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Abstract—Arthroplasty, the implantation of prostheses into joints, is a
surgical procedure that is affecting a larger and larger number of patients
over time. As a result, it is increasingly important to develop imaging tech-
niques to noninvasively examine joints with prostheses after surgery, both
statically and dynamically in 3-D. The static problem is considered here,
with the aim to create a 3-D shape model of the bone as well as the prosthesis
using a set of 2-D X-rays from various viewpoints. The most important chal-
lenge to be addressed is the lack of texture, the most common feature to re-
cover shape from multiple views. In order to overcome this limitation, we
reformulate the problem using a novel multiview segmentation approach
where an active contours 3-D surface evolution with level-set implementa-
tion is used to recover the shape of bones and prostheses in postoperative
joints. The recovered shape may then be used to track 3-D motions in dy-
namic X-ray sequences to obtain kinematic information.

Index Terms—Active contours, multiview stereo reconstruction, ortho-
pedics, X-ray imaging, three-dimensional (3-D) level-set methods.

I. INTRODUCTION

Improvements in sanitation, nutrition, and treatment of infectious
disease have resulted in a significant increase in life expectancy. How-
ever, with an aging population comes degenerative disease such as os-
teoarthritis, the deterioration of joints such as the knees and hips. In
treating osteoarthritis, the final resort is arthroplasty, the implantation
of artificial prostheses. Since 1994–1995, the number of hip and knee
replacements has had a ten year increase of 94% in Australia, 87% in
Canada, and similar increases in other countries such as New Zealand,
Sweden, and the United States of America [1], [2]. In these countries,
the crude rate for knee replacement is around 100 per 100 000 individ-
uals [2].
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Fig. 1. X-ray images from rotating sensor of knee with prosthesis.

Medical imaging plays two roles in arthroplasty. The first is in per-
forming the surgery, where image guidance and automation are be-
coming routine [3]. The second is examination after surgery. During
the life of the prosthesis, it is of clinical interest to characterize kine-
matics and prosthetic positioning through noninvasive examination of
the joint [4]. We address the second, postsurgical application in this
correspondence, as it continues to become more important.

X-ray imaging is the modality of choice when examining bones and
the skeletal structure in situ. With the ultimate task being to understand
the forces at work in the joint, we would like to determine the 3-D
placement and movement of both the bones and prosthesis. This may
be decomposed into a static phase of determining 3-D shape and a dy-
namic phase of tracking under the assumption of rigid body or nearly
rigid body motion.

For the static phase, one possibility would be X-ray computed to-
mography (CT), if not for the high radiation dosage and cost incurred,
and the streaking artifacts that arise in the presence of foreign metal ob-
jects when reconstructing CT volumes using conventional image for-
mation techniques [5]. Thus, for the static phase, we turn to reconstruc-
tion from 2-D X-ray images acquired using a rotating sensor [6], [7].
A few images from such a dataset are shown in Fig. 1 for a knee joint
with prosthesis made up of a tibial plate with stem and a curved femoral
component. Such an approach involves a small amount of radiation as
well as reasonable cost if the number of views is optimized.

For the dynamic phase, available data include movie sequences of
2-D X-ray images from a single viewpoint taken while the joint is used;
some frames from a sequence of the knee are shown in Fig. 2. Using
the 3-D shape recovered from the static phase, the remaining problem
is 2-D/3-D registration and tracking, which has been addressed in the
literature, e.g., [4], [8]–[10].

The task consists of recovering an articulated deformation of the
prosthesis model such that in the image, the projection of the 3-D model
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Fig. 2. Movie sequence of flexing knee joint.

coincides with or corresponds to prosthesis-like intensity regions. The
model is to be deformed according to a parametric affine transforma-
tion. The definition of the cost function can be done either through
boundary-based techniques (minimize the image gradient along the
projection of the surface silhouette), segmentation-driven approaches
(the interior silhouette region should consist of prosthesis-like image
features), or an analysis by synthesis approach (given the viewpoint
and the relative position of the sensor, generate a view and try to mini-
mize the error between the image and the observation).

Furthermore, we can relate the two prosthesis components of the
3-D model assuming a fixed joint angle, and look for a constrained ar-
ticulation-like rotation which will provide an image projection that is
prosthesis-like in terms of visual characteristics for both components.
This is a common problem in computer vision (articulated tracking),
tractable in our case given that the estimation of parametric deforma-
tions is an over-constrained problem.

