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Collaborative Kalman Filtering for
Dynamic Matrix Factorization
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Abstract—We propose a new algorithm for estimation, predic-
tion, and recommendation named the collaborative Kalman filter.
Suited for use in collaborative filtering settings encountered in rec-
ommendation systems with significant temporal dynamics in user
preferences, the approach extends probabilistic matrix factoriza-
tion in time through a state-space model. This leads to an estima-
tion procedure with parallel Kalman filters and smoothers coupled
through item factors. Learning of global parameters uses the ex-
pectation-maximization algorithm. The method is compared to ex-
isting techniques and performs favorably on both generated data
and real-world movie recommendation data.

Index Terms—Collaborative filtering, expectation-maximiza-
tion, Kalman filtering, learning, recommendation systems.

I. INTRODUCTION

R ECOMMENDATION systems that provide personalized
suggestions are transforming or have transformed indus-

tries ranging from media and entertainment, to commerce, to
healthcare, to education. Businesses often wish to use transac-
tional or ratings data to recommend products and services to
individual customers that they are likely to appreciate, need, or
purchase. In both the business-to-business and business-to-con-
sumer paradigms, such recommendations allow companies to
create tailored, personalized, and desirable experiences for their
customers.
Findings from a recent survey indicate that [1], “At least 80

percent of [chief marketing officers] rely on traditional sources
of information, such as market research and competitive bench-
marking, to make strategic decisions. But these sources only
show customers in aggregate, offering little insight into what in-
dividual customers need or desire.” Recommendation systems
that provide individual-level customer insights are thus increas-
ingly important components of commerce in this age of big
data. An early adopter of recommendation systems has been the
media and entertainment industry.
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Nick Barton, a vice president of sales and marketing for In-
terContinental Hotel Group says [1], “We have to get scientific
about the customer experience.” The science and technology for
recommendation that has been noted in the recent literature to
be accurate and robust in many applications is collaborative fil-
tering using matrix factorization (MF) techniques [2]. For in-
stance, many entries in the Netflix prize competition, including
the winning submission by BellKor’s Pragmatic Chaos, relied
heavily on MF to create predictions for movie ratings [3]. MF,
the decomposition of a matrix into a product of two simpler
matrices, has a long and storied history in statistics, signal pro-
cessing, and machine learning for high-dimensional data anal-
ysis [4].
The commercial world is not static, but is full of dynamics in

customer preferences, product and service offerings, and so on.
User tastes and needs evolve over time both exogenously and
due to interactions with the provider. In the common application
domains, customer preferences often follow predictable trajec-
tories over time. Customers may be interested in basic products
at first and then higher-end products later, or products for tod-
dlers first and for adolescents later; a customer may like partic-
ular films for only short time periods and not like them before
or after. Additionally, we can distinguish recommendation for
discovery and recommendation for consumption; new items are
recommended in the former whereas the same item may be re-
peatedly recommended in the latter.
A recognized limitation of plain MF-based collaborative fil-

tering methodologies is that they do not account for changes
over time and are therefore inherently restricted. Despite their
limitations, MF without any dynamic modeling and MF en-
hanced with fairly limited dynamic modeling have been widely
and successfully used. This fact begs the question why. Is it
that in real-world settings, preferences do not evolve much or
only evolve in very simple ways? Or is it that a more sophisti-
cated and expressive dynamic model can take performance to an
even higher level beyond what is currently achieved? Towards
this end, we propose a new algorithm, the collaborative Kalman
filter (CKF), that employs such an expressive temporal model:
a state space model to track user preferences over time [5], [6].
Our new contribution builds on known theory as follows. The

MF approach to collaborative filtering usually includes Frobe-
nius-norm regularization [3], which is supported by a linear-
Gaussian probabilistic model known as probabilistic matrix fac-
torization (PMF) [7]. Due to its linear-Gaussian nature, PMF
lends itself to incorporating temporal trajectories through the
state space representation of linear dynamical systems [8] and
algorithms for estimation based on the Kalman filter [9], [10].
We propose a general recommendation model of this form and
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develop an expectation-maximization (EM) algorithm to learn
the model parameters from data. The Kalman filter and Rauch-
Tung-Striebel (RTS) smoother [11] appear in the expectation
step of the EM.
The remainder of the paper is organized as follows. In

Section II, we introduce our notation and review existing
techniques in matrix factorization. In Section III, we develop
a dynamical system model for users, items, and ratings. In
Section IV, we describe an EM algorithm to learn the model
parameters from sparse data. Empirical results and comparisons
to baseline methods for generated and real-world datasets are
provided in Section V and Section VI, respectively. Finally, we
conclude in Section VII.

