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ABSTRACT

Topological signal processing, especially persistent homology, is a
growing field of study for analyzing sets of data points that has been
heretofore applied to unlabeled data. In this work, we consider the
case of labeled data and examine the topology of the decision bound-
ary separating different labeled classes. Specifically, we propose a
novel approach to construct simplicial complexes of decision bound-
aries, which can be used to understand their topology. Furthermore,
we illustrate one use case for this line of theoretical work in kernel
selection for supervised classification problems.

Index Terms— Graph walk, persistent homology, simplicial
complex, supervised classification, topological data analysis

1. INTRODUCTION

Topology is the mathematical study of shape. Topological sig-
nal processing is finding application in many different domains
and problems, including multiple target detection and localization,
tracking in water pollution analysis, testing for admixture in pop-
ulation genetics, shape recognition in computer vision, and testing
for quasi-periodic signals in respiratory disease monitoring [1, 2, 3].
These applications and the broader theory and practice of topologi-
cal data analysis begin with a point cloud of unlabeled data in some
space [4]. To the best of our knowledge, there is no existing work on
topologically analyzing data when the data points come with labels.

In this paper, we investigate data sets with class labels, in which
the most important shape is the shape of the boundary between the
classes. Known as the decision boundary, this boundary between
classes is precisely what is learned by supervised classification algo-
rithms [5]. The shape of the decision boundary, rather than the shape
of the individual class-conditional point clouds, is what determines
the complexity of a data set [6].

The primary topic in topologically studying data sets is persis-
tent homology. The main steps in a persistent homology analysis
are treating each data point as a node in a graph, connecting nearby
nodes with edges where nearby is according to a scale parameter,
forming complexes from the simplices formed by the nodes and
edges, and examining the topology of the complexes as a function
of the scale parameter. The topological features such as connected
components, and holes and cavities of various dimensions that per-
sist across scales are the ones that capture the underlying shape of
the data set.

When we attempt to investigate the topology of the decision
boundary of a labeled data set, we need to change the procedure
for connecting nearby nodes and for forming complexes. All other
parts of persistent homology analysis can remain unchanged. Specif-
ically, since the decision boundary lies between the classes (subject
to noise), we initially only connect nearby nodes of different labels

with edges. However, such cross-label edges can only produce sin-
gle points and line segments as simplices, not triangles, tetrahedrons,
and so on. Therefore, we also introduce edges along walks of length
2 in the graph that start and end at nodes of different labels. With
these additional edges, we can achieve higher order simplices and
capture the topology of the decision boundary through persistent ho-
mology.

As mentioned earlier, decision boundaries arise most often in the
context of classification problems. Many classification methods rely
on kernel representations for obtaining nonlinear boundaries in the
space of the input data set point cloud, but choosing the right kernel
is often still a trial-and-error process. As one use case for topologi-
cal analysis of decision boundaries, we examine the kernel selection
problem. Specifically, we examine radial basis function (RBF) ker-
nels and polynomial kernels in the context of support vector machine
classifiers. We take advantage of the fact that the scale in persistent
homology has an intimate relationship to the scale of the RBF. Also,
since the decision boundary is an algebraic variety when polyno-
mial kernels are used, we take advantage of relationships between
the polynomial orders of algebraic varieties and quantifications of
topological features [7].

The remainder of the paper is organized as follows. In Section 2,
we provide background information on persistent homology of (un-
labeled) data sets. In Section 3 we propose the modifications needed
to the usual topological data analysis procedure in order to examine
the shape of the decision boundary. Section 4 presents the applica-
tion to kernel selection. We present empirical results on synthetic
and real-world data sets in Section 5. Section 6 is the conclusion.

2. BACKGROUND ON PERSISTENT HOMOLOGY

Consider a set of T data points in R™: X = {x1,...,xr}. A set
of points by itself has no shape per se, but if the points are viewed
as samples from some shape, then the set of points reveals the un-
derlying shape. We would like to estimate and approximate the
topology of that shape by constructing a simplicial complex from
the points and examining the topology of the simplicial complex.
A zero-dimensional simplex is a point, a one-dimensional simplex
is a line segment, a two-dimensional simplex is a triangle, a three-
dimensional simplex is a tetrahedron, and so on; a simplicial com-
plex is a set of simplices glued together in a particular way. Specif-
ically, a simplicial complex S = (X, %), where X is a family of
non-empty subsets of X’ such that each subset o € X is a simplex.
Furthermore, the following condition must also hold: ¢ € ¥ and
7 C o implies that 7 € 3. In forming these non-empty subsets of
points that form a simplex, we only consider subsets of points that
are close to each other. There are various notions of closeness that
we come back to later in this section.