Our focus in this correspondence is on the static phase. 3-D shape
reconstruction of bones from CT volumes is well-studied, but the
problem using a small number of 2-D X-ray images from different
viewpoints has not received as much attention. The problem of 3-D
shape estimation from a set of 2-D images has received attention in
the computer vision community in the context of optical imaging
for objects such as statuettes and is given the name multiview stereo
reconstruction, see [11] and references therein. However, assumptions
relating to radiance, occlusion, etc. are included that do not necessarily
apply when dealing with X-ray imaging. The problem using X-ray
images in nondestructive testing for industrial object quality control is
considered in [12].

For 3-D bone reconstruction from a few 2-D X-rays, methods exist
that rely on fairly accurate prior shape models or atlases, e.g., [13]–[15]
and references therein. Methods such as [16], [17] need no prior infor-
mation, but perform 2-D segmentation on individual images separately
and then interpolate to form a 3-D surface. In [18], the same approach
is applied to determine the 3-D shape of the cement used to attach pros-
theses to bone. In this work, first reported in [19], we develop an active
contours formulation for the 3-D shape recovery of bones and pros-
theses. We take the specifics of the application and imaging modality
into account, do not rely on a prior 3-D shape model, and segment in
3-D from the outset rather than stitching together 2-D segmentations.

II. MULTIVIEW STEREO FROM X-RAYS

To recover the 3-D shape of bones and prostheses from X-rays, ex-
isting multiview stereo reconstruction methods cannot just be taken off
the shelf. In this section, specific features present in X-ray imaging
are discussed, followed by the proposal of a method matched to the
modality.

A. X-Ray Modality

Many characteristics differentiate X-ray imaging from optical
imaging (upon which multiview stereo reconstruction techniques are

based). If one bone is in front of another bone, there would be occlu-
sion in an optical image, but the X-ray modality shows both bones with
pixel intensities darkened in the overlap region. The effect is neither
transparency nor shadowing, but can be interpreted as something
similar. Another related feature is that the boundaries of the bones are
darker than the centers. This does not change image to image, so a
point on the surface of a bone may appear dark in one image and light
in an image from a different viewpoint. Multiview stereo techniques
based on local correspondence rely on the assumption that a point on
the surface appears the same in all of the images in which it is visible
and that radiance is locally computable [20], [21], thus not being
applicable to 3-D reconstruction of bone from X-rays.

Prostheses appear dark and exhibit no texture; consequently, local
correspondence is ill-posed for reconstructing the shape of prostheses.
Prostheses are homogeneous in image intensity, but bones are not. The
background is full of clutter and image intensities inside and outside
the bone may be very similar. Inhomogeneity in bones, background
clutter, and lack of occlusion are barriers to the direct application of
region-based variational methods such as [22] to X-ray imaging.

“Shape from silhouette,” a method for multiview stereo reconstruc-
tion that takes the intersection of cylinders or cones projected back from
silhouettes of the object in each image as its shape estimate, is well
matched to prostheses and can be applied readily, but it does not take
prior information into account [23]. Edges stand out in X-ray images
and have not been exploited much in previous work on multiview re-
construction. The edges of bones and prostheses, however, are not the
only edges in X-rays; overlapping soft tissue also induces strong edges.
Nevertheless, the use of edge features is an avenue that we pursue for
this challenging application, combined with some region-based fea-
tures and an approach inspired by shape from silhouette.

B. Multiview Geodesic Active Regions

An approach for 3-D shape reconstruction motivated specifically by
the appearance of bones and prostheses in X-rays is now presented.
Our variational method extends the 2-D geodesic active regions (GAR)
functional to three dimensions by projecting cylinders or cones in a
manner similar to shape from silhouette. Optimization is by surface
evolution implemented using 3-D level sets. We focus on the knee
joint, but the same methods may be applied to other joints that have
had arthroplasty.

A set of 2-D images ���� ��� � � � � ��� with corresponding 2-D do-
mains ��� ��� � � � � �� is given in the problem as input. Each �� has
local image coordinates ���� ���. The goal is to determine the 3-D solid
enclosed by a surface� that is depicted in the set of images. The surface
� is in � with global Cartesian coordinates ��� �� ��, or alternatively
global cylindrical coordinates �	� 
� ��. Within a 2-D plane ��, a curve
�� is parameterized by a variable �� � ��� �� and has a line element 
��.

The relationship between the global coordinates ��� �� �� and the
local image coordinates ���� ��� is assumed known or known approxi-
mately, i.e., the views or cameras are calibrated. These relationships are
given by projections �� 	 � � ��. The mappings are not invertible
in general because many different points in � project onto the same
point in ��. If the images are acquired using a rotating sensor with
viewpoints in a ring outside the leg as in Fig. 1, then each �� plane is
parallel to the global �-axis and forms an angle 
� to the �-� plane. In
perspective projection, �� is such that �� 
 �� ��
 
� � � 
�� 
�����

and �� 
 ����, where �� is the relative perpendicular depth from the
image plane ��. In parallel projection, �� 
 � ��
 
� � � 
�� 
� and
�� 
 �.