II. PRELIMINARIES

In this section, we introduce the MF approach for studying
recommendation problems and introduce prior work that incor-
porate temporal dynamics into preference estimation.

A. Problem Formulation

In the recommendation problem, users provide explicit (e.g.
ratings) or implicit (e.g. usage) information about their pref-
erences for known items for the purpose of being introduced
to new items. One simple model that has been successful in
practice assumes that user preference can be captured by con-
tinuous-valued weightings on a small set of latent factors.
Each user ’s weighting, called a user factor, is denoted by a
row vector . Similarly, each item is assigned a row
vector representing its characteristics on the same la-
tent space. The explicit rating of item by user is then de-
scribed by the inner product [3].
In MF, a further assumption that users employ the same set

of latent factors allows for estimates of individual preferences
from population data. In this setting we collect user factors into
a matrix and item factors into a matrix .
Meanwhile, ratings from users about items can be repre-
sented by a preference matrix . For most practical
situations, only a small fraction of the entries of are observed
and may be corrupted by noise, quantization and different inter-
pretations of the scale of preferences. By estimating the user and
item factors, which is modeled to have much lower dimension,
the remaining rating entries are predicted through the relation-
ship .
Under MF, latent factors are learned from past responses of

users rather than formulated from known attributes. Factors
are not necessarily easy to interpret and change dramatically
depending on the choice of . The value of is an engineering
decision, balancing the tradeoff of forming a rich model to
capture user behavior and being simple enough to prevent
overfitting.

B. Prior Work

One popular technique to estimate the unobserved entries of
in the MF framework is by minimizing and in the fol-

lowing program:

(1)

where is the set of observed ratings and are regu-
larization parameters. The SVD algorithm solves this program
using stochastic gradient descent while correcting for user and
item biases, and has been experimentally shown to have excel-
lent root mean squared error (RMSE) performance [12].
The regularization in the above program was motivated by

assigning Gaussian priors to the factor matrices and re-
spectively [7]. Coined PMF, this Bayesian formulation means
(1) is justified as producing the maximum a posteriori (MAP)
estimate for this prior. In this case, the regularization parameters
and are effectively signal-to-noise ratios (SNR). Since

is not a linear function of latent factors, the MAP estimate does
not in general produce the best RMSE performance, which is the
measure often desired in recommendation systems [13]. How-
ever, although the MAP estimate does not necessarily minimize
the RMSE, it does tend to yield very good RMSE performance
[14], and wisdom gained from the Netflix Challenge and exper-
imental validation from [7] show that the MAP estimate pro-
vides very competitive RMSE performance compared to other
approximation methods.
The SVD algorithm assumes that both user and item factors

are constant in time. However, it is common for customer tastes
to evolve, oftentimes cohesively as a population. This is ex-
ploited in the timeSVD algorithm, which allows user prefer-
ences to evolve linearly over time [15]. In this case, user factors
are given by

(2)

where is some deviation function from a central point
and is the weightings on the deviation on each factor.
There are other works that investigate temporal dynamics in

recommendation systems. The probabilistic tensor factorization
approach extends the probabilistic MF formulation of [7], but
requires the time factors to lie on the same latent factor space
as users and items [16]. The state evolution of the spatiotem-
poral Kalman filter is limited and the approach encounters con-
vergence issues [17]. The approach known as target tracking
in recommendation space has no element of collaboration and
requires prior knowledge of the ‘recommendation space’ [18].
The hidden Markov model for collaborative filtering captures
the time dynamics of a known attribute among users rather than
learned factors [19]. The temporal formulation of [20], which is
nearest neighbor-based rather than MF-based, is known to have
scaling difficulties. The dynamic nonlinear matrix factorization
approach of [21], which was published after the submission of
our initial work [5], is alongmuch the same lines as the CKF, but
uses a Gaussian process dynamical model instead of the linear
state space model.