Topology, being the study of shape, is primarily concerned with
the number of connected components and the number and dimen-
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Fig. 1. (a) Noisy data samples from an underlying circle in 2-
dimensional space, (b) persistence diagram for Hy, (c) persistence
diagram for H;.

sion of holes that an object has. The Betti numbers characterize the
connectivity as follows. The zeroth Betti number [y is the number
of connected components, the first Betti number /37 is the number
of one-dimensional holes or circles, the second Betti number (s is
the number of two-dimensional voids or cavities, and so on. For
example, a torus or inner tube has By = 1 because it is just one com-
ponent, 81 = 2 because of the main hole through the middle and the
hole formed when looking at a cross-section, and 2 = 1 because of
the cavity of the inner tube. Betti numbers for simplicial complexes
are defined in the same way. Formally, 8 (S) is the dimension of
the kth homology group of the complex Hy (S) [4].

Various approaches exist for constructing simplicial complexes
from &X. All of these depend on a scale parameter e (also referred
to as time) which specifies the extent of closeness of points. In the
Cech complex éech(X ,€), a simplex is created between a set of
points G if and only if there is a non-empty intersection of the closed
Euclidean balls B(x;, ¢/2), Vi € G. In the Vietoris-Rips (VR) com-
plex, VR(X, €), a simplex is created if and only if the Euclidean dis-
tance between every pair of points is less than e. Efficient construc-
tion of the VR complex can proceed by creating an e—neighborhood
graph, also referred to as the one-skeleton of S. Then inductively,
triplets of edges that form a triangle are taken as two-dimensional
simplices, sets of four two-dimensional simplices that form a tetra-
hedron are taken as three-dimensional simplices, and so on.

Homological inference depends on the scale parameter (time)
at which the complexes are constructed. The topological features of
the simplicial complex S constructed from the data points A" that are
stable across scales, i.e. that are persistent, are the ones that provide
information about the underlying shape. Topological features that
do not persist are noise. Persistence diagrams are representations of
the birth and death times of each homology cycle corresponding to
each homology group Hy, k = 0,1, ..., i.e. for increasing values of
the scale parameter, the € value at which a topological feature begins
to exist and ceases to exist.

As an example, let us consider the point cloud X shown in
Fig. 1(a), with noisy samples drawn from a circle, which has Betti
numbers fp = 1, 1 = 1, and B, = 0 for £k > 1. At the value
€ = 0, the simplicial complex that is formed from X is a collection
of all the individual points not connected to any other point, resulting
in the birth of 7" topological features in the Hy persistence diagram
shown in Fig. 1(b). As the scale increases, all of these little features
die and only one persists until the largest scale under consideration;
thus the persistent 5o = 1. Looking at the H; persistence diagram
in Fig. 1(c), we see that the only feature that is born persists until the
largest scale and thus the persistent 51 = 1. It is born at approxi-
mately a scale parameter of 0.2, which is when all of the points have
been connected into a ring in the simplicial complex.
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Fig. 2. (a) A simplicial complex with two 2-simplices from a
bipartite graph between circle and square classes generated using
length—2 walks (dotted lines), (b) a complex created with one 3-
simplex using the same approach.

3. SKELETONS AND SIMPLICIAL COMPLEXES FOR
DECISION BOUNDARIES

As we discussed in the introduction, we are dealing with point
clouds with labels. For simplicity, let us consider the binary
case with the labels y € {—1,+1} so that we have the pairs
{(x1,41),..., (xr,yr)}. In order to understand the topology of
the decision boundary that separates the classes +1 and —1, we will
first consider neighborhood samples across the classes.!

We first connect nodes x; and x;, i # 7, if y; # y;, and x; €
N (x;) or x; € N(x;) [8]. One neighborhood we consider is the
e-neighborhood N, in which case the neighborhood membership is
symmetric. The result of this procedure is a bipartite graph between
the classes with unweighted adjacency matrix A. The diagonal of A
is all zeroes.

In bipartite graphs, the only possible simplices are points and
line segments. Higher-dimensional simplices such as triangles and
tetrahedrons are not possible since there are no edges between in-
terclass samples. To allow us to better capture the topology of
the decision boundary, we would like to also include such higher-
dimensional simplices. We also add edges arising from graph
walks of length two, which introduces intraclass edges and there-
fore higher-dimensional simplices. To construct the adjacency
matrix with the length two walks, which we denote A, we first take
(A +1T)? and then change all nonzero values to one to preserve the
unweighted nature of the graph. To illustrate the procedure, we show
two simple examples in Fig. 2. In the first example, we start with
three points in a two-dimensional space where all points are within
€ of each other. Two share a class label and are thus not initially
connected by an edge. The initial graph A has two line segment
simplices. After including the graph walk, an intraclass edge is
introduced. Now A has a triangle simplex. The second example is
similar, but has four points in three-dimensional space, with three
of the four points sharing a class label. Here we form a tetrahedron
after introducing the length two graph walk edges.

