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Abstract—Classification algorithms used to support the decisions of human analysts are often used in settings in which zero-one loss

is not the appropriate indication of performance. The zero-one loss corresponds to the operating point with equal costs for false alarms

and missed detections, and no option for the classifier to leave uncertain test samples unlabeled. A generalization bound for ensemble

classification at the standard operating point has been developed based on two interpretable properties of the ensemble: strength and

correlation, using the Chebyshev inequality. Such generalization bounds for other operating points have not been developed previously

and are developed in this paper. Significantly, the bounds are empirically shown to have much practical utility in determining optimal

parameters for classification with a reject option, classification for ultralow probability of false alarm, and classification for ultralow

probability of missed detection. Counter to the usual guideline of large strength and small correlation in the ensemble, different

guidelines are recommended by the derived bounds in the ultralow false alarm and missed detection probability regimes.

Index Terms—Cantelli inequality, random forests, receiver operating characteristic, reject option

Ç

1 INTRODUCTION

ENSEMBLE classification methods based on bagging,
boosting, arcing, and bacing have become first choice

algorithms for numerous signal analysts and data mining
practitioners [1], [2], [3], [4]. Automatic classification
algorithms can quickly sift through large amounts of data
that a human would otherwise have to do. For example,
consider an analyst at an information technology (IT)
outsourcing provider who must label service tickets into
categories such as network, operating system, or hardware to
analyze what problems are frequently occurring at client
installations [5]. The load on the analyst can be reduced if
an automatic classifier can accurately label many tickets. As
another example, consider an analyst at a national security
agency who must find instances of terrorist chatter in
petabytes of internet traffic to then be investigated.

In such scenarios, the classifier is used to support the
human analyst. Thus, classification requirements are
different than they would be for a classifier operating by
itself and induce objectives besides zero-one loss. Classifi-
cation with a reject option, classification for ultralow
probability of false alarm, and classification for ultralow
probability of missed detection are all relevant in decision-
support scenarios [6], [7]. If the automatic classifier can

classify half the IT service tickets with high accuracy,
rejecting the tickets on which it is uncertain and leaving
them for the analyst to manually classify, the workload of
the human is halved. An automatic classifier that identifies
chatter instances containing terrorist conversations with
modest false alarm probability would overwhelm investi-
gators who need to focus their attention on definite
instances; a classifier with ultralow false alarm probability
is thus appropriate. There are other applications in which
ultralow missed detection probability is appropriate, such
as in detecting dirty bombs. In either case, the tradeoff
between the probabilities of false alarm and missed
detection is important to take into account.

A generalization bound for ensemble classification
reported in [8] is a function of the strength and the correlation
of the ensemble, which are statistics of its margin distribu-
tion. The margin distribution has been used in developing
generalization bounds for ensemble classifiers in other work
as well [9], [10]. The strength and correlation parameters
have semantic meaning about the base classifiers: individu-
ally accurate and collectively diverse. This generalization
bound on probability of classification error (zero-one loss) is
loose, but practically it does show a strong correlation with
testing error on many real-world data sets. However, it is
only applicable to probability of classification error and
does not apply to probability of rejection, probability of false
alarm, or probability of missed detection.

As our primary contribution in this paper, we examine
the different modes of classifier operation and develop
generalization bounds for these modes. Specifically, we
develop bounds for reject option risk and for the receiver
operating characteristic (ROC) that are functions of strength
and correlation. The bounds we develop in this paper are
based on the Cantelli inequality; a key feature of the bounds
is their practical significance. Another contribution of our
work is that we show that on real-world data sets, the
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structure of the bound functions mirrors the structure of the
empirical reject option risk and ROC functions in practically
important ways that allow us to use the bounds to set the
rejection threshold or determine which ensemble to use for
low false alarm or missed detection probability. A key
finding in this paper based on the bounds we develop is
that in the ultralow missed detection and false alarm
regimes, the guidelines on strength and correlation for
optimizing performance are different than those for plain
misclassification error. Preliminary versions of this work
are reported in [11], [12].

Our contribution, practical generalization bounds on
probability of rejection, false alarm, and missed detection
for ensemble classification schemes such as bagging and
random forests have not, to the best of our knowledge, been
reported previously. Generalization bounds for these
criteria in the statistical learning theory literature are not
well suited to analyzing ensembles and are not practical.
Practical bounds for ensembles do not exist for the criteria
that arise at different operating points. Recent work on
ensemble classification with imbalanced data shares some
similarity to our work. A more detailed comparison to the
literature and discussion of the novelty of our work is
presented in the next section.

The remainder of the paper is organized as follows: In
Section 2, we further describe related work and contextua-
lize our contribution. In Section 3, we describe the setup of
the ensemble classification problem, including classification
with a reject option and classification at different false
alarm/missed detection operating points. In Section 4, we
develop and interpret bounds for the reject option risk and
for the receiver operating characteristic. In Section 5, we
present empirical results that show the value of the bounds
from a practical perspective. In Section 6, we conclude.