III. STATE SPACE MODEL

Given the success of MAP estimation in linear-Gaussian
PMF models and our interest in capturing time dynamics, we
propose a linear-Gaussian dynamical state space model of MF
whose MAP estimates can be obtained using Kalman filtering.
We assume that user factors are functions of time and
hence states in the state space model, with bold font indicating
the vector being random. In our proposed model, we have
coupled dynamical systems, and to adhere to typical Kalman



SUN et al.: COLLABORATIVE KALMAN FILTERING FOR DYNAMIC MATRIX FACTORIZATION 3501

filter notation, we use to denote the state of user
at time .
For each user, the initial state is distributed according

to , the multivariate Gaussian distribution with
mean vector and covariance matrix . The user-factor
evolution is linear according to the generally non-stationary
transition process and contains transition process noise

to capture variability of individuals. Taken
together, the state evolution is described by the set of equations:

(3)

We assume that item factors evolve very slowly and can be
considered constant over the time frame that preferences are col-
lected. Also, due to the sparsity of user preference observations,
a particular user-item pair at a given time may not be known.
Thus, we incorporate the item factors through a non-stationary
linear measurement process which is composed of subsets
of rows of the item factor matrix based on item preferences
observed at time by user . Note that all are subsets of
the same fixed and are coupled in this way. We also include
measurement noise in the model. The overall
observation model is:

(4)

The product in (4) parallels the product in
Section II-A. Again adhering to Kalman filter notation, we use

to denote the observations, corresponding to the observed
entries of , now a tensor in .
The state space model can be generalized in many different

ways that may be relevant to recommendation systems, in-
cluding non-Gaussian priors, nonlinear process transformation
and measurement models, and continuous-time dynamics. We
focus on the linear-Gaussian assumption and defer discussion
on extensions to Section VII.

IV. COLLABORATIVE KALMAN FILTERING

Although both SVD and timeSVD have been shown to be
successful in practice, they are limited in accounting for general
temporal changes in user preferences. To combat this problem,
we introduce the collaborative Kalman filter to better exploit
temporal dynamics in recommendation systems. The key inno-
vation of CKF is allowing user factors to evolve through the
linear state space model introduced above. Again by assuming
Gaussian priors on the user and item factors, the MAP esti-
mate can be computed optimally via a Kalman filter. Although
the Kalman filter requires the knowledge of model parameters
which may not be known a priori, the EM algorithm is used to
learn these parameters efficiently.
The CKF algorithm involves learning the parameters , ,
, , and , and estimation of . In this architecture,
Kalman smoothers, one for each user, are computed in par-

allel utilizing the same item factor matrix in the E-step of
the EM algorithm, which for the case of Gaussian priors is the
same as performing Kalman filtering. Then, we refine the model
parameter estimates in the M-step, and repeat. In summary, the
EM algorithm alternates between the expectation step in which
the expectation of the likelihood of the observed data is evalu-
ated for fixed parameters, and the maximization step in which

the expected likelihood is maximized with respect to the param-
eters. Below, we explain both steps.

A. E-Step

In order to infer user factors in the expectation step, we utilize
the noncausal Kalman filter, which provides the MAP estimate
assuming the item factors and model parameters are known. For
user , we define the state estimate and the state
covariance as

(5)

(6)

The noncausal Kalman filter, also known as the RTS
smoother, is a forward-backward algorithm that forms an esti-
mate using all observations. To begin, we run causal Kalman
filters for :

(7)

(8)

(9)

(10)

Then the smoothing steps are performed:

(11)

(12)

(13)

(14)

where

(15)

(16)

The estimates can then be combined to form an esti-
mate of the user factor tensor .

B. M-Step

The E-step of the EM algorithm requires knowledge of model
parameters such as mean and covariance of the initial states,
the transition process matrices, the process noise covariances,
the measurement process matrices, and the measurement noise
covariances. The M-step progressively refines the estimates for
these parameters by iteratively improving the log-likelihood
given the observations. In learning the measurement process
matrices, we also get an estimate for the item factor matrix ,
which is the other ingredient in the MF problem.
Learning the large number of parameters is difficult in

practice from such limited observations, but simplifications to
process models yield tractable closed-form solutions. These
simplifications are that is fixed for all users and over time,
is , is , and is . We will discuss the

merits of such assumptions in Section VI and just present the
M-step equations of the simplified model here:

(17)
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(18)

(19)

(20)

(21)

Remembering that each is a subvector of corre-
sponding to items observed at time , the fill operator expands
its argument back to , with the observations in their appro-
priate positions and zeros elsewhere. We denote the th rows of
and as and respectively, and as the indicator

function that a rating is observed for user and item at time .
Derivations for these parameters are given in Appendix B.