We define the graph encoded by A to be the one-skeleton of the
simplicial complex. Hence, a simplex of dimension ( + 1) is induc-
tively included in the simplicial complex if all of its 7-dimensional
faces are included. Using existing methods for unlabeled data sets,
we can then calculate the persistence diagrams and Betti numbers
from the resulting simplicial complexes at different scales.

"Multiclass extensions can consider the decision boundaries in one-
against-one, one-against-all, and Venn diagram constructions [5].



SVM decision boundary (¢ = 0.1677)
¥ w ¥
*

R
e Ty

Simplicial complex of decision boundary (¢ = 0.1677)

*

(2) (b)

Accuracy with Validation Data Accuracy with 10-fold Cross Validation

0.8

14 4
@ ©
e
2

e
S

Classification Accuracy
Classification Accuracy

o
o

Scaling factor Scaling factor

(a) (b)

Non-trivial Betti 0 Count Non-trivial Betti 0 Count

Simplicial complex of decision boundary (¢ = 0.2947)

i = ¥ 5 F
—

*
1, - .
. +
06 + + )
X . X
+ + %
* + 4 x 3
s IR 4
0.4] * /++ ¥ g, e T .
L

. o P
*5 w4 : "
02 PR for
et o N e _
[ 02 04 06 08 1 .
© (d)

Fig. 3. (a) SVM decision boundary at optimal ¢ (RBF kernel), (b)
one-skeleton at optimal € inferred by our method, (c) one-skeleton at
smaller €, and (d) one-skeleton at larger €.

4. APPLICATION TO KERNEL SELECTION

A common task when dealing with labeled data sets is learning a
classifier that generalizes. Classifiers are defined by their decision
boundaries, which are often represented as the zero level sets of ker-
nel representations. Although there are existing methods for choos-
ing a kernel, the process is still very much an art rather than a sci-
ence. In this section, focusing on the Gaussian RBF kernel and the
polynomial kernel, we comment on how topological data analysis of
decision boundaries, as we have described in the paper thus far, can
be used in the kernel selection process.

First let us give the Gaussian RBF and polynomial kernel repre-
sentations. The general form of a kernel representation is:

T
Fo0) = aik(xi,x), (1)

where «; are coefficients. The set {x|f(x) = 0} is the decision
boundary and §(x) = sign (f(x)) is the classifier. With the Gaus-
sian RBF kernel, k(x;,x) is exp (||x; — x||*/ (2€%)) and with the

polynomial kernel, k(x;,x) is (x; x + 1)d.

The € in the RBF kernel is a scale parameter akin to the scale
parameter in persistent homology. We conjecture that values of ¢ at
which topological features of the decision boundaries persist are also
optimal values for the € of the RBF kernel. We examine this further
empirically in Section 5.

The decision boundary obtained from a polynomial kernel repre-
sentation, i.e. its zero level set, is an algebraic variety. An algebraic
variety is defined in general as the set of solutions of a system of
polynomial equations. There exist relationships between Betti num-
bers, and the polynomial degree d and dimension of the space n of

2Being the early stages of topological data analysis research, using per-
sistent homology for kernel selection is not currently computationally com-
petitive but may become so with further development.
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Fig. 4. (a)-(b) SVM accuracy, (c)—(d) non-trivial Sy, and (e)—(f) S1
for circle (left) and Haberman (right). Arrows indicate optimal €.

algebraic varieties in the literature [7]. One example of such a result
is that if the polynomial degree is less than or equal to d, then [9,
Thm. 2]:

[eo]

> B <d(2d—1)"" @)

k=0
The contraposition of this statement is that if the sum of the Betti
numbers of the decision boundary is greater than d(2d — 1)" %, we
will require a polynomial kernel with degree greater than d. Thus
we can select an appropriate polynomial degree through topological
data analysis of the decision boundary. For example, if the decision
boundary in a two-dimensional space is a circle, so that the sum of
the Betti numbers is 2, we will need a polynomial order greater than
1.2807, i.e. at least a quadratic (d = 2) kernel after taking the ceiling,
to be able to learn the decision boundary.

