicity. In addition to the symbolic approaches
above, Bayesian approaches in Letham et al. (2012) and
Wang et al. (2015) apply approximate inference algorithms
to produce posterior distributions over decision lists; how-
ever, the assignment of prior and likelihood may not always
be clear, and certain approximate inference algorithms may
have high computational cost.

There has been some prior work on optimization-based
formulations for rule learning, the most relevant being
Malioutov & Varshney (2013), where an LP framework is
proposed to learn one-level rules from which set covering
and boosting are used to construct two-level rules. Al-
though we apply this clause learning method as a compo-
nent in our algorithms, our work has significant differences
from Malioutov & Varshney (2013). As discussed earlier,
two-level rules are significantly more expressive and much
more challenging to learn than a one-level rule. In addition,
the greedy style of the set covering method leaves room for
improvement and the weighted combination of clauses in
boosted classifiers reduces interpretability. Another work
on DNF learning (Wang & Rudin, 2015) provides a mixed
integer program (MIP) formulation named OOA and a
different heuristic formulation OOAx. The MIP in OOA is
similar to our formulation with a different cost (0-1 error)
but lacks an LP relaxation. OOAx is similar to the heuristic
multi-phase strategy above.

2. Problem Formulation
We consider supervised binary classification given a train-
ing dataset of n samples, where each sample has a label
yi ∈ {0, 1} and d binary features1 ai,j ∈ {0, 1} (1≤j≤d).
The goal is to learn a classifier ŷ(·) in CNF (AND-of-ORs)
that can generalize well from the training dataset.2 In the
lower level of the rule, each of R clauses is formed by the
disjunction of a selected subset of input features; in the
upper level, the predictor is obtained as the conjunction of
all clauses. Letting the decision variables wj,r ∈ {0, 1}
represent whether to include the jth feature in the rth

clause, the clause and predictor outputs are given by

v̂i,r =
d∨

j=1

(ai,jwj,r) , for 1 ≤ i ≤ n, 1 ≤ r ≤ R. (1)

ŷi =

R∧
r=1

v̂i,r, for 1 ≤ i ≤ n. (2)

1We assume the negation of each feature is included as another
input feature.

2The presentation focuses on CNF rules, but the proposed
algorithms apply equally to learning DNF rules using De
Morgan’s laws.

To mitigate the need for careful specification of the number
of clauses R, we allow clauses to be “disabled” by padding
the input feature matrix with a trivial “always true” feature
ai,0 = 1 for all i, with corresponding decision variables
w0,r for all clauses. If w0,r = 1, then the rth clause has
output 1 and thus drops out of the upper-level conjunction
in a CNF rule. The sparsity cost for w0,r, i.e. for disabling
a clause, can be lower than other variables or even zero.

In learning Boolean rules, it is desirable to use a finer-
grained measure of accuracy than the usual 0-1 loss to
distinguish between degrees of incorrectness and indicate
where corrections are needed. Herein we propose measur-
ing the accuracy of a rule on a single sample in terms of the
minimal Hamming distance from the rule to an ideal rule,
i.e. one that correctly classifies the sample. The Hamming
distance between two CNF rules is the number of wj,r that
are different in the two rules. Thus the minimal Hamming
distance represents the smallest number of modifications
(i.e. negations) needed to correct a misclassification.

For mathematical formulation, we introduce ideal clause
outputs vi,r with 1 ≤ i ≤ n and 1 ≤ r ≤ R to represent
a CNF rule that correctly classifies the ith sample. The
values of vi,r are always consistent with the ground truth
labels, i.e. yi =

∧R
r=1 vi,r for all 1 ≤ i ≤ n. We let

vi,r have a ternary alphabet {0, 1,DC}, where vi,r = DC
means that we “don’t care” about the value of vi,r. With
this setup, if yi = 1, then vi,r = 1 for all 1 ≤ r ≤ R;
if yi = 0, then vi,r0 = 0 for at least one value of r0, and
we can have vi,r = DC for all r ̸= r0. In implementation,
vi,r = DC implies the removal of the ith sample in the
training or updating for the rth clause, which leads to a
different training subset for each clause.