V. UNDERSTANDING CKF BEHAVIOR

To demonstrate the effectiveness of Kalman learning com-
pared to existing methods, we first present results tested on gen-
erated data that follow a state space model; we will present
real-world results later in Section VI. We compare the CKF to
SVD and timeSVD; these are known to be fast and effective al-
gorithms for recommendation systems, particularly on the Net-
flix dataset, and often serve as baselines for comparison in the
literature. As SVD includes no temporal formulation, we pool
together measurements from all times into one matrix.

A. Experimental Setup

There are two main reasons to consider generated data. First,
a goal of the work is to understand how algorithms perform
on preferences that evolved following a state space model. It
is not clear that common datasets used in the recommendation
systems literature match this model, and results would be too
data-specific and not illuminating to the goal at hand. Second, a
generated dataset gives insight on how the algorithms discussed

perform in different parameter regimes, which is impossible in
collected data.
We generate the item factor matrix iid and the

initial user factor matrix iid . Under the assump-
tion that user factors do not change much with time, the sta-
tionary transition process matrix is the weighted sum of the
identity matrix and a random matrix, normalized so that the ex-
pected power of the state is constant in time. We note that
can be more general with similar results, but the normaliza-

tion is important so that preference observations do not change
scales over time. Finally, iid noise is added to both the transition
and measurement processes as described in (3) and (4). The ob-
servation triplets are uniformly drawn iid from all pos-
sibilities from the preference tensor.

B. Results

We present performance results for a particular choice of pa-
rameters in Fig. 1, expressed in RMSE. Space limitations pre-
vent us from giving results for other parameter choices, but they
are similar when the SNR is reasonable. For arbitrary initial
guesses of the parameters, we find learning of variances and
process matrices to converge and stabilize after about 10–20 EM
iterations. As a result, state tracking is reliable and approaches
the lower bound specified by the Kalman smoother output when
the parameters, including the item factor matrix , are known
a priori. The estimate for the entire preference tensor also
performs well, meaning that CKF is a valid approach for rec-
ommendation systems with data following a state space model.
In contrast, current algorithms such as SVD and timeSVD

perform poorly on this dataset because they cannot handle gen-
eral dynamics in user factors. Thus, the algorithm becomes con-
fused and the estimates for the factor matrices tend to be close
to zero, which is the best estimate when no data is observed.
As shown in Fig. 2, the true trajectory of users may be that of
an arc in factor space with additive perturbations. While CKF is
able to track this evolution using smoothed and stable estimates,
both SVD and timeSVD fail to capture this motion and hence
have poor RMSE. SVD does not have temporal considerations
and would give a stationary dot in the factor space. Meanwhile,
timeSVD can only account for drift, meaning it can move in a
linear fashion from a central point. In fact, this constraint leads
to worse RMSE for most parameter choices than SVD because
timeSVD overfits an incorrect model.

VI. CKF IN PRACTICE

In Section IV, we introduced the CKF algorithm and dis-
cussed simplifying assumptions that made the analysis tractable.
In Section V, we then compared CKF to existing results on gen-
erated datasets to demonstrate the gains of the new algorithm.
However, it is unclear whether these assumptions are reason-
able or are too naïve to allow for effective prediction in practice.
Here, we discuss why these assumptions are valid on datasets
that are interesting for collaborative filtering and provide a case
example to understand how the CKF algorithm tracks temporal
changes. We also mention some implementation details associ-
ated with CKF such as runtime and robustness.
To validate CKF, we consider the Netflix dataset, which is

commonly used to compare MF algorithms. The dataset con-
tains approximately 100 million ratings by about 500,000 users
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Fig. 1. For this testbench, we set model dimensions to be and variances to be . The
item factor dynamics are controlled by , which is a weighted average of identity and a random dense matrix. The observation ratio is 0.005, meaning only 0.5%
of the entries of the preference matrix are observed. For the generated data and crude initial guesses of the parameters, as a function of iteration, we show the
RMSE between the true values used in generating the data and the estimated values of (a) Kalman parameters learned via EM; (b) user factors/states; and (c) the
preference matrix. We observe that EM learning is effective in estimating parameters through noisy data, and this translates to better state tracking and estimation
of the preference matrix. Convergence is fast and robust to initialization of parameters.