5. EMPIRICAL RESULTS

We perform topological analysis on decision boundaries of four data
sets. In the first data set, circle, each point is sampled uniformly
from [0, 1]? and labeled —1 if within a circle centered at (0.5, 0.5)
with radius 0.1, and labeled +1 otherwise. A noisy version of this
construction, noisy circle, is created by randomly assigning a label to
points in the annular region between radii 0.06 and 0.14. We create
250 samples each for training and validation in both data sets. The
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Fig. 5. (a) SVM accuracy, (b) non-trivial 8y, and (c) 31 for ESL
mixture. Arrows indicate optimal e.

third data set, Haberman from the UCI machine learning repository
[10], represents the survival of patients after breast cancer surgery
and has 3 covariates and 306 samples. The fourth data set, ESL mix-
ture from [11], has 100 samples per class; we also create a validation
set for this data with 10, 000 samples using the generating distribu-
tions provided.

We first validate the ability of the proposed approach to infer the
optimal € for the RBF kernel. For circle, the optimal € for SVM with
RBF kernel is 0.1677 and the decision boundary is shown in Fig.
3(a); clearly it has Bp = 1 and 81 = 1. The simplicial complex
at the same scale obtained using the proposed approach is shown
in Fig. 3(b); it has the same Betti numbers. Furthermore, visual
inspection shows that the simplicial construction approximates the
decision boundary closely. Note that the ‘+’s and ‘x’s denote sam-
ples of the two classes and the lines that connect them indicate the
one-skeleton from which the complex is formed. The constructions
for two other scales (¢ = 0.0954,0.2957) are shown in Figs. 3(c)
and 3(d), demonstrating the progression of the complex from lower
to higher scales. The total number of simplices are 313, 5690, and
137926 for the three € values in increasing order.

The classification accuracies and Betti numbers for various e
values are shown for circle and Haberman in Fig. 4. The plotted
count of By excludes the contribution of zero-simplices of the com-
plex (stand-alone samples), and hence truly represents the number
of connected components in the decision boundary complex. The
€ at which the non-trivial 8y becomes constant after the initial rise
and fall is the optimal scale chosen by our method. The reasoning
behind this is that the non-trivial /3y initially increases as the deci-
sion boundary complex is formed (Fig. 3(c)), but simplices eventu-
ally merge at some scale (Fig. 3(b)) to create stable features for the
decision boundary complex. These features persist, e.g., in circle
the Betti numbers {1, 1} persist from ¢ = 0.1677 to e = 0.2947,
reflecting the true topology of the decision boundary.

In both data sets, the ¢ computed using the proposed procedure
coincides with the optimal e value for the kernel SVM. For circle,
the optimal e value is 0.1677 using both SVM validation data and
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Fig. 6. (a) Upper bound on sum of Betti numbers for polynomi-
als, (b) classification accuracy for circle with various polynomial
degrees.

our topological method. For Haberman, the optimal e value is 7.197
using both tenfold cross-validation and our method. The non-trivial
Bo = 1 and B = 1 at this e. Note that 31 does not persist for more
than one scale value and can be construed as topological noise. Sim-
ilarly for noisy circle, the optimal € value is 0.1389 via both SVM
validation and our approach. As in circle, the non-trivial Sp = 1 and
B1 = 1 near the optimal scale. Finally, on ESL mixture, the optimal
€ using SVM validation is 0.6251 and the proposed approach yields
an optimal € of 0.4292, yielding a loss in accuracy of just 0.0037.
The Betti numbers obtained are {1, 1} and again /3, represents noise
since it does not persist.

We consider determining the degree of polynomial kernels from
the decision boundary’s topology as the second application of our
method. The upper bound on the sum of Betti numbers for various
data dimensions is shown for several polynomial degrees in Fig. 6(a).
For linear kernel (d = 1), the upper bound is 1 for all dimensions,
which means that for a linear kernel to work, the decision bound-
ary has to be a single connected component with no higher order
topological features. The figure also shows that complex decision
boundaries with many connected components and holes can be mod-
eled using higher order polynomial kernels. In circle, 32, Bi = 2,
and hence by (2), we need at least a second order kernel. The accu-
racies plotted in Fig. 6(b) justify this choice, since a degree 1 kernel
does not achieve high accuracy but degree 2 and higher do.

6. CONCLUSION

We proposed a novel approach to construct simplicial complexes of
decision boundaries in labeled data sets and estimate their topol-
ogy through persistent homology. One application of this work is
to prescribe kernels for classifying the labeled data set. This initial
work opens the door to interesting future research directions in un-
derstanding and visualizing labeled data, and also in model selection
for other classification approaches. Another possible research direc-
tion is investigating the effect of corrupted data, outliers, and random
projection on estimates of decision boundary topology [12].
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