2 RELATED WORK

As mentioned in Section 1, ensemble classification methods
have become popular approaches among practitioners and
have consequently seen several enhancements and varia-
tions recently. Some examples reported in these Transac-
tions include orthogonalizing ensembles of decision trees
via Fourier analysis [13], dealing with drifting distributions
of data [14], [15], and including a clustering step prior to
ensemble classification [16].

The main topic of the work herein is generalization
bounds. Generalization bounds within the statistical learn-
ing theory paradigm of empirical processes (e.g., Vapnik-
Chervonenkis bounds and Rademacher bounds) have been
derived for classification with a reject option, ROC analysis,
and related nonzero-one loss classification [17], [18], [19],
[20], [21], [22]. However, these bounds are not particularly
suitable for ensemble classifiers. Additionally, it is well
known that generalization bounds derived within the
paradigm of empirical processes are not practically useful
as expressions to be optimized [23].

A stylized averaging classifier with a reject option is
presented in [24], but mainly to allow for empirical process-
based proofs. The reject option enters more as a proof
technique than anything else, and a generalization error
bound for the reject option risk is not given. It is written that

it “might be possible to adapt the theory presented in this
paper to give a rigorous analysis for the performance of
bagging and other ensemble methods” but we are not
aware of such an adaptation thereafter.

The consistency of ensemble classifiers is investigated in
[25], but the theoretical analysis therein is not for operating
points other than the standard one. Similarly, studies of
generalization for ensemble classifiers have found that
small classification error occurs when the ensemble has
high diversity (i.e., low correlation) among the constituent
base classifiers and high individual strength for the base
classifiers [8], [26], [27], [28]; however, these studies have
only examined the standard operating point as well.
Moreover, they have found that it is not possible to
simultaneously have very high diversity and very high
individual strength. Note that it is shown later in this paper
that at ultralow false alarm and ultralow missed detection
operating points, high (class-specific) diversity is not the
guideline like it is at the standard operating point.

Thus, overall, we have not seen any related work that
develops practical generalization bounds for ensemble
classification with a reject option or when either false
alarms or missed detections are very costly. There are
bounds for nonzero-one criteria from the empirical process
paradigm that are not meant for ensemble classification
such as bagging and random forests, and are not practically
useful. Also, there are practical generalization bounds and
characterizations based on strength and diversity of en-
sembles, but they are not developed for ROC analysis,
ultralow false alarm and missed detection regimes, or reject
option risk. This missing piece of the literature is where we
contribute with this work.

In research on ensemble classification with imbalanced
data carried out concurrently with ours that we became
aware of after the submission of this paper, it is found that
there are regimes in which diversity has an opposing effect
on error in the minority and majority classes [29]; the six
situations in [29, Table 3] share many similarities with the
three regions summarized in Table 1 in Section 4.3. The
similarity is not surprising because costs and priors both
appear in analogous roles in the Bayes-optimal operating
point or threshold of binary hypothesis testing [7]. Either
false alarms or missed detections having very high costs is
analogous to either negative or positive examples having
very low prior probability.

3 PROBLEM SETUP

In this section, we first give the setup and notation for
ensemble classification in general. Then, we describe the
setup for classification with a reject option and classification
at different operating points of the false alarm and missed
detection tradeoff. Finally, we describe the combination of
different operating points and a reject option.

3.1 Ensemble Classification

We consider the general supervised binary classification
problem in which class labels y 2 f�1;þ1g are to be
predicted using feature vectors x 2 X . The classification
function ŷð�Þ : X ! f�1;þ1g is learned from labeled train-
ing data drawn from a fixed distribution and applied to
new, unseen and unlabeled test vectors from the same

VARSHNEY ET AL.: PRACTICAL ENSEMBLE CLASSIFICATION ERROR BOUNDS FOR DIFFERENT OPERATING POINTS 2591



distribution. Each training and test sample is statistically
independent from the other samples.

In the specific case of ensemble classification, ŷ is
composed of base classifiers ŷið�Þ : X ! f�1;þ1g, i ¼
1; . . . ;m. The overall decision is based on the average
classification of the base classifiers. Let the average
classification of the base classifiers be the score � 2 ½�1;þ1�:

�ðxÞ ¼ 1

m

Xm
i¼1

ŷiðxÞ: ð1Þ

In the usual case, if the score is negative, then the overall
decision is ŷ ¼ �1, and if it is positive, then ŷ ¼ þ1, i.e.,
ŷðxÞ ¼ signð�ðxÞÞ. Equivalently, we classify by thresholding
the score at zero:

ŷðxÞ ¼ �1; �ðxÞ � 0
þ1; �ðxÞ > 0:

�
ð2Þ

This classification rule can also be interpreted as majority
vote.