Fig. 2. State-tracking ability of CKF and time SVD in three factor dimensions.
The true user factors are more accurately tracked using CKF after parameters
have been learned. However, time SVD does not have flexibility to track general
state evolutions and gives poor RMSE.

on 18,000 movies. Each rating is accompanied by a timestamp
over a period of 84 months, ranging from 1998 to 2006. The
timing information here is particularly pertinent since Netflix’s
interface easily allows users to indicate their preferences soon
after watching the movie. This means the temporal trends con-
tain less noise compared to datasets like MovieLens [22], where
ratings are potentially collected much later than when the movie
was watched.

A. Model Assumptions in CKF

There are several key assumptions that allow for efficient
learning and estimation in CKF but may constrain its perfor-
mance in practice. The first is that CKF is most suitable for
the setting in which user tastes are approximately normally
distributed over the latent factor space. In many datasets where
the number of users is large, this assumption is justified. User
factors are of course non-Gaussian but not severely so, as
shown empirically for Netflix data in [23, Fig. 3]. There is also
a Gaussian assumption on both the process and measurement
noise terms, which are common in practice. The Gaussian for-
mulation leads to a simple interpretation of the CKF solution: it

is the MAP estimate conditioned on observed data and assumed
population similarities.
In simplifying the learning from sparse observations, we also

impose stationarity and homogeneity on the state transitions and
noise variances. The stationarity simplification is not problem-
atic if the time scales of the dataset are not long enough for dra-
matic shocks to influence customer behavior in unpredictable
ways. It also implies that observed ratings are collected in a con-
sistent manner over users and time. The homogeneity assump-
tion is also important in that it says that temporal customer be-
havior has a universal component that is of interest to the recom-
mendation system. This is not to say that all users have to evolve
in the same way; the Kalman smoother contains a process noise
component that allows for individual volatility.
In addition to efficient learning, these assumptions also pro-

vide complexity control to prevent overfitting. Moreover, they
allow for better interpretation of the learnedmodel by, e.g., busi-
ness users, because a single transition matrix that highlights the
main user trajectories can be more readily understood than a
plethora of transition matrices. If we were to relax the homo-
geneity assumptions, it would be good practice to include extra
regularization terms that impose similarity or smoothness be-
tween transition matrices, which then moves us towards multi-
task learning [24].

B. Effectiveness of Temporal Model

The central novelty of CKF and the main investigation of this
paper is the temporal evolution of user factors. CKF can learn
and estimate user behaviors that take the form of linear transfor-
mations of its state vectors, reminiscent of the position-tracking
applications that were the original motivations of Kalman fil-
tering. Although user factors may have more complicated tra-
jectories over time, CKF is able to provide a robust first-order
approximation.
CKF is therefore a very powerful tool for learning latent fac-

tors in datasets where user preferences markedly change over
time. The Netflix dataset fits this criterion as temporal varia-
tions such as drifts and seasonal changes do occur [15]. This
phenomenon is visualized in Fig. 3(a), (b), which demonstrates
the variation of average ratings of action movies over time for
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Fig. 3. (a), (b) Average observed ratings of action movies over time for two users. Predicted ratings using estimated user and item factors from the CKF, SVD
and timeSVD algorithms are also plotted. The results demonstrate that user preferences have significant temporal dependence which can best be tracked using
CKF. (c)–(f) Average observed ratings of a subset of action movies over time for four users. The action movies selected have similar estimated item factors using
the CKF, SVD and timeSVD algorithms. We see pronounced temporal variations which is best predicted by CKF. The SVD algorithm predicts the ratings to be
approximately equal because user factors do not change over time and item factors will be similar for similar movies. Meanwhile, timeSVD has very limited
temporal modeling and can at most have approximately linear temporal deviations.

two users, and the ability of CKF, SVD and timeSVD to predict
that behavior. We present this example to illustrate the temporal
structure of user preferences and defer detailed discussion on
experimental methodology to later.
Further evidence of the time-dependent nature of user pref-

erence is demonstrated in Fig. 3(c)–(f). Here, we considered
a subset of action movies that have very similar estimated
item factor over all three recommendation algorithms and
compared the predicted ratings of specific users to the actual
ratings observed from the Netflix dataset. Again, we see large
variability in the real data, and find that CKF does a good
job of accounting for it. Meanwhile, SVD’s estimates of user
factors do not change over time and its rating estimates are
approximately flat; timeSVD can only distinguish drift and its
estimates are about linear.
From this case study, we are able tomotivate the need to adopt

more refined temporal models to better understand and esti-
mate user preferences. The linear-Gaussian state space model of
temporal dynamics that is the foundation of the CKF approach
tracks real-world user preferences closely without overfitting,
suggesting it to be a preferred temporal model for MF-based
recommendation.