For a given vi,r, the minimal Hamming distance between
the rth clauses only of a CNF rule and an ideal rule can
be derived as follows. If vi,r = 1, at most one positive
feature needs to be included to produce the desired output,
so the minimal Hamming distance is given by max

{
0, 1−∑d

j=1 ai,jwj,r

}
. If vi,r = 0, any wj,r with ai,jwj,r = 1

needs to be negated to be correct, resulting in a minimal
Hamming distance of

∑d
j=1 ai,jwj,r. Summing over i, r

and defining the sparsity cost as the sum of the numbers of
features used in each clause, the problem is formulated as

min
wj,r, vi,r

n∑
i=1

R∑
r=1

[
1vi,r=1 ·max

{
0,

(
1−

d∑
j=1

ai,jwj,r

)}

+ 1vi,r=0 ·
d∑

j=1

ai,jwj,r

]
+ θ ·

R∑
r=1

d∑
j=1

wj,r (3)

s.t.

R∧
r=1

vi,r = yi, ∀i, (4)

vi,r ∈ {0, 1,DC}, wj,r ∈ {0, 1}, ∀i, j, r.
67



Interpretable Two-level Boolean Rule Learning for Classification

The ideal clause output constraint (4) requires that vi,r = 1
for all r if yi = 1, as noted above. For yi = 0, vi,r = 0
needs to hold for at least one value of r while all other vi,r
can be DC. The Hamming distance is minimized by setting

vi,r0 = 0, where r0 = argmin
1≤r≤R

 d∑
j=1

ai,jwj,r

 . (5)

The binary variables wj,r can be further relaxed to 0 ≤
wj,r ≤ 1. However, the resulting continuous relaxation
is generally non-convex for R > 1. Additional simplifi-
cations are proposed in Section 3 to make the continuous
relaxations more efficiently solvable.

Lastly, it can be seen that letting R = 1 in formulation
(3) recovers the formulation for one-level rule learning in
Malioutov & Varshney (2013).

3. Optimization Approaches
This section proposes a block coordinate descent algorithm
and an alternating minimization algorithm to solve the
regularized Hamming loss minimization in (3).

3.1. Block Coordinate Descent Algorithm

This algorithm considers the decision variables in a single
clause (wj,r with a fixed r) as a block of coordinates,
and performs block coordinate descent to minimize the
Hamming distance objective function in (3). Each iter-
ation updates a single clause with all the other (R − 1)
clauses fixed, using the one-level rule learning algorithm in
Malioutov & Varshney (2013). We denote r0 as the clause
to be updated.

The optimization of (3) even with (R − 1) clauses fixed
still involves a joint minimization over wj,r0 and the ideal
clause outputs vi,r for yi = 0 (vi,r = 1 for yi = 1 are
fixed), so the exact solution could still be challenging. To
simplify, we fix the values of vi,r for yi = 0 and r ̸= r0
to the actual clause outputs v̂i,r in (1) with the current wj,r

(r ̸= r0). Now we assign vi,r0 for yi = 0: if there exists
vi,r = v̂i,r = 0 with r ̸= r0, then this sample is guaranteed
to be correctly classified and we can assign vi,r0 = DC to
minimize the objective in (3); in contrast, if v̂i,r = 1 holds
for all r ̸= r0, then the constraint (4) requires vi,r0 = 0.

This derivation leads to the updating process as follows.
To update the rth0 clause, we remove all samples that have
label yi = 0 and are already predicted as 0 by at least
one of the other (R − 1) clauses, and then update the rth0
clause with the remaining samples using the one-level rule
learning algorithm.

There are different choices of which clause to update in an
iteration. For example, we can update clauses cyclically

or randomly, or we can try the update for each clause and
then greedily choose the one with the minimum cost. The
greedy update is used in our experiments.

The initialization of wj,r in this algorithm also has different
choices. For example, one option is the set covering
method, as is used in our experiments. Random or all-zero
initialization can also be used.

3.2. Alternating Minimization Algorithm

This algorithm alternately minimizes with respect to the
decision variables wj,r and the ideal clause outputs vi,r
in (3). Each iteration has two steps: update vi,r with the
current wj,r, and update wj,r with the new vi,r. The latter
step is simpler and will be first discussed.