Let us define the margin to be z ¼ y� 2 ½�1;þ1�. Due to
the special encoding y 2 f�1;þ1g, the margin is negative
for incorrect classifications and positive for correct
classifications.

3.2 Classification with a Reject Option

Classifications are most uncertain near the boundary
between the two classes, which occurs at �ðxÞ ¼ 0.
In classification with a reject option, rejections are declared
in the most uncertain regions of the feature space X , where
the score �ðxÞ is close to zero. The ensemble classification
rule with a reject option is

ŷðxÞ ¼
�1; �ðxÞ � �t
reject; �t < �ðxÞ < t
þ1; �ðxÞ � t;

8<
: ð3Þ

where t � 0 is a rejection threshold. In essence, the rejection
threshold provides a guard band or padding around the
decision regions for þ1 and �1 with the amount of padding
controlled by t, as illustrated in Fig. 1.

The margin is in the range ½�t;þt� for rejections.
Thinking of the margin as a random variable induced by
the random variables x, y, and the learned classifiers ŷi, the
probability density function of the margin is denoted fzðzÞ.
Thus, the probability of error

PEðtÞ ¼ Pr½z � �t�

¼
Z �t
�1

fzðzÞdz
ð4Þ

and the probability of rejection

PRðtÞ ¼ Pr½�t < z < t�

¼
Z t

�t
fzðzÞdz:

ð5Þ

The error probability PEðtÞ is the area of the black region
and the rejection probability PRðtÞ is the area of the gray

region in Fig. 2, an illustration of a margin distribution.
As discussed in [19], a useful measure of performance is

the reject option risk:

LcðtÞ ¼ PEðtÞ þ cPRðtÞ
¼ Pr½z � �t� þ cPr½�t < z < t�;

ð6Þ

where the cost of misclassification is 1, the cost of correct

classification is 0, and the cost of rejection is 0 � c � 1=2. This
reject option riskLcðtÞ should be small for good performance.

3.3 Classification at Different Operating Points

Classification errors come in two varieties: false alarms and
missed detections. Many classification problems have an

alarm state such as the presence of a bomb or terrorist
activity, and a nonalarm state in its absence. We associate
the class label þ1 with the alarm state and �1 with the

nonalarm state. With this association, a false alarm is when
the true label is �1 but the classifier outputs þ1, and a

missed detection is when the true label is þ1 but the
classifier outputs �1. (A detection is when the true label is
þ1 and the classifier also outputs þ1.) Often, one of the two

types of error is more costly than the other, and it is of
interest to examine their probabilities separately rather than

lumped together in an overall probability of error.
Moreover, in situations of unequal costs, it is imperative

to allow the threshold of the ensemble classification rule to

deviate from zero, cf. (2). Different thresholds trade missed
detection probability and false alarm probability, imple-
mented as

ŷðxÞ ¼ �1; �ðxÞ � t
þ1; �ðxÞ > t;

�
ð7Þ
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Fig. 1. Illustration of decision regions in feature space. The region ŷ ¼
þ1 is black, the region ŷ ¼ �1 is gray, the region ŷ ¼ reject is white, and
the boundary � ¼ 0 is the black line.

Fig. 2. Illustration of margin distribution fzðzÞ marked with rejection
threshold t. The area of the black region is the error probability PEðtÞ.
The area of the gray region is the rejection probability PRðtÞ.



where t 2 ½�1;þ1� is the classification threshold. Classifica-
tion performance, i.e., the missed detection and false alarm
probabilities, is a function of the conditional distribution of
the score � given the true class label y. Illustrations of these
conditional distributions are shown in Figs. 3 and 4.

The missed detection probability is

PMðtÞ ¼ Pr½� � t j y ¼ þ1�

¼
Z t

�1

f�jyð� j y ¼ þ1Þd�;
ð8Þ

and the false alarm probability is

PF ðtÞ ¼ Pr½� > t j y ¼ �1�

¼
Z 1

t

f�jyð� j y ¼ �1Þd�:
ð9Þ

The detection probability is

PDðtÞ ¼ Pr½� > t j y ¼ þ1�

¼
Z 1

t

f�jyð� j y ¼ þ1Þd�:
ð10Þ

The threshold t should be set closer to þ1 for costlier false
alarms and closer to �1 for costlier missed detections. The
ROC is the parameterized curve ðPDðtÞ; PF ðtÞÞ obtained by
varying the threshold t from �1 to þ1.

