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ABSTRACT

We propose a novel decision tree algorithm for modeling function-
valued responses. This algorithm partitions the feature space into
homogeneous subpopulations with common dose-response signals
using a splitting criterion based on Nadaraya–Watson kernel regres-
sion and the Cramér–von Mises statistical test. We formulate an
important business problem of sales team composition within the
dose-response framework. Experimental results on generated and
real-world sales data show the efficacy of the approach.

Index Terms— Business analytics, Cramér–von Mises test, cus-
tomer relationship management, decision tree, kernel regression

1. INTRODUCTION

Dose-response signals show the average behavior of patients in
response to varying amounts of treatment. Such signals arise in
medicine and biology, but also in statistical economics and business
analytics [1, 2]. For example, in examining pulmonary function in
response to environmental exposure, respirable dust concentration is
the dosage and volume of air exhaled in one second of forced expi-
ration the response. In examining welfare-to-work programs, hours
of job assistance services is the dosage and labor market earnings
the response.

In a business analytics application that motivated our work, we
were presented with the problem of determining the best sales team
composition to approach a client opportunity. There are typically
two types of sellers in sales organizations: client-facing sellers that
focus on developing relationships with customers and technical sell-
ers that provide details about products; sales teams can be composed
of different ratios of client-facing sellers to technical sellers. By
taking the proportion of the sales team that is client-facing as the
dosage and the transactional revenue earned as the response, we can
estimate the revenue as a function of sales team composition.

The treatment is continuous-valued in these examples and this
is also the focus of the paper. Binary- or categorical-valued treat-
ments lead to different problems and solutions. Also, here we focus
on one-time responses; a temporal treatment or response component
could be considered in future work. In the domain of focus, each
patient gives us one sample including their treatment dosage, their
response, and other features such as demographics or firmographics.
The dose-response signal can be understood by looking at collec-
tions of patients with different treatment doses.

Often in medicine and other applications, the objective is to es-
timate the dose-response signal from data samples while attempting
to eliminate any bias from variability in patient features [1, 2]. The
idea is to understand the effect of the treatment independently from
who the treatment is applied to, and the problem is essentially re-
gression with bias correction. However, patient populations are het-
erogeneous [3] and different subpopulations may require different

treatment doses.
Characterization of these different subpopulations is actionable

information, especially in business analytics. (There may be legal
and ethical barriers to providing unequal treatments to different sub-
populations in public welfare applications.) Returning to our sales
team example, it may be better to send a team with more technical
sellers to customers in the industrial and government sectors and bet-
ter to send a team with more client-facing sellers to customers in the
transportation, distribution, and computer services sectors.

Patients are characterized by a host of features. Subpopula-
tions can be defined by partitioning along any and any number of
these features. One can manually ‘slice and dice’ the patient fea-
ture space to find subpopulations with homogeneous dose-response
signals within the heterogeneous overall population, but this is in-
tractable if there are even just a modest number of categorical pa-
tient features. In this paper, we propose a decision tree algorithm
for partitioning the patient feature space into regions with a common
dose-response signal.

Our proposed method is similar to classification and regression
trees [4], but instead of having a discrete-valued scalar response
(classification tree) or a continuous-valued scalar response (regres-
sion tree), here we have a function-valued response. As such, the cri-
terion for splitting is not based on Gini impurity or information gain
(classification), or on squared error (regression), but on a novel cri-
terion for decision trees that we propose based on Nadaraya–Watson
kernel regression and the Cramér–von Mises statistical test [5, 6, 7,
8]. Once a tree-based partition of the patient feature space has been
learned, the dose-response signal for each of the finest-level parti-
tions can be estimated.

Motivated by a real-world need, we are investigating a novel
problem that has not been, to the best of our knowledge, considered
in the statistical signal processing and statistical learning literature.
On first sight, kernel regression trees may seem to be focused on the
same problem, but they are not [9]. They solve the standard regres-
sion problem without the dose-response aspect. Although the prob-
lem we are considering, characterizing heterogeneous dose-response
signals, does not appear in the literature, it is possible to compare our
method to kernel regression and to regression trees in one respect:
dose-response estimation accuracy on a per patient basis.