With fixed values of vi,r, the minimization over wj,r is
relatively straight-forward: the objective in (3) is separated
into R terms, each of which depends only on a single clause
wj,r with a fixed r. Thus, all clauses are decoupled in the
minimization over wj,r, and the problem becomes parallel
learning of R one-level clauses. Explicitly, the update of
the rth clause removes samples with vi,r = DC and then
uses the one-level rule learning algorithm.

The update over vi,r with fixed wj,r follows the discussion
in Section 2: for positive samples yi = 1, vi,r = 1, and for
the negative samples yi = 0, vi,r0 = 0 for r0 defined in (5)
and vi,r = DC for r ̸= r0. For negative samples with a
“tie”, i.e. non-unique r0 in (5), tie breaking is achieved by
a “clustering” approach. First, for each clause 1 ≤ r0 ≤ R,
we compute its cluster center in the feature space by taking
the average of ai,j (for each j) over samples i for which r0
is minimal in (5) (including ties). Then, each sample with
a tie is assigned to the clause with the closest cluster center
in ℓ1-norm among all minimal r0 in (5).

Similar to the block coordinate descent algorithm, various
options exist for initializing wj,r in this algorithm. The set
covering approach is used in our experiments.

4. Numerical Evaluation
This section evaluates the algorithms with UCI reposi-
tory datasets (Lichman, 2013). To facilitate comparison
with the most relevant prior work (Malioutov & Varshney,
2013), we use all 8 datasets in that work. Each continuous
valued feature is converted to binary using 10 quantile
thresholds. In addition, we use 2 large datasets: MAGIC
gamma telescope (MAGIC) and Musk version 2 (Musk).

The goal is to learn a DNF rule (OR-of-ANDs) from
each dataset. We use stratified 10-fold cross validation
and then average the error rates. All LPs are solved by
CPLEX version 12 (IBM). The sparsity parameter θ is
tuned between 10−4 and 50 using a second cross validation

68



Interpretable Two-level Boolean Rule Learning for Classification

Table 1. 10-fold Average Test Error Rates (unit: %). Standard Error of the Mean is Shown in Parentheses.

DATASET BCD AM OCRL SC DLIST C5.0 CART RIPPER
ILPD 28.6(0.2) 28.6(0.2) 28.6(0.2) 28.6(0.2) 36.5(1.4) 30.5(2.0) 32.8(1.3) 31.9(1.0)
IONOS 9.4(1.1) 11.4(1.1) 9.7(1.5) 10.5(1.3) 19.9(2.3) 7.4(2.1) 10.8(1.2) 10.0(1.5)
LIVER 37.1(3.2) 39.1(2.5) 45.8(2.2) 41.7(2.8) 45.2(2.6) 36.5(2.4) 37.1(2.5) 35.4(2.2)

MAGIC 17.4(0.2) 17.0(0.1) 23.6(0.3) 19.7(0.2) 18.5(0.4) 14.1(0.2) 17.8(0.3) 15.1(0.3)
MUSK 7.5(0.3) 3.6(0.6) 8.4(0.1) 8.1(0.3) 13.6(0.5) 3.1(0.4) 3.3(0.3) 3.7(0.2)

PARKIN 12.8(2.2) 15.9(2.9) 16.4(2.1) 14.9(1.9) 25.1(3.3) 16.4(2.7) 13.9(2.9) 10.7(1.8)
PIMA 26.8(1.7) 23.8(2.0) 27.2(1.5) 27.9(1.5) 31.4(1.6) 24.9(1.7) 27.3(1.5) 24.9(1.1)

SONAR 29.8(3.0) 25.5(2.4) 34.6(2.7) 28.8(2.9) 38.5(3.6) 25.0(4.2) 31.7(3.5) 25.5(3.1)
TRANS 23.8(0.1) 23.8(0.1) 23.8(0.1) 23.8(0.1) 35.4(2.4) 21.7(1.2) 25.4(1.7) 21.5(0.8)
WDBC 6.2(1.2) 6.5(0.9) 9.3(2.0) 8.8(2.0) 9.7(0.8) 6.5(1.1) 8.4(1.0) 7.4(1.2)