3.4 Classification at Different Operating Points with
a Reject Option

It is seen less often in the literature, but we can also consider
the combination of a reject option and different operating
points [30]. In this case, there are two thresholds t1 and t2,
generally not centered around zero. Without loss of
generality, let t1 � t2. The classification rule for this case is

ŷðxÞ ¼
�1; �ðxÞ � t1
reject; t1 < �ðxÞ < t2
þ1; �ðxÞ � t2:

8<
: ð11Þ

If t1 ¼ �t2, then we are back to classification with a reject
option discussed in Section 3.2. If t1 ¼ t2, then we are back
to classification with different costs for false alarms and
missed detections discussed in Section 3.3.

The probabilities to characterize performance are the
probability of missed detection, false alarm, and rejection.
Similar to before, they are

PMðtÞ ¼ Pr½� � t1 j y ¼ þ1� ð12Þ

PF ðtÞ ¼ Pr½� � t2 j y ¼ �1� ð13Þ

PRðtÞ ¼ Pr½t1 < � < t2�
¼ Pr½y ¼ þ1�Pr½t1 < � < t2 j y ¼ þ1�
þ Pr½y ¼ �1�Pr½t1 < � < t2 j y ¼ �1�:

ð14Þ

4 BOUNDS BASED ON STRENGTH AND

CORRELATION

In this section, we first provide definitions of the ensemble
properties strength and correlation. Then, we derive and
discuss bounds on the reject option risk, probability of missed
detection, probability of false alarm, and ROC that are a
function of these ensemble properties using the Cantelli
inequality. The rationale for using the Cantelli inequality is
twofold: First, it makes no distributional assumptions on the
data or the margins of constituent base classifiers, and second,
it uses only two parameters, distributional mean and
variance, leading to understandable bounds based on two
parameters, strength and correlation.

4.1 Strength and Correlation

Recall that the ensemble classifier ŷðxÞ is constructed from
base classifiers ŷiðxÞ; i ¼ 1; . . . ;m. The correlation between
two base classifiers i 6¼ j is averaged across all pairs of base
classifiers to yield the correlation:

�� ¼ 2

mðm� 1Þ
X
i6¼j

E½ŷiðxÞŷjðxÞ�: ð15Þ

It indicates how diverse the base classifiers are. The
strength is the expected value of the margin random
variable z:

s ¼ E½z�: ð16Þ

It indicates the quality of the individual base classifiers. A
relationship between the variance of the margin, the
correlation, and the strength of the ensemble shown in [8] is
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Fig. 3. Illustration of conditional score distribution f�jyð�jy ¼ þ1Þ marked
with threshold t. The area of the black region is the missed detection
probability PMðtÞ. The area of the white region is the detection
probability PDðtÞ.

Fig. 4. Illustration of conditional score distribution f�jyð�jy ¼ �1Þ marked
with threshold t. The area of the black region is the false alarm
probability PF ðtÞ.



varðzÞ � ��ð1� s2Þ: ð17Þ

Assuming that s > 0, the requirement that base classi-

fiers not be worse than random, the following bound on

generalization error is derived in [8] using the Chebyshev

inequality and (17):

Pr½y 6¼ ŷðxÞ� � ��ð1� s2Þ
s2

: ð18Þ

For small generalization error, correlation should be small
and strength should be large. In practice, correlation and
strength cannot be optimized in that way. If strength is
large, then correlation is also large. For example, if the
strength is perfectly 1, the correlation must necessarily be 1.
The bound is generally loose, but is often strongly
correlated to classification error empirically.

4.2 Bound for Reject Option Risk

We derive a bound for the reject option risk LcðtÞ involving

the strength and correlation of the ensemble. It may be

observed in Fig. 2 that

LcðtÞ ¼ ð1� cÞPEðtÞ þ cPr½z < t�: ð19Þ

We bound the probability of error term first, followed by

the Pr½z < t� term; we then combine the two.
The term PE ¼ Pr½z � �t� is to be bounded using

strength and correlation. We use the Cantelli (one-sided

Chebyshev) inequality toward this end [31]:

Pr½z� E½z� � �k� � 1

1þ k2

varðzÞ
; k > 0: ð20Þ

Letting k ¼ E½z� þ t,

Pr½z � �t� � 1

1þ ðE½z�þtÞ
2

varðzÞ

; E½z� > �t; ð21Þ

and due to (17) and the definition of s,

PEðtÞ �
1

1þ ðsþtÞ2
��ð1�s2Þ

; s > �t: ð22Þ

With base classifiers having accuracy greater than random

guessing (s > 0), s must be greater than �t and this

constraint need not be further considered.
Now, turning to the second half of the reject option risk

expression (19), again by the Cantelli inequality,

Pr½z < t� � 1

1þ ðE½z��tÞ
2

varðzÞ

; E½z� > t ð23Þ

and also

Pr½z < t� � 1

1þ ðs�tÞ2
��ð1�s2Þ

; s > t: ð24Þ

We find a bound for the reject option risk by combining

(22) and (24):