C. Implementation

Here, we highlight some implementation details and design
choices of the CKF algorithm. These considerations were
important in analyzing the Netflix dataset and apply more
generally.

1) Choice of Model Parameters: Like in most MF algo-
rithms, one degree of freedom in CKF is , the number of la-
tent factors. A larger allows for a richer model and potentially
better prediction performance, but will increase the runtime of
the algorithm and pose the danger of overfitting the observed
data. In our analysis of Netflix, we found 5 factors balanced the
performance--runtime tradeoff well.
In addition, we must provide initial estimates of the transi-

tion matrix and moments of system variables in the state space
model. We found that the EM algorithm is very robust to this
choice as convergence did not vary greatly for different starting
conditions. By scanning a large region of the parameter space,
we found the RMSE was within 10% of any set point.
We do not consider regularized user, movie, and time bias

terms. Instead, such idiosyncratic behavior is captured naturally
as process and measurement noise in the CKF model.
2) Time Quantization: CKF assumes that data is collected in

discrete time steps, which is not the case in practice. However,
it is plausible that user factors tend to follow smooth trajecto-
ries within short time windows and can be closely approximated
with piecewise constant estimates, which is equivalent to clus-
tering rating times into distinct buckets. For Netflix, we quan-
tized by month over a three-year window (2003–2006) which
accounts for most of the observed data, resulting in dif-
ferent time steps. This time quantization was effective in cap-
turing short term variations in user preferences while allowing
for tractable runtimes.
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Fig. 4. Performance results for CKF, timeSVD and SVD for the action movies subset of the Netflix dataset. In-sample RMSE is given as a function of (a) obser-
vation ratio, and (b) the number of latent factors . Out-of-sample (prediction) RMSE is given as a function of the number of latent factors in (c).

3) Runtime Performance: One shortcoming of CKF is
that it can be computationally expensive relative to SVD and
timeSVD. Although the Kalman filters employed are efficient
and further simplifications can dramatically decrease runtime,
there are still several matrix inversions that are bottlenecks.
In our experimentation, we found that the runtime of SVD
and timeSVD are 40% and 50% respectively of the runtime of
CKF. We find the time gap increases about linearly with .
However, increasing the number of time steps greatly increases
the runtime as it requires additional EM iterations to converge.
Due to such runtime considerations, CKF is well suited for

moderate-sized datasets. This is because CKF, in general, takes
more time for each iteration than SVD and timeSVD. Clearly,
for extremely large datasets, CKFmay prove to be an intractable
solution due to these reasons.

D. Data and Materials

To facilitate comparisons between the three algorithms
discussed, we use a subset of the popular Netflix dataset. This
subset comprises the intersection of action movies that have
at least 10,000 ratings and users who have rated at least 300
movies. The resulting size of the dataset is 560 users, 959
movies, and 162,114 observations. The fraction of the observed
to total ratings, called the observation ratio, is then 30% of the
static observation matrix or 0.84% of the observation tensor

, which allows ratings to change at each of the 36 time
steps.
We considered this subset of the Netflix dataset for a few

specific reasons. First, CKF is more effective when users share
common temporal trajectories; using a restricted set of users
and movies allow for better analysis of these temporal trends.
Second, the smaller subset reduces the computational runtime,
which is an important consideration in CKF, especially as the
number of time steps is large. Last, this dataset has the appro-
priate observation ratio which allows CKF to accurately predict
the state space parameters. We will address some of the robust-
ness to these choices below.
In our simulations, we first considered , but also tested

the change in performance and runtime when is different. As
mentioned previously, we binned time into months over the en-
tire span of the Netflix dataset, yielding 36 time steps. We seed
the algorithm with initial estimates , ,