RANKING 3.1 3.2 5.5 4.9 7.7 2.6 5.0 2.8

Table 2. 10-fold Average Numbers of Features

DATASET BCD AM SC DLIST C5.0 RIPPER
ILPD 0.0 0.0 0.0 5.4 45.5 7.0
IONOS 12.4 12.9 11.1 7.7 13.6 6.0
LIVER 9.3 7.7 5.2 2.2 46.6 4.0

MAGIC 11.4 22.3 2.0 14.7 366.7 110.0
MUSK 26.5 63.7 18.3 15.9 155.1 92.0

PARKIN 8.2 12.6 3.2 2.1 16.6 6.0
PIMA 2.2 2.0 2.4 8.6 38.2 5.0

SONAR 14.2 23.6 9.0 1.9 27.3 8.0
TRANS 0.0 0.0 0.0 3.8 6.7 5.0
WDBC 13.6 11.9 8.7 4.0 15.8 6.0

RANKING 3.1 3.4 2.2 2.3 6.0 3.4

within the training partition.

Algorithms in comparison and their abbreviations are:
block coordinate descent (BCD), alternating minimiza-
tion (AM), one-level conjunctive rule learning (OCRL,
equivalent to setting R = 1 for BCD or AM) and set
covering (SC), the last two from Malioutov & Varshney
(2013), decision list in IBM SPSS (DList), decision trees
(C5.0: C5.0 with rule set option in IBM SPSS, CART:
classification and regression trees algorithm in Matlab’s
classregtree function), and RIPPER from Cohen (1995).
We set the maximum number of clauses R = 5 for
the BCD, AM, and SC algorithms, and set the maximum
number of iterations in BCD and AM as 100.

We first show the test error rates and the sparsity of the
rules. The mean test error rates and the standard error of
the mean are listed in Table 1. Due to space constraints, we
refer the reader to Malioutov & Varshney (2013) for results
from other classifiers that are not interpretable; the accu-
racy of our algorithms is generally quite competitive with
them. Table 2 provides the 10-fold average of the sparsity
of the learned rules as a measure for interpretability. No
features are counted if a clause is disabled. The last rows
in these tables show the averaged ranking of each algorithm
on each dataset.

Table 1 shows that two-level rules obtained by our algo-
rithms (BCD and AM) are more accurate than the one-
level rules from OCRL for almost all datasets, which

demonstrates the expressiveness of two-level rules. A-
mong optimization-based two-level rule learning approach-
es, BCD and AM generally have superior accuracy to SC.
All these approaches substantially outperform DList in
terms of accuracy on all datasets. Compared with C5.0,
BCD and AM obtain rules with much higher interpretabil-
ity (many fewer features) and quite competitive accuracy.
Compared with CART, BCD has higher or equal accuracy
on all datasets except for Musk, and AM is also superior
overall. RIPPER appears to be slightly stronger than BCD
and AM for the 8 datasets from Malioutov & Varshney
(2013). However, on the two larger datasets (MAGIC and
Musk), RIPPER selects a rather large number of features,
and further study on large datasets is needed to clarify
the advantages and disadvantages of the algorithms. In
addition, AM achieves the highest accuracy on Pima, and
BCD obtains the highest accuracy on WDBC.

Below is an example of a learned rule that predicts Parkin-
son’s disease from voice features. (It is consistent with
known low frequency and volume change reduction in the
voices of Parkinson’s patients (Ramig et al., 2004).)

IF 1. voice fractal scaling exponent > −6.7; OR
2. max vocal fundamental frequency < 236.4 Hz; AND

min vocal fundamental frequency < 181.0 Hz; AND
shimmer:DDA < 0.0361; AND
recurrence period density entropy < 0.480;

THEN this person has Parkinson’s.

5. Conclusion
Motivated by the need for interpretable classification mod-
els, this paper has provided an optimization-based formu-
lation for two-level Boolean rule learning. These com-
plement the more heuristic strategies in the literature on
two-level Boolean rules. Numerical results show that two-
level Boolean rules typically have considerably lower error
rate than one-level rules and provide very good tradeoffs
between accuracy and interpretability with improvements
over state-of-the-art approaches.

69



Interpretable Two-level Boolean Rule Learning for Classification

Acknowledgment
The authors thank V. S. Iyengar, A. Mojsilović, K. N.
Ramamurthy, and E. van den Berg for conversations and
support.