LcðtÞ �
1� c

1þ ðsþtÞ2
��ð1�s2Þ

þ c

1þ ðs�tÞ2
��ð1�s2Þ

; s > t: ð25Þ

This bound is applicable when the rejection threshold is set
below the strength of the ensemble. A threshold value greater
than the strength would mean that the classifier is rejecting

signals that are “easy” to classify and is not the regime
in which the reject option is typically employed. Results in
Section 5 show that this bound, although not tight in
difference, is quite predictive of the risk behaviors empiri-

cally exhibited by ensemble classification with a reject option.
With the goal of small reject option risk, the bound

expression (25) may be examined to determine good values
for the threshold, strength, and correlation. With fixed
rejection cost, strength, and correlation, it is straightforward

to determine a closed-form expression for the optimal
threshold value t 2 ½0; sÞ that minimizes the reject option
risk bound. It is a large polynomial expression. Thus, the
bound provides a way to set the rejection threshold, the main

free parameter in classification with a reject option.
Another analysis that may be considered is to determine

guidelines for the strength and correlation of the ensemble
with fixed rejection cost and threshold. In this analysis,

the idea is to move probability mass from the black area in
Fig. 2 to the gray area, or ideally into the white area. The
derivative of the LcðtÞ bound with respect to s is always
negative, so the guideline is to have strength as high as

possible. The derivative of the LcðtÞ bound with respect to ��

is always positive, so the guideline is to have correlation as
low as possible. The guidelines of large strength and small
correlation are the same as for plain ensemble classification

without reject option; further guidelines specific to the reject
option may be revealed by higher order analysis [32].

4.3 Bound for Receiver Operating Characteristic

We derive bounds for the detection probability, the false

alarm probability, and the ROC in this section. The
derivations follow the same pattern used in deriving
the reject option risk bound, but require us to first define
conditional strength and conditional correlation. The un-

conditional strength and correlation used in the standard
generalization bound and the reject option risk are based on
the margin distribution, illustrated in Fig. 2. The conditional
strengths and correlations required here are based on

conditional score distributions illustrated in Figs. 3 and 4.
The correlations conditioned on the true label are

defined as

��þ ¼
2

mðm� 1Þ
X
i6¼j

E½ŷiðxÞŷjðxÞ j y ¼ þ1� ð26Þ

��� ¼
2

mðm� 1Þ
X
i6¼j

E½ŷiðxÞŷjðxÞ j y ¼ �1�: ð27Þ

The conditional strengths are defined as

sþ ¼ E½� j y ¼ þ1� ð28Þ

s� ¼ �E½� j y ¼ �1�: ð29Þ

The conditional strength s� is defined as the negative
expected value of the conditional strength distribution so
that s� also equals E½z j y ¼ �1�. Thus,
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s ¼ sþ Pr½y ¼ þ1� þ s� Pr½y ¼ �1�: ð30Þ

The variance relationship of the margin distribution (17)
also holds for the conditional score distributions:

varð� j y ¼ þ1Þ � ��þ
�
1� s2

þ
�

ð31Þ

varð� j y ¼ �1Þ � ���
�
1� s2

�
�
: ð32Þ

We are now ready to bound the false alarm and detection
probabilities, as well as the ROC.

We begin with the detection probability PDðtÞ ¼ Pr½� >
t j y ¼ þ1�. Using the Cantelli inequality (20) as before,

PDðtÞ �
1

1þ ðE½�jy¼þ1��tÞ2
varð�jy¼þ1Þ

; E½� j y ¼ þ1� < t; ð33Þ

and using (28) and (31):

PDðtÞ �
1

1þ ðsþ�tÞ2
��þð1�s2

þÞ

; sþ < t: ð34Þ

This is an upper bound for the tail sþ < t. We may also get a
lower bound for the tail sþ > t also using the Cantelli
inequality, (28), and (31):

PDðtÞ �
1

1þ ��þð1�s2
þÞ

ðsþ�tÞ2
; sþ > t: ð35Þ

The same calculations give us bounds on the tails of the
false alarm probability PF ðtÞ ¼ Pr½� > t j y ¼ �1�:

PF ðtÞ �
1

1þ ðs�þtÞ2
���ð1�s2

�Þ

; �s� < t; ð36Þ

and

PF ðtÞ �
1

1þ ���ð1�s2
�Þ

ðs�þtÞ2
; �s� > t: ð37Þ

The domains over which the bounds (34)-(37) are active
delineate three intervals of the threshold:

1. t 2 ½sþ; 1�
2. t 2 ½�s�; sþ�
3. t 2 ½�1;�s��,

which correspond to three regions of the ROC, as shown in
Fig. 5. The bounds are given by region in Table 1. Region 1

corresponds to the low false alarm regime and Region 3 to
the low missed detection regime. As we will show in
Section 5, the bounds are predictive of empirical detection
and false alarm rates.