2. FEATURES, TREATMENT DOSES, AND RESPONSES

The dose-response characterization problem that we are considering
arises in observational studies in natural environments in which pa-
tients are given treatments without any experiment in mind. For each
patient i = 1, . . . , n, we observe features xi ∈ X , treatment dosage
ti ∈ [0, 1], and response yi ∈ R. The patient feature space is gener-
ally multivariate; we refer to a particular feature dimension j as Xj .
The responses are assumed to be a smooth function of the treatment
dosage with additive noise. A dose-response signal y(t) is thus a
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function mapping [0, 1] → R. In a homogeneous population of pa-
tients in which all patients have the same underlying distribution, we
would obtain an estimate ŷ(t) of the dose-response signal from the
pairs (ti, yi), i = 1, . . . , n via regression.

In the business analytics example, the patient is a client whereas
the features include dimensions such as the sector to which the client
belongs, the market segment to which it belongs, the type of selling
relationship between the vendor and the client, and the geographic
region in which the client is located. The task is to partition X into
sets Rk, k = 1, . . . ,m. The sets Rk are leaves of a binary de-
cision tree constructed using splits along single feature dimensions
Xj . Associated with each leaf Rk, we can also estimate a specific
dose-response signal ŷk(t) using the patients that fall in that leaf,
i.e. {(ti, yi)|xi ∈ Rk}.

3. KERNEL REGRESSION AND DENSITY ESTIMATION

The estimator we use in estimating dose-response signals from sam-
ples and also in calculating the split criterion to construct the deci-
sion tree is the Nadaraya–Watson estimator, a form of kernel regres-
sion [5, 6]. The functional form of the estimate from the samples
{(t1, y1), . . . , (tn, yn)} is:

ŷ(t) =

∑n
i=1 yiK

(
ti−t
h

)∑n
i=1 K

(
ti−t
h

) , (1)

where K(·) is a kernel function, such as a Gaussian kernel or
Epanechnikov kernel, and h is a bandwidth.

Bandwidth selection is a critical aspect of kernel regression and
kernel density estimation to which an entire literature is devoted. In
the remainder of the paper, we assume that an appropriate bandwidth
has been selected. In the numerical examples we present in Sec. 5
and Sec. 6, we use the Gaussian kernel and the following rule of
thumb to determine the bandwidth [10]:

h =
med(|t− t̃|)med(|y − ỹ|)

0.67452
5

√
16

9n2
, (2)

where t̃ is the median of {t1, . . . , tn}, ỹ is the median of {y1, . . . , yn},
med(|t− t̃|) is the median of {|t1− t̃|, . . . , |tn− t̃|}, and med(|y−
ỹ|) is the median of {|y1 − ỹ|, . . . , |yn − ỹ|}.

Kernel density estimation, specifically Parzen window density
estimation [11], is also used in calculating the split criterion pro-
posed in Sec. 4, and is based on the same principle as the Nadaraya–
Watson estimate. Given samples {t1, . . . , tn}, the Parzen window
density estimate is:

p̂(t) =
1

nh

n∑
i=1

K

(
ti − t

h

)
. (3)

4. DECISION TREE CHARACTERIZATION

In this section we propose a decision tree method to partition X into
leaves Rk with homogeneous dose-response signals. Like classi-
fication and regression trees [4], the high-level algorithm proceeds
by starting at a root node containing all samples (xi, ti, yi). These
samples are divided into two sets based on a split of one of the di-
mensions Xj . If Xj is continuous or ordinal, then a split takes the
form of a single threshold; xi,j less than or equal to the threshold go
to one child and xi,j greater than the threshold go to the other child.
If Xj is nominal with C different values, then there are (2C−1 − 1)
possible splits. For example, if C = 3 with Xj = {α, β, γ}, then

the three possible splits are: α and β in one child and γ in the other,
α and γ in one child and β in the other, and β and γ in one child and
α in the other.

Among all possible splits in all of the feature dimensions, the
split that is chosen is the one that maximizes a split criterion. If
all possible splits have a split criterion value less than a parameter
τ , then the node is not split and it is designated a leaf node. After
the root node is split, both of its children are split, and so on, thus
constructing a decision tree with leaf nodes Rk, k = 1, . . . ,m.