References
IBM ILOG CPLEX optimization studio. http://www-

03.ibm.com/software/products/en/ibmilogcpleoptistud.

Baesens, B., Setiono, R., Mues, C., and Vanthienen, J.
Using neural network rule extraction and decision tables
for credit-risk evaluation. Manag. Sci., 49(3):312–329,
2003.

Clark, P. and Niblett, T. The CN2 induction algorithm.
Mach. Learn., 3(4):261–283, 1989.

Cohen, W. W. Fast effective rule induction. In Proc. Int.
Conf. Mach. Learn., pp. 115–123, 1995.

Craven, M. W. and Shavlik, J. W. Extracting tree-structured
representations of trained networks. Adv. Neural Inf.
Process. Syst., pp. 24–30, 1996.

Domingos, P. Unifying instance-based and rule-based
induction. Mach. Learn., 24(2):141–168, 1996.

Feldman, J. Minimization of Boolean complexity in human
concept learning. Nature, 407(6804):630–633, 2000.

Freitas, A. A. Comprehensible classification models –
a position paper. ACM SIGKDD Explor., 15(1):1–10,
2014.

Fürnkranz, J. Separate-and-conquer rule learning. Artif.
Intell. Rev., 13(1):3–54, 1999.

Fürnkranz, J., Gamberger, D., and Lavrač, N. Foundations
of rule learning. Springer Science & Business Media,
2012.

Kearns, M., Li, M., Pitt, L., and Valiant, L. On the
learnability of Boolean formulae. In Proc. Annu. ACM
Symp. on Theory of Comput., pp. 285–295, 1987.

Knobbe, A., Crémilleux, B., Fürnkranz, J., and Scholz,
M. From local patterns to global models: The LeGo
approach to data mining. In Proc. ECML PKDD
Workshop (LeGo-08), pp. 1–16, 2008.

Letham, B., Rudin, C., McCormick, T. H., and Madigan,
D. Building interpretable classifiers with rules using
Bayesian analysis. Department of Stat. Tech. Report
tr609, Univ. of Washington, 2012.

Lichman, M. UCI machine learning repository.
http://archive.ics.uci.edu/ml, Univ. of Calif., Irvine,
School of Information and Computer Sciences, 2013.

Lima, E., Mues, C., and Baesens, B. Domain knowledge
integration in data mining using decision tables: case
studies in churn prediction. J. Oper. Res. Soc., 60(8):
1096–1106, 2009.

Liu, B., Hsu, W., and Ma, Y. Integrating classification
and association rule mining. In Proc. Int. Conf. Knowl.
Discov. Data Min., pp. 80–86, 1998.

Malioutov, D. M. and Varshney, K. R. Exact rule learning
via Boolean compressed sensing. In Proc. Int. Conf.
Mach. Learn., pp. 765–773, 2013.

Quinlan, J. R. Simplifying decision trees. Int. J. Man-
Mach. Studies, 27(3):221–234, 1987.

Ramig, L. O., Fox, C., and Sapir, S. Parkinson’s disease:
speech and voice disorders and their treatment with the
lee silverman voice treatment. In Seminars in Speech
and Language, volume 25, pp. 169–180, 2004.

Rivest, R. L. Learning decision lists. Mach. Learn., 2(3):
229–246, 1987.

Salzberg, S. A nearest hyperrectangle learning method.
Mach. Learn., 6(3):251–276, 1991.

Varshney, K. R. Engineering safety in machine learning. In
Proc. Inf. Theory Appl. Workshop, 2016.

Vellido, A., Martı́n-Guerrero, J. D., and Lisboa, P. J.G.
Making machine learning models interpretable. In Proc.
Eur. Sym. Artif. Neural Networ. Comput. Intell. Mach.
Learn., pp. 163–172, 2012.

Wang, T. and Rudin, C. Learning optimized Or’s of And’s.
arXiv preprint arXiv:1511.02210, 2015.

Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl,
E., and MacNeille, P. Bayesian Or’s of And’s for
interpretable classification with application to context
aware recommender systems. Technical report, MIT,
2015. Submitted.

70