In Region 2, we have an upper bound for the ROC
abscissa PF , and a lower bound for the ROC ordinate PD.
Therefore, the two Region 2 bounds together constitute a
lower bound for the ROC when the threshold is in Region 2.
Examining the Region 2 bounds, it can be seen that at
t ¼ �s�, the PF upper bound (36) becomes 1, and that at
t ¼ sþ, PD lower bound (35) becomes zero. If we extend the
Region 2 PF bound to be 1 for t < �s� and the Region 2 PD
bound to be zero for t > sþ, then we have an implicitly
specified lower bound for the full ROC.

Let us express this lower bound for the full ROC explicitly
as a function of PF . Taking the Region 2 PF bound (36) as an
equality, we solve for the threshold t in terms of PF :

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
P�1
F � 1

��
���
�
1� s2

�
��q
� s�: ð38Þ

Substituting this expression (38) for t into the Region 2 PD
bound (35) taken as an equality, we find the following lower
bound for the ROC:

ROC � 1þ
��þ
�
1� s2

þ
�

���
�
1� s2

�
� sþ þ s�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

���
�
1� s2

�
�q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�1
F � 1

q0
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for t > sþ and zero otherwise.
Let us define the parameters

�M ¼
��þ
�
1� s2

þ
�

ðsþ þ s�Þ2
ð40Þ

�F ¼
���
�
1� s2

�
�

ðsþ þ s�Þ2
ð41Þ

and simplify to obtain the ROC lower bound:

ROC �
0; PF �

�F
�F þ 1

1

1þ�M 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F

�
P�1
F
�1
�q� ��2 ; PF >

�F
�F þ 1

8>><
>>:

: ð42Þ

Note the functional similarity between �M and �F , and the
zero-one generalization error bound (18).

For zero-one generalization error and reject option risk,
we found that small �� and large s are guidelines for good
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Fig. 5. Illustration of ROC split into Region 1: t 2 ½sþ; 1�, Region 2:
t 2 ½�s�; sþ�, and Region 3: t 2 ½�1;�s��.

TABLE 1
Generalization Bounds on False Alarm

and Detection Probabilities



performance. Looking at the ROC, it is desired that for a
given threshold, the false alarm probability be small and the
detection probability be large. In the Region 2 bounds
shown in Table 1, we see that for small false alarm
probability, ��� should be small and s� should be large.
For large detection probability, ��þ should be small and sþ
should be large. The guidelines in Region 2 for the
conditional strengths and correlations are analogous to the
guidelines for zero-one error and reject option risk, but may
not be easily achieved in practice because large strength
necessitates large correlation.

Notably, however, the guidelines in Regions 1 and 3 are
not analogous. Examining the bounds in Table 1, we see
that in Region 1, ��þ should be large rather than small for
large detection probability, and in Region 3, ��� should be
large rather than small for small false alarm probability. As
has been discussed earlier, Region 1 is the low false alarm
regime and Region 3 is the low missed detection regime.
Thus, improving detection probability in the low false
alarm regime and improving false alarm probability in the
low missed detection regime are not of most interest.

We see that the ROC lower bound function (42) goes to
zero as PF goes to �F=ð�F þ 1Þ and is zero for small values as
well. To push this function to the left, which corresponds to
improvement in the ultralow false alarm regime, we would
like �F to be as close to zero as possible. In the definition of
�F (41), both conditional strengths appear, but only the
negative conditional correlation appears. The guideline for
ultralow false alarm probability from the definition of �F is
small ��� and large sþ and s�. Very large strength and very
small correlation cannot be achieved simultaneously, but
since ��þ is not in the definition of �F , we can make the
correlation of the positive class high to get the strength of the
positive class high for ultralow false alarms.

Correspondingly, to push the ROC up in the low missed
detection regime, we would like �M to be as close to zero as
possible. In its definition (40), there is no negative class
correlation. Thus, for ultralow missed detections, the guide-
line is to make the correlation of the negative class high to
get the strength of the negative class high. Together, the
guidelines for ultralow false alarms and ultralow missed
detections are unlike the guidelines for zero-one loss. In
these regimes, correlation is not to be kept small for one of
the two classes: Base classifiers should not be fully diverse.

It is straightforward to derive bounds based on the
Cantelli inequality for the combined formulation of differ-
ent operating points and reject option presented in Sec-
tion 3.4 in the same manner shown for the reject option and
operating points formulations separately. What remains to
be shown is that the bounds are predictive of empirical
behavior. Providing guidelines on strength and correlation
based on the bound functions is one thing. Showing that the
guidelines transfer over to empirical behavior is another,
and one we tackle in the following section.

5 EMPIRICAL RESULTS

In this section, the similarity between the bounds derived
in Section 4 and the empirical versions of those classifica-
tion performance quantities are examined on real-world
data sets from the UCI Machine Learning Repository [33].