Before extending GAR to 3-D, the variational formulation is first re-
viewed in 2-D as the problem of image segmentation into two regions
� and��. The GAR functional is the convex combination of two terms,
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the geodesic active contours (GAC) functional and a region-based func-
tional: ������� � �������� � �� � ������� [24]. The GAC
functional has minima where the curve � falls along strong edges [25]

������� �
�

���������� ���� �
�

� � �����

with 	 � ��� ��. To prevent local minima and fractally solutions, often-
times a curve length penalty is also included:

������� �
�

���������� 

�

���

The region-based portion assumes some prior knowledge regarding
the image intensities of � and ��. It is assumed that pixel values are
independent given the region label and have probability distribution
function 	����
� ��� or 	� ���
� ���. The functional, a log-likelihood
ratio, is
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Starting from an initial curve, a curve evolution approach is taken to
flow towards a minimum of the functional. Using a level-set implemen-
tation with the signed distance function ��
� �� ��, the level-set update
equation is �� � � ����, with

� �
� ��

� � � �����
� ��� � 
�� �����
� ����
���
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where � is the curvature of � , and ��� �� indicates the inner product.
Reverting to the multiview problem, we would like to have one sur-

face in 3-D and evolve that surface based on information provided by
all of the images. All points on a line in 3-D map to a point �
�� ���
in 
�; our approach is to apply the GAR flow at �
�� ��� to all points
��� �� �� that project to it. The overall force applied to a point ��� �� ��
is the superposition of forces from all � images.

We construct a multiview geodesic active regions functional with a
GAC term and a region-based term. The GAC portion of the functional
is
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Making the assumption that the shape � has a pixel intensity distribu-
tion 	� when seen in an image, and the background has a distribution
	� , the region-based portion is
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Using a 3-D signed distance function ���� �� �� �� the 3-D level-set
update equation takes the form �� � � ����, with
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By ��, we mean a gradient with respect to the 
� and �� axes
of 
�. The force has effect only in the direction normal to � in
3-D. Explicitly, ����� �� ����
� � ������ �� ������ �
� �� �
������ �� ������ ��� ��, and ����� �� ������ � ����� �� �����.

The surface evolution couples information provided by each image;
individual 2-D functionals for each image extend back in a cone or
cylinder of influence in 3-D. It is in this way that the approach relates
to shape from silhouette. Occlusions are not modeled for the reasons
discussed in Section II-A.

III. PRELIMINARY RESULTS

This section shows preliminary results of multiview stereo recon-
struction of prostheses and bones using the multiview GAR approach.
Our data are X-ray image sets with different numbers of images cov-
ering the same total angle; the images are as in Fig. 1. As the sensor is
sufficiently far from the knee joint, we use parallel projection, a valid
assumption in X-ray images [26].

A. Prosthesis Reconstruction

First, the problem of recovering the 3-D shape of the femoral com-
ponent and tibial plate of the knee prosthesis is addressed, treating
soft tissue, bone, and air as background. No special initialization is re-
quired; a cube that projects to cover about half of an image is used.
Although not completely accurate, in specifying the probabilities 	�
and 	� , we take the pixels to be i.i.d. Gaussian with means �� for the
prosthesis and �� for the background with common variance. The pa-
rameters for the Gaussian, same for all � region terms, are set prior to
running the surface evolution based on pixel intensity values for pros-
thesis and nonprosthesis in the X-ray image dataset.

Several iterations of the surface evolution are shown in Fig. 3 for
� � ��, starting from the initial cube. (The figure shows triangu-
lated surfaces obtained from the implicit level-set representation by the
marching cubes method.) A very small piece of the femur along with
part of the black boundary is apparent in Fig. 3, but these pieces are dis-
joint from the prosthesis and easily discarded in Fig. 3(f). In the final
3-D reconstruction, the two pieces of the prosthesis have been recov-
ered.

In order to evaluate the segmentations, a comparison is made to a
manual segmentation of the prostheses from a CT volume of the same
patient acquired on a different day. The knee is bent differently in the
2-D X-ray dataset and the CT volume dataset, so the two components
of the prosthesis are examined separately. First a rigid registration is
performed between the multiview GAR segmentation solution and the
CT segmentation, and then symmetric volume difference is calculated.
As seen in Fig. 4, the two are of the same general shape, confirming
the validity of the solution.