The split criterion that we propose for a dose-response character-
izing decision tree is based on nonparametric comparison of regres-
sion curves as follows [8]. Let us denote the two children of a partic-
ular split as A and B with samples {(tA1 , yA

1 ), . . . , (t
A
nA

, yA
nA

)} and
{(tB1 , yB

1 ), . . . , (tBnB
, yB

nB
)} respectively, where n = nA+nB . Let

us also denote the estimated density of the treatment dose samples
in child A as p̂A(t) and of the dose samples in B as p̂B(t).

We base the split criterion on the residual between the A samples
and the kernel regression of all samples at the node, and on the resid-
ual between the B samples and the kernel regression of all samples
at the node. These residuals, normalized by kernel density estimates
of the A and B samples are:

fA
i =

n(yA
i − ŷ(tAi ))

nAp̂(tAi )
(4)

fB
i =

n(yB
i − ŷ(tBi ))

nB p̂(tBi )
. (5)

If the A samples and B samples are from the same dose-response
signal, then their pooled kernel regression should provide a good es-
timate for each set of samples and thus both sets of residuals should
be small and similar on average. If they are from different dose-
response signals, then the residuals should be large and dissimilar
on average.

To measure the average similarity between the residuals, tak-
ing a cue from the two-sample Cramér–von Mises criterion [7], we
construct the cumulative sum functions of the residual samples and
calculate their squared L2 distance. The cumulative sum functions
are [8]:

FA(t) =
1

n

nA∑
i=1

fA
i step(t− tAi ) (6)

FB(t) =
1

n

nB∑
i=1

fB
i step(t− tBi ), (7)

where step(·) is a unit step function. The squared L2 distance is the
split criterion:

split criterion =

∫ 1

0

(FA(t)− FB(t))
2 dt. (8)

Thus at a node while constructing the dose-response decision
tree, we calculate (8) for all possible splits. If there is at least one
split criterion greater than τ , then the split with the maximum split
criterion is chosen.1

1As we proceed deeper in constructing the tree, the number of samples
per node decreases, resulting in greater regression variance; we are currently
investigating the effect of this phenomenon.
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Fig. 1. One instantiation of data set 1 marked according to all possi-
ble splits at the root node with split criterion values (a) X1: 3.2411,
(b) X2: 0.0137, (c) X3: 0.3968, (d) X4: 0.0134.

5. GENERATED DATA RESULTS

In this section, we present results showing the performance of the
dose-response decision tree proposed in Sec. 4 and provide y pre-
diction comparisons to baseline kernel regression and regression tree
methods. We consider sample features, doses, and responses gener-
ated as follows. We construct two generated data sets. In both data
sets, the patient feature space X has four dimensions, each of which
is an equiprobable binary random variable. The treatment dose is
sampled from a uniform distribution over [0, 1] in the first data set
and from the beta distribution with parameters (4, 1) in the second.

In both data sets, there is a true tree structure to the dose-
response signals with three leaves: R1 has X1 true, R2 has X1 false
and X3 true, and R3 has X1 false and X3 false. The two dimensions
X2 and X4 do not affect the dose-response signals. In the first data
set, the dose-responses are fifth order polynomials with random
coefficients: uniform in the range [0, 1] for R1, range [−0.5, 0.5]
for R2, and range [−1, 0] for R3. In the second data set, the dose-
responses are Gaussian bumps with random standard deviations
uniform in the range [0.1, 0.15] and random means uniform in the
range [0, 0.25] for R1, [0.5, 0.75] for R2, and [0.75, 1] for R3. The
sample response values have additive Gaussian noise with standard
deviation σ. The two data sets are shown in Fig. 1 and Fig. 2.

We create 1000 different instantiations of the dose-response sig-
nals and take n = 500 samples. We also vary the magnitude of
the additive response noise. We learn dose-response decision trees
from the samples for each of the instantiations, each different noise
deviation σ, and three different threshold values τ . The percentage
of instantiations in which the true tree structure with three leaves is
recovered is reported in Table 1 and Table 2 for the two data sets.
The true tree is recovered a high percentage of the time. As would
be expected, smaller threshold values have better performance when
the noise variance is smaller.