Specifically, we look at the SPECTF heart data set in which
the task is to classify patients as normal or abnormal using
single proton emission computed tomography image
features, and the Parkinsons data set in which the task is
to diagnose Parkinson’s disease from biomedical voice
measurements. The SPECTF heart data set has 44 features
and 267 samples. The Parkinsons data set has 22 features
and 197 samples. The ensemble classifier that we consider
is the random forest classifier [8]; we use the Matlab
statistics toolbox implementation TreeBagger.

5.1 Reject Option Risk

We first examine the reject option risk using default
parameter settings of TreeBagger.1 Specifically, we look at
the reject option risk as a function of the rejection threshold
for different rejection cost values, and also at the risk-
minimizing threshold as a function of cost.

We look at the Parkinsons data set first. In the medical
diagnosis setting, it is useful for an automatic classification
algorithm to have a reject option, allowing for further tests
on difficult to classify patients. We train eleven random
forests, each composed of 500 classification trees, with
different random seeds on the data set, and obtain the out-
of-bag margin distribution. We calculate the empirical reject
option risk as a function of the rejection threshold and plot
it in Fig. 6.2

For the different cost values shown, c ¼ 0:15; 0:30; 0:45,
the shape of the risk function is different. In particular, the

2596 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 11, NOVEMBER 2013

Fig. 6. Comparison of (a)-(c) empirical and (d)-(f) analytical bound of
reject option risk as a function of rejection threshold for three different
values of rejection cost on the Parkinsons data set.

1. Defaults include using the full input data to sample with replacement,
using the square root of the number of features to select at random for each
decision split, and having a minimum of one observation per tree leaf.

2. All plots are mean values based on the 11 random forests with
different random seeds.



threshold that minimizes the risk is small, intermediate, and
large for the respective costs. Fig. 6 also plots the risk bound
derived in Section 4.2 for the different cost values. The risk
bound functions mirror the empirical risk functions in
shape. Additionally, the minimizing threshold of the bound
is close to that of the empirical reject option risk.

To examine this further, we plot the minimizing thresh-
old of the risk as a function of the cost in Fig. 7. This
function, both the empirical and bound versions, is seen
to be nonincreasing: The higher the cost of a rejection, the
smaller the rejection region in feature space, cf. Fig. 1. The
bound version jumps to s at a particular small value of c
because the LcðtÞ function becomes monotonically decreas-
ing in t at that value of c. It is especially enlightening that
the minimizing threshold of the bound is quite predictive of
the empirical minimizing threshold. Setting the rejection
threshold is an important task in practice. Due to the
predictive quality of the bound that has been derived in this
paper, the bound may be used to set the threshold for a
given cost value.

The second data set examined is also from the medical
domain, specifically heart disease. For this data set also,
11 random forest classifiers containing 500 trees with
different seeds are learned. We give the same plots for the
SPECTF heart data set as for the Parkinsons data set in
Figs. 8 and 9. The same features of the empirical risk and
risk bound are seen, the most important of which is again
that the bound may be used to set the rejection threshold.

Due to the small number of samples in both the
Parkinsons and SPECTF data sets, there are few distinct
risk-minimizing empirical thresholds in Figs. 7 and 9. As an
example with a larger number of samples and distinct
thresholds, we also give results for the spambase data set, in
which the task is to determine whether an e-mail is spam:
an unsolicited, commercial message. In the e-mail setting, it
is useful for a spam filter to have a reject option, allowing
the e-mail recipient the opportunity to decide whether a
particular message that is difficult to classify is spam. The
measurements upon which the spam filter makes its
determination are 54 percentages that report the fraction
of a message that matches a particular word or character,
and three counts related to runs of capital letters. The data
set contains 4,601 samples and we use 50 trees per random
forest, again with 11 random forests.

Plots for the spambase data set corresponding to those
for the Parkinsons and SPECTF data sets are given in

Figs. 10 and 11. The match in structure between the
empirical reject option risks and their bounds is striking
here too, and the predictive quality of the bound on the risk-
minimizing threshold is more apparent.

5.2 Receiver Operating Characteristic

Having seen the predictive quality of the derived bounds on
reject option risk, we now turn to empirical validation of the
ROC bounds. To investigate the ROC bounds empirically,
we create different ensembles by varying the number of
features that are randomly sampled per classification tree
node in the random forest. As with the reject option, we use
the default values from TreeBagger for all parameters of
the random forest besides the number of features per node.
Varying the number of sampled features changes the
conditional strengths and correlations, as shown in Fig. 12
for the SPECTF heart data set. Consequently, the parameters
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Fig. 7. Rejection threshold that minimizes risk as a function of rejection
cost, empirically (red line) and on the analytical bound (black line) for the
Parkinsons data set.

Fig. 8. Comparison of (a)-(c) empirical and (d)-(f) analytical bound of
reject option risk as a function of rejection threshold for three different
values of rejection cost on the SPECTF heart data set.

