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Évolution de Surface pour 3-D Reconstruction de Forme
de la Prosthétique et des Os du Genou Joignez

Résumé : Le problème de la reconstruction multi-vue stéréo est étudié avec une application
à la imagerie médicale. En particulier, la forme 3-D des os et des dispositifs prosthétique
dans les patients ayant eu la chirurgie totale de remplacement de genou doit être récupérée en
utilisant une collection de rayons X acquis des points de vue multiples. Après avoir décrit
des méthodes existantes pour le multi-vue stéréo, les acceptations de ces techniques sont
discutées en même temps que la modalité de formation image et les objets étant re�ètents.
Une brève vue d'ensemble des méthodes de courbes de niveau suit. Une nouvelle évolution de
surface formulation est présentée que l'informations de frontière et de région d'utilisations.
L'exécution emploie de courbes de niveau. Les résultats sont donnés pour les données
synthétiques et le vraies données de rayon X.

Mots-clés : courbes de niveau, imagerie rayon X, reconstruction multi-vue stéréo, régions
actives géodésiques
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4 Varshney & Paragios

1 Introduction

Aging populations and degenerative disease such as osteoarthritis go hand in hand. The
last option in treating osteoarthritis of the knee is total knee replacement, also known as
total knee arthroplasty, a surgery in which arti�cial prosthetics with components made of
metal are implanted into the joint. In the drawings of Fig. 1, the left side shows the knee
joint before surgery and the right side shows the knee joint after surgery. Fig. 2 contains a
schematic diagram of the two pieces of the prosthetic.

The kinematics of the knee are very complex; today's prosthetics can replicate them to
a large degree, but not completely. Patients are living longer after knee replacement and
have higher expectations for the prosthetics than ever before. For longevity and functional
performance, one factor is precise implant positioning [1]. To characterize the kinematics
and positioning of prosthetics in the knee, it is of post-operative interest to observe the joint
non-invasively, both statically and dynamically.

One of the oldest forms of medical imaging and the original form of radiology, X-ray
or Röntgen ray radiography, is a fast, relatively inexpensive, and e�ective technique for
obtaining images of the human skeletal structure. It is often used in the diagnosis of bone
fractures, for example. X-ray radiation is passed through the body; some of the radiation
reaches a detector on the other side, while the rest is attenuated. Di�erent materials have
di�erent attenuation properties. Air and soft tissue of the body are radiolucent, meaning
that they allow X-rays to pass through, whereas bone and metal are radiopaque, meaning
that they do not allow X-rays through. The image accompanying the original announcement
of the discovery of X-rays by Röntgen, shown in Fig. 3, illustrates these radiopacity ideas.
The picture is of a hand wearing a ring; the bones and metal ring have an opposite shading
to the soft tissue and air.

In our work, we use a collection of X-ray images taken from di�erent viewpoints around
the knee joint to determine a three-dimensional (3-D) model of �rst, the prosthetic compo-
nents, and afterwards, of the bones as well. This 3-D shape extraction can be considered
as a �rst stage of a larger system that registers [3] and tracks the prosthetics and bones in
a dynamic sequence of two-dimensional (2-D) images of the joint. However, the 3-D shape
recovery problem is interesting in and of itself.

One may ask why computed tomography (CT) technology is not used for this task.
X-ray radiography is less expensive and exposes the patient to less radiation than CT,
but more signi�cantly, streaking artifacts arise in the presence of foreign metal objects
when CT volumes are reconstructed using conventional techniques [4]. (Work is ongoing in
the development of statistically-based advanced image formation techniques that mitigate
artifacts [5].) Even if a 3-D volume of voxels were available, the task of extracting the shape
of the prosthetic and bones would still remain. In this light, we approach the problem as
stereoscopic reconstruction from many views.

This technical report is organized as follows. Sec. 2 discusses a number of approaches to
the problem of reconstructing 3-D shape from 2-D images acquired from di�erent viewpoints,
paying particular attention to the assumptions required for their e�ectiveness and which of
these assumptions apply to X-ray images. Sec. 3 provides background material on level set
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Figure 1: Before (left) and after (right) drawings of total knee re-
placement surgery. Image from MedilinePlus Medical Encyclopedia
(http://www.nlm.nih.gov/medilineplus/ency/imagepages/9494.htm).

Figure 2: Diagram of knee prosthetic device. Image from Joint Replacement Center at
Florida Hospital Celebration Health website (http://www.celebrationjointreplacement.com).
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6 Varshney & Paragios

Figure 3: The �rst X-ray image (1895). Image from Glasser [2].

methods. Sec. 4 comes back to the problem at hand: recovering the shape of prosthetics
and bones from X-ray images. Taking the peculiarities of X-ray images into account, an
approach using active contours is suggested. The section shows results on synthetic and real
data. Sec. 5 provides a brief summary and describes future directions of research.