, and . A wide range of seeds yielded similar

RMSE performance. We tested the effectiveness of the CKF
using cross validation, with the size of the validation subset
being 1/6 of the total data.
For comparison, we also ran SVD and timeSVD on the

datasets. We experimentally found the optimal seeding param-
eters of these algorithms through multiple simulations. As a
result, we set , the regularization term for the user vectors, ,
the regularization term for the item vectors, and , the learning
rate, to all be 0.01 for both SVD and timeSVD. We accounted
for bias by shifting ratings by a constant offset corresponding
to the average movie ratings over all users and movies. We did
not account for additional regularized biasing for individual
users and items in order to create a direct comparison to CKF,
which does not use these biases.
We ran CKF, SVD, and timeSVD for 20 iterations each to

obtain the final rating predictions, which was sufficient for all
three algorithms to converge.

E. Prediction Performance

In our testing, we find CKF has better RMSE performance
than SVD and timeSVD on the action movie subset of the Net-
flix dataset. Initially, we considered and an observa-
tion ratio of 25% for training (5% for test). We then decreased
the observation ratio of the training set and increased the size
of to demonstrate the robustness of CKF’s superior perfor-
mance. RMSE comparisons for both scenarios are presented in
Fig. 4(a), (b). We see that all algorithms performed better than
the baseline corresponding to the RMSE incurred by imposing
the average rating over all users. In general, CKF and timeSVD
performed better than SVD by taking advantage of temporal de-
viations. This advantage is less pronounced when the observa-
tion ratio is low because there are just too few observations to
learn temporal patterns well. Moreover, we found that a low
number of latent factors were sufficient to yield good perfor-
mance in CKF. In fact, the RMSE increased with larger due
to overfitting. Coupled with the analysis presented in Fig. 3, we
see CKF forms better estimates of the temporal variations of
user factors, which translates to improved tracking of ratings on
the training set and better estimation on the testing set.
Additionally, we consider the out-of-sample prediction or

forecasting problem where we use the first 34 time bins as the
training set and use the final two months as the testing set. We
predict the ratings for all users and movies using the factors
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learned for each of the three algorithms. The out-of-sample
RMSE values that result are shown in Fig. 4(c). In the predic-
tion case, we see an even greater advantage derived from the
state space model dynamics than in the in-sample estimation
case. The ordering of performance from worst to best matches
the temporal expressiveness in the models, with CKF having
the least error across all values of .
Analysis of the state space parameters demonstrate that there

are meaningful state transitions between time steps which yields
the improved prediction analysis. These trajectories do not fol-
lowing the drift motion predicted by timeSVD.
There are some limitations of the analysis presented. Because

we are only considering a subset of the Netflix dataset, it is dif-
ficult to generalize the gain of CKF over existing algorithms.
We expect the performance gap to decrease as global temporal
trends become less impactful for prediction. We could person-
alize the state transition matrices in this setting, but the estima-
tion becomes poor unless the percentage of observed ratings is
large. Moreover, we did not implement many of the biasing fea-
tures of SVD and timeSVD, which will improve RMSE but will
create an unbalanced comparison. Future work on CKF includes
integrating regularized user and item biases, as well as idiosyn-
cratic deviations in time.

VII. CONCLUSION

Recommendation systems and algorithms for business and
commerce have dual objectives of providing excellent predic-
tion accuracy and positive user experience to enable long-term
revenue achievement from customers [25]. By taking temporal
dynamics into account, we can contribute to both of these ob-
jectives by tracking and intelligently forecasting user prefer-
ence trajectories. However, sophisticated, principled temporal
models are required to fit real-world transactional or ratings
data.
In this paper, we have proposed an extension to Gaussian

PMF to take into account trajectories of user behavior. This has
been done using a dynamical state space model from which pre-
dictions are made using the Kalman filter. We have derived an
expectation-maximization algorithm to learn the parameters of
the model from previously collected observations. We have val-
idated the proposed CKF and shown its advantages over SVD
and timeSVD on generated data.
Moreover, we have compared the applicability of CKF to

learn and react to changing user tastes in the Netflix dataset. We
find that CKF can better forecast temporal trends and that this
yields improved prediction performance on user ratings than
baseline methods. User factors are not necessary static nor are
they restricted to evolve in a drift; accounting for more realistic
temporal changes can lead to improvement in performance.
In contrast to heuristic and limited prior methods that incor-

porate time dynamics in recommendation, the approach pro-
posed in this paper is a principled formulation that can take ad-
vantage of decades of developments in tracking and algorithms
for estimation. To break away from linearity assumptions, the
extended or unscented Kalman filter can be used. Particle fil-
tering can be used for non-Gaussian distributions, analogous to
sampling-based inference in Bayesian PMF [23].