As a comparison on the task of predicting y, we construct test
sets of samples from the same distributions as the original data sets,
also containing 500 samples each. We train on the original data sets
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Fig. 2. One instantiation of data set 2 marked according to all possi-
ble splits at the root node with split criterion values (a) X1: 0.3118,
(b) X2: 0.0314, (c) X3: 0.0824, (d) X4: 0.0053.

τ = 0.05 τ = 0.10 τ = 0.15
σ = 0.20 92.3% 90.4% 88.0%
σ = 0.25 89.1% 90.3% 88.0%
σ = 0.30 82.4% 87.9% 87.5%
σ = 0.35 70.0% 85.3% 86.1%

Table 1. Percentage of data set 1 instantiations in which true tree is
recovered for different amounts of noise and different thresholds.

and test on the test sets for all 1000 instantiations using the proposed
dose-response decision tree with a separate kernel regression at each
leaf, and also three other baseline methods: kernel regression on all
of the (ti, yi) samples, regression tree on all of the (ti, yi) samples,
and regression tree with both the ti and xi as the predictive variables
and yi as the response. The average root mean squared error (RMSE)
results of the four methods are shown in Table 3. A threshold of
τ = 0.1 is used for both data sets. The RMSE of the dose-response
tree method is best and is almost equal to the standard deviation of
the noise, which is about as well as one can expect.

6. SALESFORCE ANALYTICS DATA RESULTS

We also present results on the real-world salesforce analytics prob-
lem discussed in Sec. 1. Data from the customer relationship man-

τ = 0.05 τ = 0.10 τ = 0.15
σ = 0.20 92.6% 88.0% 83.6%
σ = 0.25 90.3% 86.7% 82.6%
σ = 0.30 87.1% 85.1% 80.8%
σ = 0.35 82.8% 83.4% 79.0%

Table 2. Percentage of data set 2 instantiations in which true tree is
recovered for different amounts of noise and different thresholds.
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Method Data Set 1 Data Set 2
Kernel Reg. 1.1151 1.1481
Reg. Tree 1 1.3800 1.4045
Reg. Tree 2 0.3105 0.3320

DR Tree 0.2622 0.3023

Table 3. Average RMSE in predicting the yi for σ = 0.25.
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Fig. 3. Dose-response samples of sales team composition as well as
estimated dose-response signal for each leaf of decision tree.

agement system of IBM is shown in Fig. 3, where as discussed ear-
lier, t is the fraction of a sales team that is client-facing (as opposed
to technical). The y is a particular transformation of transactional
revenue earned by that team. We consider three feature dimensions:
X1 takes six values and is the economic sector; X2 takes three val-
ues and is the coverage type of how clients are approached, such as
the sales team having office space at the client location or coming
to the client infrequently; X3 takes three values and is a market seg-
mentation into core clients, clients with whom sales could grow, and
clients whose business is taken opportunistically.

The dose-response decision tree that is learned from this data is
shown in Fig. 4. The split at the root node divides opportunities by
coverage type into those with the sales team sitting at the client lo-
cation and others. The next split on the right branch is according to
market segmentation with growth clients on the left. As can be seen
in Fig. 3, there exist multiple homogeneous subpopulations that ex-
hibit distinctive behavior in revenue attainment as a function of sales
team composition. In particular, completely technical sales teams
(t = 0) produce the lowest revenue in most but not all instances.
These results have been confirmed by subject matter experts within
IBM during ‘deep-dive’ investigations. For each of these subpopu-
lations, we can identify the sales team composition that maximizes
revenue by identifying peaks in the ŷk(t).

7. CONCLUSION

We presented a novel heterogeneous dose-response signal analysis
framework in this paper. Due to the existence of subpopulations for
whom different treatment strategies should be applied, we develop
a novel decision tree algorithm to partition the population based
on dose-response characteristics. Finally, partitioning analysis and
dose-response regression are conducted concurrently. Experimen-
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Fig. 4. Decision tree learned from sales team composition data.

tal results on synthetic and sales data show the effectiveness of the
proposed method. Directions for future work include: addressing the
issue of sample selection bias [1], designing methods to optimize the
split parameter τ , and applying the method to other data domains.
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