2 3-D Shape Recovery

Estimating 3-D shape from a set of 2-D images is something humans do every waking second,
in particular from the two images produced by our eyes. A number of techniques have been
developed in the computer vision community to do the same. A large body of literature
exists focused on the problem with exactly two images taken from very similar viewpoints
(like the human vision problem). However, in this section we survey approaches to the
problem with a large number of images from disparate viewpoints, the so-called multi-view

stereo reconstruction problem, as this is the problem we encounter in the knee imaging
application. A thorough qualitative and quantitative comparison of various techniques may
be found in [6]. In this section, a common notation, which is also used in the other sections
of the report, is de�ned �rst, followed by descriptions of di�erent techniques.

Laboratoire MAS
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2.1 Notation

A set of 2-D images I = {I1, I2, . . . , IN} with corresponding 2-D domains Ω1, Ω2, . . . , ΩN

is given in the problem as input. Each Ωi has local image coordinates (ui, vi). The goal
is to determine the 3-D solid enclosed by a surface S that is depicted in the images of I.
The surface S is in R

3 with global Cartesian coordinates (x, y, z). The space may also be
described using cylindrical coordinates (r, θ, z) or spherical coordinates (ρ, θ, φ). The area
element on the surface is taken to be dσ.

The relationship between the global coordinates (x, y, z) and the local image coordinates
(ui, vi) is assumed known or known approximately, i.e. the views or cameras are calibrated.
These relationships are given by projections πi : R

3 → Ωi. The mappings are not invertible
in general because many di�erent points in R

3 project onto the same point in Ωi. The
speci�c form for projections is discussed later. The coordinate axis in 3-D perpendicular to
the plane Ωi is taken to be wi. Within a 2-D plane Ωi, a curve Ci is parameterized by a
variable si ∈ [0, 1] and has a line element dsi. If the context requires only one 2-D plane,
then the subscript i may be dropped.

2.2 Hull-Based Techniques

A number of techniques for reconstructing 3-D shape from 2-D images are based on the
concept of the visual hull. The visual hull of a 3-D shape S is the largest shape V for which
shape silhouettes in πi(S) and πi(V ) match for all i [7]. A silhouette is a binary image that
is black for the subset of Ωi that a 3-D shape maps to and white elsewhere. Thus, the visual
hull is a property of S, the viewpoints of I, and the type of projection used. The visual hull
always contains the shape and can be tighter than the convex hull of the shape [8].

In [7] and [8], silhouettes of S in I are used to compute the visual hull; consequently
they are e�ective for texture-less surfaces (silhouettes have no texture). The method of
[7] discusses both perspective projection and parallel projection. A cone, in the case of
perspective, or cylinder, in the case of parallel, with cross-sections in the shape of the
silhouette in Ii is extended out along the wi axis. Taking the intersection of all N such
cylinders or cones produces the visual hull. The approach in [8] operates completely in
image spaces Ω for computational reasons, but the underlying theory is along the same
lines.

Whereas the visual hull is based on silhouettes that lack texture and shading, a di�erent
hull de�ned in [9], the photo hull, makes use of scene radiance and is a subset of the visual
hull. Radiance is an indicator of how bright or what color a surface appears to be when
viewed from a particular direction. Under the restriction that radiance is locally computable
and thus does not include shadows, transparency, or inter-re�ections, the photo hull is
de�ned as the largest collection of points p in R

3 that meet the photo-consistency criterion,
to be stated next. Considering a single image, Ii, p is photo-consistent if it is visible, i.e. in
the �eld of view and unoccluded, and the brightness or color Ii (πi(p)) matches the radiance.
The entire shape is photo-consistent in Ii if all visible points are photo-consistent, and the
shape is photo-consistent overall if the radiance function can be assigned such that the shape
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8 Varshney & Paragios

is photo-consistent in all images of I. The largest photo-consistent shape is the photo hull.
The basic idea is that the shape and radiances of the photo hull should project to match
the images I, in much the same way as the shape of the visual hull should project to match
silhouettes in the images I. The space carving algorithm of [9] �nds the photo hull; a
probabilistic version of space carving also exists [10].

Recapitulating, the true shape in R
3 is a subset of the photo hull, which is a subset of

the visual hull, where by subset, we do not necessarily mean proper subset. Of course, the
goal is to determine the true shape, so taking either hull as an estimate for the true shape
is conservative. Using either the visual hull or the photo hull, the recovered 3-D shape is
the largest shape that meets the constraints set by I. Thus, it takes no prior information,
for example about smoothness or geometry, into account. A di�erent class of methods
reconstruct the 3-D shape by �nding the shape that minimizes an energy functional which
may incorporate prior information into its design. These methods are discussed in the next
section.