Fig. 9. Rejection threshold that minimizes risk as a function of rejection
cost, empirically (red line) and on the analytical bound (black line) for the
SPECTF heart data set.



�F and �M also change as a function of the number of

sampled features.
In Fig. 13, we plot the empirical ROCs and ROC bounds

for the three different regions delineated in Section 4.3. In
Region 1, the low false alarm region, we see that the random
forest that samples one feature per node provides the best
performance and the performance is progressively worse as
we increase the number of sampled features per node. This
ordering in the empirical results is reproduced by the
bound. In Region 2, it is again the random forest with one
feature per node that is superior and 15 features per node
that is inferior. The shape of the bound functions matches
the shape of the empirical ROCs in this region quite well. In
Region 3, the low missed detection region, we see that there
is a crossover from the forest with one feature per node
being best to it being worst, and the forest with 15 features
per node going from the worst to best. This crossover occurs
in the bound functions as well.

This crossover can be understood by examining �F and

�M . For small numbers of sampled features, �F is less than
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Fig. 10. Comparison of (a)-(c) empirical and (d)-(f) analytical bound of
reject option risk as a function of rejection threshold for three different
values of rejection cost on the spambase data set.

Fig. 11. Rejection threshold that minimizes risk as a function of rejection
cost, empirically (red line) and on the analytical bound (black line) for the
spambase data set.

Fig. 12. Conditional (a) strengths and (b) correlations (negative: gray

line; positive: black line), (c) �F , and (d) �M as a function of the number

of features per node in the random forest for the SPECTF heart data set.

Fig. 13. Comparison of (a)-(c) empirical ROC and (d)-(f) bound for

different numbers of features per random forest node (black ¼ 1, light

gray ¼ 15) in Regions 1 (a, d), 2 (b, e), and 3 (c, f) with the SPECTF

heart data set.



�M , and the opposite for large numbers of sampled features.
These parameters show that small numbers of sampled
features are preferred in the low false alarm regime and
large numbers of sampled features are preferred in the low
missed detection regime.

Fig. 14 shows the conditional strengths and correlations,
�F , and �M as a function of the number of features sampled
at each classification tree node for the Parkinsons data set.
In these plots, it is seen that �F and �M are minimum at
intermediate numbers of features sampled per node. The
empirical ROC and ROC bound are shown in Fig. 15. For
the Parkinsons data set, essentially the entire ROC is in
Region 2 [11], so only the Region 2 ROC is shown.

In the figure, we can see that the ensemble with one
feature per node is inferior, but also that the ensemble with
15 features per node is not the best. An intermediate random
forest provides the best performance. This ordering is
reflected in the bound functions as well and is also reflective
of �F and �M being minimum at intermediate values.

In the empirical examples given here, we see qualita-
tively that the bounds are quite predictive of the relative
performance of ensembles having different conditional
strengths and correlations. This predictive quality is
quantified by Prenger et al. [11]; a similarity metric is
defined by computing the correlation coefficient between
the empirical PF and its bound across the varying number
of features sampled per node of the classification tree in
the random forest at 10,000 uniformly distributed thresh-
old values between �1 and þ1. Similarly, the correlation
coefficient is calculated between the empirical PD and its
bound. The average of these 20,000 correlation coefficients
is taken as the similarity and is repeated for 101 random
forests with different random seeds. The similarity is
found to be 0.6676 for the SPECTF heart data set and
0.5004 for the Parkinsons data set, both with statistical
significance of level 0.01.

6 CONCLUSION

In this paper, we derive generalization bounds on the reject
option risk, probability of false alarm, probability of missed

detection, and ROC for ensemble classifiers. These bounds

are derived using the Cantelli inequality based on inter-

pretable statistics of the ensemble margin distribution, the

strength and correlation. The bounds are not tight in

absolute value, but nevertheless have predictive value.
As we show on real-world data sets, bound functions

mirror their empirical counterparts in structure and thus
are useful to set rejection thresholds, rank ensembles with
different characters, and provide guidelines for ensemble
choice. Somewhat counterintuitive guidelines are revealed
in the ultralow false alarm and ultralow missed detection
regimes: Correlation conditioned on the positive class
should be increased without penalty to improve false alarm
probability and correlation conditioned on the negative
class should be increased without penalty to improve
detection probability. This is in contrast to the typical
guideline of desiring small correlation, which is what is
desired for zero-one loss, reject option risk, and classifica-
tion performance in Region 2.

In future work, it would be of interest to extend the ROC
analysis to allow us to use the derived bounds in setting the
classification threshold in a Neyman-Pearson setting [7]. It
would also be of interest to develop generalization error
bounds for ensemble classifiers used to learn severely
imbalanced data [34] and connect such bounds to the
analysis of [29].
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