There are several directions of future work in improving
CKF. First, approximations to the Kalman filtering steps may
lead to faster computation of user factor estimates and improve
the runtime of the algorithm. Second, it is possible to utilize
the existing Kalman filtering literature to address the cold
start problem, where new users or items are introduced to the
recommendation system [26]. Third, the assumptions that users
should be homogeneous enough to share common temporal
trajectories suggest that CKF can be effectively combined
with nearest-neighbor recommendation models or multi-task
learning to yield more effective predictions, beyond just looking
at single-genre data. Finally, since there have been advances
in the state of the art in non-dynamic matrix factorization, e.g.
[27], [28], future research should combine these advances with
the state space dynamics for even more powerful modeling.
In future work, we can also consider applications of matrix

factorization besides recommendation systems. Matrix factor-
ization is used in e.g., image impainting, blind source separa-
tion, and financial modeling. With the dynamical matrix fac-
torization proposed herein, we could focus on impainting mo-
tion pictures to alleviate scratches on films, we could separate
audio sources in dynamic environments such as those needed
for hearing aids, and we could track evolving financial factor
models [29].

APPENDIX A

USEFUL FACTS FROM MATRIX THEORY

We present some useful facts for the derivations in
Appendix B [30]:

Fact 1: For ,

Fact 2:

Fact 3:

Fact 4: For square matrices and ,

Fact 5: For square matrices and ,

APPENDIX B

DETERMINING EM PARAMETERS

We now derive the EM-parameter equations given in
(17)–(21). In the maximization step of the EM algorithm,



SUN et al.: COLLABORATIVE KALMAN FILTERING FOR DYNAMIC MATRIX FACTORIZATION 3507

we solve for parameters that maximize the expected joint
likelihood:

(22)

where is the guess of the true parameter set on the th it-
eration. It is common to consider the log-likelihood to change
the products in the joint likelihood to summations; the max-
imizing parameters are the same for either optimization. The
below derivations reference proofs in [10, Chap. 13] and [31].

A. Simplification of Log-Likelihood

For CKF, the log-likelihood simplifies to

(23)

with

Using Fact 1 from Appendix A, the first term becomes

(24)

We then use the identity

and note that estimation error and innovation of a Kalman filter
are uncorrelated to rewrite the expectation of to be

(25)

We repeat the analysis for using the identity

We then rewrite the expectation of as

(26)

Expanding everything and again noting that the Kalman estima-
tion error and innovation are uncorrelated, (26) simplifies to

(27)

A similar derivation is employed for utilizing

(28)

Some care is needed in writing in since can be of dif-
ferent lengths depending on the observation tensor and hence
a subset of the noise covariance matrix is needed at each time
step. To resolve this, we define a fill function that expands the
observation vector back to and a diagonal binary matrix

with ones in the diagonal positions where rat-
ings are observed for user at time .
Currently, the formulation is extremely general and parame-

ters may change with users and in time. We can maximize with
respect to the log-likelihood but the resulting estimation would
be poor and does not exploit the possible similarities between
a population of users. To fully realize the benefits of CKF, we
make simplifying assumptions that , , ,

, and . We now move summations into the
trace operator and the log-likelihood simplifies to

(29)

(30)

(31)
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where

(32)

(33)

(34)

B. Determining , and

To maximize with respect to , we can differentiate (29), set
to zero, and solve. Using Facts 2 and 3 from Appendix A,

(35)

and solving gives

(36)

If we had further assumed that , then (29) would
simplify to

and maximization yields (17).
The derivations for and follow similarly and lead to (18)

and (19) respectively.

C. Determining and

Rewriting (30) as

(37)

where is the collection of terms that do not depend on ,
we maximize using the same procedure as for . We utilize
Facts 4 and 5 while noting that , and are symmetric
and invertible, and the maximization yields (20).
Following a similar procedure for optimization of , we ex-

press (31) as

(38)

In this case, cannot be expressed as a matrix product, but each
row can. Noting and , the maximiza-
tion over each row yields (21).
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