2.3 Variational Techniques

The photo-consistency conception described above makes use of local information; there is a
correspondence among all of the projections of the same global point. The correspondence is
directly connected to the restrictions on the radiance being locally computable. A variational
method proposed in [11], making similar assumptions about radiance, also looks at local
correspondence, giving preference to solutions whose projections exhibit the correspondence
property.

In variational techniques, a cost functional is written such that its minimum or maximum
expresses the desired goals. The functional proposed in [11] is as follows:

E(S) = −
∫∫
S

N∑
i,j=1,i �=j

〈Ii, Ij〉
|Ii| · |Ij |dσ, (1)

where the 〈Ii, Ij〉 is a cross-correlation type measure, but speci�ed in such a way that
projective geometry and occlusions are taken into account. Thinking like Riemann, as the
integral rasters through all of the area elements dσ, if the current area element corresponds to
a global coordinate (x, y, z), then the pixel values chosen from the images are Ii(πi(x, y, z))
and Ij(πj(x, y, z)), but only if the area is not occluded in that image. There are other
technical details in the work, but this description su�ces for our purposes.

The point to note is that this correlation-based technique relies on the assumption that
a point on the surface should appear the same in all of the images if it is visible. For
e�ectiveness, there should be some texture on the surface because otherwise, all points look
the same and the problem is ill-posed. We do not discuss the method of solution here, but it
involves �nding the �rst variation of the cost functional and performing an iterative gradient
�ow using level set methods.

In contrast to the cost functional of [11], which is based on local correspondence, in [12],
the functional takes on a more region-based �avor. One key ingredient in the formulation is
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that the background is treated like `blue sky,' i.e. it is homogeneous, behind everything, and
far away. Also, the surface of the object is assumed to be homogeneous. The method �nds
the radiance of the background g, the radiance of the surface f , and of course the surface
itself S. The cost functional is the sum of three terms, a geometric term, a smoothness term,
and a data term. The geometric term is:

Egeom(S) =
∫∫
S

dσ, (2)

the smoothness term is:

Esmooth(S, f ,g) =
∫∫
S

‖∇f‖2dσ +
∫∫
B

‖∇g‖2dΘ, (3)

and the data term is:

Edata(S, f ,g) =
N∑

i=1

∫∫
πi(S)

(
f
(
π−1

i (ui, vi)
) − Ii(ui, vi)

)2
dui dvi +

∫∫
πi(S)c

(g (Θ(ui, vi)) − Ii(ui, vi))
2
dui dvi, (4)

where B is the background and Θ is projection to the background. The geometric prior
prefers surfaces with small surface area, i.e. smooth surfaces. The smoothness term relates
to the radiances f and g and the desire that they not vary too much. Unlike the correlation-
based method discussed earlier in this section, the data term here does not compare points
between pairs of images for consistency, but instead integrates the match of the entire region
in the reconstruction to the input images. Like the previous functional, this functional also
accounts for occlusions, manifested in the region of integration πi(S). Also as before, the
functional is minimized using level set methods, but the details are omitted here. The
next section considers the assumptions of the various multi-view stereo methods discussed
heretofore in the context of X-ray imaging.

2.4 Existing Techniques and X-Ray Imaging

The multi-view stereo reconstruction problem in computer vision has traditionally been
posed in the context of optical imaging for objects such as statuettes. Consequently, as-
sumptions relating to radiance, occlusion, etc. have been built in that do not necessarily
apply when dealing with X-ray imaging.

Let us look at a typical X-ray image, shown in Fig. 4; a number of characteristics should
be noticed. First of all, getting oriented, the two dark pieces are the two metal components
of the prosthetic. The other leg can be seen on the periphery.

Focusing on the red rectangle, the tibia ought to occlude the �bula according to the
geometry, but the X-ray modality, which sums values through the line of projection, shows
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10 Varshney & Paragios

Figure 4: An X-ray image of a knee joint that has prosthetics. The femur (thigh bone) is
on the top. Characteristics to notice are highlighted. In the red rectangle, one bone behind
another does not result in occlusion. In the green rectangle, the prosthetic has no texture
whatsoever. In the blue rectangle, a strong edge delimits the bone, but in the cyan rectangle,
there is another strong edge in the background. The two magenta rectangles, one inside the
object of interest and the other outside have almost identical intensities.