Table I gives the symmetric volume difference results for different
values of � . Some of the error is due to the hollowness of the stem of
the tibial component and concavities in the femoral component that are
not visible in the 2-D images used. With more images, the general trend
is for performance to improve. The benefit of an increase in the number
of views is more significant when the shape to be recovered is not ro-
tationally symmetric. Performance on the tibial plate, the simpler and
more rotationally symmetric shape, improves from � � � to � � �
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Fig. 3. For� � ��, (a)–(e) iterations of surface evolution in raster scan order
and (f) reconstructed shape of the prosthesis.

Fig. 4. Comparison of (a) tibial plate segmentation from CT data and (b)� �

�� solution overlaid.

but then saturates. Performance on the more complicated femoral com-
ponent continues to improve from � � � to � � ��. The decrease in
performance from � � � to � � � is not significant as both solutions
are poor.

One way to look at the model selection problem of choosing � is
through criteria such as the Akaike information criterion (AIC) [27],
which trade the complexity of a model and its goodness of fit. The AIC
can be approximated by the sum of the symmetric volume difference

TABLE I
SYMMETRIC VOLUME DIFFERENCE FOR DIFFERENT VALUES OF �

Fig. 5. Approximate Akaike information criterion as a function of the number
of views � .

and �� , assuming errors are independent and distributed according to
a generalized Gaussian distribution with small shape parameter. Ap-
proximate AIC values are plotted in Fig. 5; � � �� has the smallest
AIC. For our application, the criterion is more complicated because
certain errors are worse than others and the cost and radiation dosage
associated with � must also be taken into account; the quantification
of these factors is a nontrivial task.

B. Bone Reconstruction

The pixel intensity in X-ray images of bones is not homogeneous
throughout the bone, but follows a predictable pattern. The boundary
is dark and the shading gets lighter as the distance away from the
boundary increases. In other words, pixel intensity values generally in-
crease as a function of signed distance.

When reconstructing the 3-D shape of bones, we set �� to account
for this phenomenon. We once again take �� to be Gaussian and in-
dependent among different pixels, but not identically distributed. We
put in a spatially varying mean ������ that is a function of signed dis-
tance.

The signed distance function ���� �� �� of the surface evolution is
in 3-D, but we need distances in the �� domains. Thus, the 3-D signed
distance is projected down to the plane �� as ����� �� �� for each 	.
In this work, ������ is a simple parameterized function of the form
������ � 
��
��

��� �� � with parameters set to fit pixel intensity
values in one manually-segmented 2-D X-ray.

We obtain 3-D shapes such as those in Fig. 6, treating the bone and
prosthesis as the object of interest and everything else as background.
Fig. 6(a) shows the tibia and fibula, whereas Fig. 6(b) shows the femur.
The circular fields of view in the images leave an artifact along the
boundary as part of the surface. The tibia and fibula cannot be distin-
guished in X-rays from certain angles. Consequently, they are not com-
pletely separated in Fig. 6(a).

The recovered shapes are qualitatively similar to the shapes seen in
the CT data. The solutions for bones are quantitatively worse than the
solutions for prostheses alone, which were given in Section III-A. It is
difficult to give precise numerical symmetric volume difference results
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Fig. 6. Reconstructed shape for � � �� of the (a) tibia and fibula, and (b)
femur.

here due to the boundary artifacts in the solutions. The general trend
here is also improved performance with increased � .

The main sources of error in bone reconstruction are interference
from soft tissue and the lack of consistency in bone appearance from
image to image. Obtaining the shape of the bones is more difficult than
obtaining the shape of the prostheses. Qualitative and quantitative com-
parisons between solution shapes and the CT volume suggest that there
is reason to be optimistic about the proposed approach but that there is
also much room for improvement.

IV. CONCLUSION

Our main objective in this correspondence has been to inform the
medical imaging community of an emerging and clinically important
problem. Even with a fairly simplistic active contours formulation, we
have obtained promising preliminary results. However, the comparison
to CT segmentation indicates that there is much room for improve-
ment. Reconstructing the 3-D shape of prostheses and even more so
of bones from multiple X-ray images is not straightforward. This is
caused by four factors: radiance is not locally computable; prostheses
are textureless; bones are inhomogeneous; and the background is clut-
tered. In spite of these factors, however, we feel that better results can
be obtained. Improvements may be made by including separate par-
titions for three classes: prosthesis, bone, and background, via multi-
phase segmentation, i.e., segmentation with more than two categories.
Enhancements may also be made by improving pixel intensity models
�� and �� via learning from data [28] or using generative models
based on X-ray absorption, by including shape priors in the context of
level-set representations [28], [29], or along with more efficient opti-
mization techniques from discrete optimization [30]. Instead of using
the 2-D GAR functional as a foundation for the 3-D problem, an ap-
proach that jointly optimizes pixel intensity could also be used [31].
The development of a full system including both static and dynamic
phases integrated with the inference of velocities, accelerations, and
forces is certainly within grasp.
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