Laboratoire MAS
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both bones with pixel intensities darkened in the overlap region. Clearly, radiance is not
locally computable in the manner required for determination of the photo hull. The e�ect is
neither transparency nor shadowing, but can be interpreted as something similar. Another
related feature seen in the image is that the boundaries of the bones are darker than the
centers. This does not change image to image, so a point on the surface of a bone may
appear dark in one image and light in an image from a di�erent viewpoint, especially one
90◦ apart in θ. Due to these e�ects, local correspondence is not a reliable feature for 3-D
reconstruction of bone, and space carving and the variational method of [11] are not suitable.

Now, looking at the prosthetic components and speci�cally the region outlined in green,
it can be seen that there is no texture at all. Consequently, local correspondence once
again cannot be used because with no texture it is ill-posed. The visual hull computed from
silhouettes, however, is well matched to the prosthetics and can be applied readily. The only
drawback with the visual hull is that it cannot take prior information into account. If there
were a good way to determine the silhouette of the bones, then it would be possible to get
the visual hull of the bones as well, but that task is not trivial.

The assumption made by the stereoscopic segmentation approach of [12] that the surface
of the object be homogeneous applies to the prosthetic portion, but not to the bone. The
background is clearly nothing like `blue sky.' Further complicating matters, the image
intensities inside and outside the object are very similar in places, for example within the
two magenta rectangles.

Edges, such as seen inside the blue rectangle, are one feature that stands out in X-ray
images. Edges have not been exploited enough in previous work on multi-view reconstruc-
tion. Unfortunately, the edges of bones and prosthetics are not the only edges in the image;
the edge inside the cyan rectangle is caused by the boundary of the overlapping region of soft
tissue from the two legs. Nevertheless, the use of edge features seems like a possible avenue
to pursue for this application along with an approach inspired by the silhouette-based visual
hull.

3 Level Set Methods

The level set approach for representing evolving contours was pioneered by Osher and Sethian
in [13]. Used to obtain solutions to partial di�erential equations (PDEs) numerically, level
set methods have found application in many di�erent �elds including computer vision. This
section discusses the main idea of the approach, how the calculation of certain geometric
properties of the evolving contour is simpli�ed within the framework, and �nally technical
details related to implementation. A nice introduction to the topic, with more details than
we give here, may be found in [14]; for a comprehensive discussion, one is referred to [15].

3.1 Main Idea

A contour � a closed curve in the plane or surface in space � is often represented paramet-
rically or by a collection of control points that lie on the contour. The level set approach,
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12 Varshney & Paragios

however, breaks away from this paradigm and instead, constructs a function ϕ that is zero
on the contour and only on the contour. The contour is the zero level set of ϕ. Given a
particular level set function ϕ, the contour C it describes is unique. For contours that evolve
as a function of time, C(t), the corresponding level set functions also evolve with time; this
is discussed in greater detail below.

To help understand the level set concept, an analogy with the Hawaiian islands is useful
[16]. The elevation of the land, both underwater and above water can be considered as the
level set function ϕ(u, v), and sea level as the zero level. The coastlines of the landmasses
that emerge out of the water are the curve C. Over time, the elevation can increase or
decrease locally, changing the coastline. If the land rises up very high, two islands can
merge and if there is sinking, one island may split into more than one island. Also, `almost'
islands which are peaks but not above sea level, can rise and create new islands. Level set
methods naturally handle changes in topology to the contour C. The analogy is almost
perfect except for one detail regarding sign, which is expounded as the level set function is
formalized.

Let us consider an open region R ∈ R
n with closure R̄1 that may or may not be simply

connected and has boundary C = R̄−R. The region and its boundary change as a function
of time t. The level set function ϕ(x, t), x ∈ R

n satist�es the following properties:

ϕ(x, t) < 0,x ∈ R(t); (5)

ϕ(x, t) > 0,x /∈ R̄(t); (6)

ϕ(x, t) = 0,x ∈ C(t). (7)

In the analogy, the sign of the level set function inside and outside the region R was reversed.
Many di�erent functions can be used for the level set function ϕ(x), but a common choice
is the signed distance function which measures Euclidean distance from the point x to the
closest point of the boundary, but assigns a positive or negative sign to the value depending
on whether x is inside or outside the region R.

3.2 Using Level Set Methods in Variational Problems

Now that the level set function has been de�ned, let us discuss how level set methods are
applied to variational problems. Limiting ourselves to curves in the plane, common energy
functionals come in two forms: those de�ned on the boundary and those de�ned on the
region. The functional de�ned on the boundary is:

Eboundary(C) =
∫ 1

0

g(C(s))ds, (8)

whereas the functional over the region is:

Eregion(C) =
∫∫
R

f (u, v) du dv. (9)

1In later parts of the report, we are less precise and consider R to be the inside and Rc to be the outside.
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The functions f and g are arbitrary and the above functionals are to be minimized. At all
local minima, the calculus of variations tells us that the �rst variation of a functional is zero.
The �rst variation of the boundary functional is:

δEboundary (C)
δC

= − (κg − 〈∇g,n〉)n, (10)

where n is the unit normal vector to C in the plane, κ is the curvature of C, and 〈·, ·〉 is the
standard inner product. When δE

δC is set equal to zero, this is an Euler-Lagrange PDE. To
approach a minimum starting from some initial curve, we move in the gradient direction.
As an evolution or �ow with a time parameter t, the change in the curve C is:

∂C

∂t

(boundary)

= (κg − 〈∇g,n〉)n. (11)

Similarly, the �rst variation and gradient �ow for the region functional are:

δEregion (C)
δC

= fn, (12)

and:
∂C

∂t

(region)

= −fn, (13)

respectively. We do not delve into �rst variation calculations here, but they may be found
in many references including [17].

Now �nally coming to level set implementation, the two above curve �ows translate
directly to signed distance function update equations. The two respective updates are:

ϕ
(boundary)
t = (κg − 〈∇g,n〉)n, (14)

and:
ϕ

(region)
t = fn. (15)

In the context of level set functions, the calculation of n and κ are simpli�ed as discussed
in the next section.

3.3 Calculation of Geometric Quantities

One appealing feature of level set functions is the ease with which geometric quantities of
the contours they represent, such as the normal vector and curvature, may be calculated.
The unit normal n to the contour in any dimension is the normalized gradient of the level
set function:

n =
∇ϕ

|∇ϕ| (16)
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14 Varshney & Paragios

In three dimensions, the gradient of the level set function is:

∇ϕ =




∂ϕ
∂x
∂ϕ
∂y
∂ϕ
∂z


 ≡


ϕx

ϕy

ϕz


 , (17)

and can be approximated by �nite di�erences:

∇ϕ(x, y, z)|(x0,y0,z0) ≈




ϕ(x+
0 ,y0,z0)−ϕ(x−

0 ,y0,z0)
2

ϕ(x0,y+
0 ,z0)−ϕ(x0,y−

0 ,z0)
2

ϕ(x0,y0,z+
0 )−ϕ(x0,y0,z−

0 )
2


 , (18)

where we indicate the previous sample by a minus sign superscript and the next sample by
a plus sign. Other types of discrete approximations to derivatives can also be applied, but
in our work, we use the above �nite di�erences.

Similarly, the curvature κ is also a simple function of the level set function:

κ = −∇ ·
( ∇ϕ

|∇ϕ|
)
. (19)

If we approximate second partial derivatives as follows (example given for x direction):

∂2ϕ

∂x2
≡ ϕxx(x0, y0, z0) ≈ ϕ(x+

0 , y0, z0) − 2ϕ(x0, y0, z0) + ϕ(x−
0 , y0, z0), (20)

and mixed partial derivatives as:

∂2ϕ

∂x∂y
≡ ϕxy(x0, y0, z0) ≈ ϕ(x+

0 , y+
0 , z0) − ϕ(x+

0 , y−0 , z0) − ϕ(x−
0 , y+

0 , z0) + ϕ(x−
0 , y−0 , z0)

4
,

(21)
(and similarly for the other two mixed partials), then κ is explicitly [18]:

κ =

ϕ2
xϕyy + ϕ2

xϕzz + ϕ2
yϕxx + ϕ2

yϕzz + ϕ2
zϕxx + ϕ2

zϕyy − 2ϕxϕyϕxy − 2ϕxϕzϕxz − 2ϕyϕzϕyz

2
(
ϕ2

x + ϕ2
y + ϕ2

z

)3/2
.

(22)

These expressions can be further simpli�ed by noting that with the choice of the signed
distance function as the level set function, the Eikonal PDE |∇ϕ| = 1 applies.

3.4 Implementation Details

In this section, we note a few details concerned with the implementation of level set methods.
An initial contour is required, which is then evolved to minimize some cost, but specifying
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Figure 5: A few examples of the real image data from rotating sensor of human knee with
attached prosthetic device.

the initial contour does not give an initial level set function. One way to get a level set
function, speci�cally a signed distance function, is to make use of the Eikonal PDE. A map
indicating the initial contour just through negative values inside and positive values outside
can be made into a signed distance function through the following update:

ϕt = sign(ϕ) (1 − |∇ϕ|) , (23)

which is derived from the Eikonal PDE. This is the approach we follow. During the contour
evolution process, updates do not keep a signed distance function as a signed distance
function and periodic reinitializations are necessary, using the same update (23).

Another detail in implementation relates to the fact that the level set function exists over
the entire domain, even though it only comes into play near the zero level set. Updating the
entire level set function is wasteful, especially when dealing with three or higher dimensions.
In our work, we only update the level set function in a narrow band around the zero level
set.

4 Shape Reconstruction of Knee Prosthetic and Bone

We have already seen one data image in Fig. 4, which looks straight on at a leg. In fact, all
of the images we use have viewpoints that are in a ring outside the leg, having been acquired
using a rotating sensor. Each Ωi plane is parallel to the global z-axis and forms an angle
θi to the x-z plane. The mental picture to have is of images pasted on a cylinder, where
the knee is inside the cylinder and the cylinder extends along the z-axis. A few more of the
images are shown in Fig. 5.

The θi are known approximately, but we assume in our work that these approximate θi

are true. Parallel projection is a valid assumption in dealing with X-ray images [19]; hence,
we assume πi is such that ui = x cos θi + y sin θi and vi = z.

In this section we state our surface evolution based approach, starting only with edge-
based terms, and then building up to incorporate region-based terms. Results are shown
within each subsection.
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4.1 Edge-Based Functional

The approach we take is to construct a cost functional and iteratively evolve an initial surface
with a gradient �ow to minimize the functional, using a level set representation for the surface
evolution. For now, the cost functional is composed of a sum of N two-dimensional edge-
based terms; later, we also consider region-based terms. Edges are considered because of
their presence and importance in X-ray images.

The geodesic active contour cost functional in two dimensions EGAC(C) has minima
where the curve C falls along strong edges in an image I [20]. The cost functional is:

EGAC (C) =
∮

C

g (C(s)) ds, (24)

where g is given by:

g (|∇I|) =
1

1 + |∇I|p , p ∈ [1, 2]. (25)

We use this geodesic active contour functional as a foundation for a functional in 3-D.
As seen in Sec. 3.2, this functional leads to the following level set update:

ϕt =
(
κg −

〈
∇g,

∇ϕ

|∇ϕ|
〉)

|∇ϕ|. (26)

In practice with geodesic active contours, a `balloon' force is also included to prevent local
minima and the curve evolution becomes:

ϕt =
(
κ(g + c) −

〈
∇g,

∇ϕ

|∇ϕ|
〉)

|∇ϕ|, (27)

where c is a scalar constant.
Writing ϕt = F |∇ϕ|, the force function F in expanded form is:

F (u, v) = κ(u, v) (g(u, v) + c) − 1√
ϕu(u, v)2 + ϕv(u, v)2

[
gu(u, v)
gv(u, v)

]T [
ϕu(u, v)
ϕv(u, v)

]
. (28)

Coming to the problem in three dimensions, we construct the following cost functional:

N∑
i=1

∮
Ci

g (Ci(si)) dsi, (29)

where g is as above. Proceeding as above with a signed distance function ϕ(x, y, z; t), we
end up with the following level set update:

ϕt =
N∑

i=1

(
κ(gi + c) −

〈
∇igi,

∇iϕ

|∇iϕ|
〉)

|∇ϕ|, (30)
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Figure 6: The �rst 5 images of the sliced ellipsoid example.

where by ∇i, we mean a gradient with respect to the ui and vi axes of Ωi. The force has
e�ect only in the direction normal to S in 3-D. Then,

F (x, y, z) =
N∑

i=1

κ(x, y, z) (g(ui, vi) + c) −
[
gui

(ui, vi)
gvi

(ui, vi)

]T [
ϕui

(x, y, z)
ϕvi

(x, y, z)

]
, (31)

where we have omitted the normalization factors in front of the normal vectors for the pur-
poses of clarity. Explicitly, ϕui

(x, y, z) = ϕx(x, y, z) cos θi+ϕy(x, y, z) sin θi, and ϕvi
(x, y, z) =

ϕz(x, y, z).
In general (ui, vi) are not integers and we can either round or take the �oor of the

indices, or interpolate the value. Although not included here, it may make sense to weigh
the di�erent images di�erently if for example θ is not sampled uniformly (however that is
not the case with our dataset).

Although the surface evolution couples information provided by each image in I, one
mental picture is of a cylinder extending back along wi as the region in 3-D that image Ii

has in�uence. It is in this way that the approach relates to visual hull calculation. Occlusions
are not modeled for the reasons discussed in Sec. 2.4.

We now use the above surface evolution on some synthetic examples. The �rst example
is an ellipsoid with a slice perpendicular to the major axis missing; it is not aligned to any
of the global coordinate axes. We create N = 16 images spaced 0.4 radians apart, that
are similar to a prosthetic appearing in an X-ray image. The �rst �ve images are shown
in Fig. 6. We use a large cube completely outside of the object as an initial surface. The
surface evolution is shown in Fig. 7. Di�erent views of the last iteration of Fig. 7 are shown
in Fig. 8. The extracted 3-D shape is fairly good in that it accurately represents the original
synthetic shape.

The same thing is done for a di�erent shape, a sphere with a cylindrical bite taken out.
Fig. 9 through Fig. 11 correspond to Fig. 6 through Fig. 8 for this example. In this case, the
reconstructed 3-D shape is still fairly good, but not as good as the previous example. There
is leakage through some edges. We address this shortcoming by introducing region-based
terms in Sec. 4.2.

In Fig. 12, a visualization of the implicit signed distance function ϕ(x, y, z) at an inter-
mediate iteration is shown, where the top left part of the �gure looks along the z-axis, the
top right part looks along the y-axis and the bottom left part looks along the x-axis. We see
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Figure 7: Iterations of the surface evolution in raster scan order.

Figure 8: Di�erent views of the 3-D reconstruction.

Figure 9: The �rst 5 images of the sphere with a cylindrical bite example.
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Figure 10: Iterations of the surface evolution in raster scan order.

Figure 11: Di�erent views of the 3-D reconstruction.

Figure 12: Visualization of signed distance function at intermediate iteration.
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Figure 13: Some sample images of the two stacked cylinders.

Figure 14: Surfaces with increasing N from left to right.

that the limited number of views, i.e. N = 16, create some artifacts, which are also visible
in the surface evolutions shown in Fig. 7 and Fig. 10. The �gure may remind some readers
of CT reconstructions with undersampled measurements. In general, this is a similar e�ect,
but the details are slightly di�erent.

Using a di�erent shape, a thin cylinder stacked on a wide cylinder, we show the e�ect
of N , i.e. di�erent numbers of images. Some sample data images are given in Fig. 13. We
use three di�erent values of N along with di�erent θ spacings. The �rst has N = 2 images
and the views are 1.52 radians apart; the second uses N = 12 images with a θ spacing of
0.56 radians; whereas the third has N = 28 images 0.24 radians apart. This is by no means
a detailed study into the e�ect of N , but the resulting surfaces are shown in Fig. 14. As
the number of views is increased, the resulting surface is smoother and more circular as one
would expect.

Through these examples, we have seen both that our proposed surface evolution is a
step in the right direction and that we need something more. The surface leaking through
the true boundary on an example with a benign background is a strong indication that the
method, as is, does not work with real data, and in fact it does not. Results from real data
are di�cult to even interpret. In the next section, region-based terms are introduced that
allow shape extraction from real X-rays.

4.2 Region-Based Terms

In 2-D, problems with curves not stopping at weaker edges and situations in which regions
are not separated by edges led to the development of the geodesic active regions functional
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[21]. In the same way as the geodesic active contour functional was the foundation for our
3-D edge-based functional, we use the geodesic active regions functional to build a 3-D edge-
and region-based functional.

The geodesic active region approach assumes that some knowledge regarding the image
intensities of the two regions, the inside R and outside Rc, is known a priori. The assump-
tion is that pixel values are independent given the region and have probability distribution
function either pR(I(u, v)) or pRc(I(u, v)) depending on the region. The geodesic active
regions energy functional includes an edge term as well as a region term. Taking the edge
term to be EGAC of equation (24), the functional is:

EGAR (C) = αEGAC+(1−α)


−

∫∫
R

log (pR(I(u, v))) du dv −
∫∫
Rc

log (pRc(I(u, v))) du dv


 .

(32)
The parameter α ∈ [0, 1] trades o� the contributions of the edge and region terms. Based
on Sec. 3.2 and Sec. 4.1, the force function F is:

F (u, v) = α

(
κ(u, v) (g(u, v) + c) − 1√

ϕu(u, v)2 + ϕv(u, v)2

[
gu(u, v)
gv(u, v)

]T [
ϕu(u, v)
ϕv(u, v)

])

+ (1 − α) (− log (pR(I(u, v))) + log (pRc
(I(u, v)))) . (33)

The sign of the outside part of the region term is reversed because the inward normal of Rc

is the outward normal of R.
Continuing on to the 3-D extension, in the same manner as the previous section, we

compose an overall functional as the sum of individual 2-D functionals for each image in I
that extend back in a cylinder of in�uence. Here, the assumption is of the shape S having
an intensity distribution pR and the background having an intensity distribution pRc .

α

N∑
i=1

∮
Ci

g (Ci(si)) dsi

+ (1 − α)
N∑

i=1

−
∫∫

πi(S)

log (pR(Ii(ui, vi))) dui dvi −
∫∫

πi(S)c

log (pRc(Ii(ui, vi))) dui dvi. (34)

The force function in this case is:

F (x, y, z) = α

N∑
i=1

κ(x, y, z) (g(ui, vi) + c) −
[
gui

(ui, vi)
gvi

(ui, vi)

]T [
ϕui

(x, y, z)
ϕvi

(x, y, z)

]

+ (1 − α)
N∑

i=1

− log (pR(Ii(ui, vi))) + log (pRc
(Ii(ui, vi))) . (35)
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Figure 15: Iterations of the surface evolution in raster scan order.

Figure 16: Di�erent views of the 3-D reconstruction.

To obtain the 3-D shape of the prosthetics from the real X-ray data, although not
accurate, we assume Gaussian distributions for pR and pRc with di�erent means µR and
µRc . N = 16 images with an approximate spacing of 0.038 radians in θ are used and
the images are slightly blurred beforehand. The surface evolution is shown in Fig. 15 and
di�erent views of the �nal surface are shown in Fig. 16. A very small piece of the femur
along with part of the black boundary is apparent in Fig. 15, but these pieces are disjoint
from the prosthetics and easily discarded in Fig. 16. In the �nal 3-D reconstruction, the two
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(a) (b)

Figure 17: 3-D reconstructions of (a) tibia and �bula, and (b) femur.

pieces of the prosthetic have been recovered; they are correct visually. We should note that
with this edge-region surface evolution, the �nal reconstructions of the synthetic examples
of the previous section are also improved. By lifting the geodesic active regions functional
to 3-D, homogeneous objects are reconstructed.

4.3 Intensity Distribution In Region

The pixel intensity in X-ray images of bones is not homogeneous throughout the bone, but
follows a predictable pattern. The boundary is dark and the shading gets lighter as the
distance away from the boundary increases.

A spatially varying mean function, µR(di), is applied to the Gaussian probability distri-
bution for the inside region R in the edge-region surface evolution. Since the signed distance
function in the 3-D surface evolution ϕ(x, y, z) is in 3-D, to get a distance di for the argument
of µR, the 3-D signed distance is projected down to the plane Ωi for each i:

di = ϕ(x, y, z) sin

(
∂ϕ(x,y,z)

∂x cos θi + ∂ϕ(x,y,z)
∂y sin θi

|∇ϕ(x, y, z)|

)
. (36)

Results using a spatially varying mean are shown in Fig. 17. The recovered tibia and
�bula are shown in Fig. 17a, and the femur in Fig. 17b. The circular �elds of view in the
images leave an artifact of a thin layer along the boundary as part of the surface. The tibia
and �bula are not completely separated because they cannot be distinguished in X-rays from
certain angles. Obtaining the shape of the bones is more di�cult than obtaining the shape
of the prosthetic; the results show promise however.
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Figure 18: Movie sequence of �exing knee joint.

5 Conclusion

In this report, we have looked at a challenging problem in computer vision with an important
clinical application. Reconstructing the 3-D shape of metal prosthetics, but even more so
of bones from multiple X-ray images is not straightforward due to the fact that radiance is
not locally computable, the prosthetics exhibit no texture, the bones are not homogeneous,
and the background is cluttered. We have proposed an approach using active contours, 3-D
surfaces in particular, that uses edge and region information in the 2-D data images to direct
surface evolution.

The procedure can be considered similar to constructing the visual hull from silhouettes,
but has a coupling e�ect among images, has regularization built in, and o�ers an opportunity
to incorporate prior information in both 2-D and 3-D. To account for the lack of homogeneity
in the bones, a distribution of image intensity as a function of distance from the surface has
been incorporated.

Results acquired thus far have been fairly successful at reconstructing the 3-D shape
of the metal prosthetics. Results with bones are promising but can be improved through
more sophisticated modeling of the intensity distribution in bones, building upon the simple
formulation that has been attempted; one way to do so is by learning from data [22]. An-
other direction for improving the formulation is to include shape priors. Also, multi-phase
segmentation, i.e. partitioning space into more than two regions, may be considered. The
actual surface evolution may be carried out using Sobolev active contours [23].

Beyond 3-D shape reconstruction, the medical application suggests another problem,
namely tracking the movement of the bones and prosthetics in a movie sequence, also from
the X-ray modality, and inferring their kinematics. As an example of such a sequence,
some frames of a knee that is bending are shown in Fig. 18. 3D-2D rigid body registration
and tracking are di�cult problems which will be complicated by the same imaging issues
discussed in this report, as well as others such as motion blur.

X-ray radiography is an exciting, medically relevant, and challenging domain that brings
forth issues for computer vision methods not encountered with other imaging modalities.
Some of these issues have been looked at in this report, but the surface has just been
scratched; there are many opportunities for advances within X-ray imaging.
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