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Abstract—Estimating generalizable relationships between ac-
tions and results from historical samples, especially when there
is a level of noise or randomness in that signal, is an important
problem to address before making decisions on actions to take.
Many business analytics problems require the optimal assignment
of limited resources to actions and activities to maximize some
result or objective such as profit. We present a novel approach
to solving this class of analytics problems by modeling the
relationship between resource effort and expected return as a
dose-response signal and formulating its causal estimation as one
of kernel regression. The estimated expected value and variance
of the result are then used to optimize resource allocation so as
to maximize expected response while minimizing the risk around
response subject to business constraints. We apply this approach
to the task of optimally assigning salespeople to enterprise clients
using real-world data, and show that profit can be substantially
increased with fewer salespeople and reduced risk.

I. INTRODUCTION

In running a business, there are many decisions to be made
and actions to be taken with unknown and uncertain outcomes.
Should the business outsource its information technology
operations, and what effect will there be on key financial
indicators such as earnings or expenses [1], [2]? Should the
business offer salary increases to valued employees, and what
effect will there be on the voluntary attrition rate [3]? Should
pre-sales activities such as proposal and contract preparation
be performed by salespeople or by a specialized group, and
what effect will there be on the fraction of sales opportunities
that are won [4]? What fraction of sales teams attending to
clients should have technical job roles and what fraction non-
technical job roles, and what effect will there be on revenue
earned [5]? Business analytics is the science of using data,
signals, and predictive modeling rather than gut instinct to
drive such decisions.

The terminology of treatment doses and measured responses
is often used in health and medicine, but applies equally well
to any other application domain in which actions are taken and
the effects of the action are to be inferred, including in business
applications [5]. In these applications, understanding, and
especially estimating quantitative causal relationships from
observational studies is paramount [6], [7]. This inference
involves taking historical samples of dose-response pairs and
finding a mapping (if any) between the dose and response that
holds in general.

There are two distinct types of treatments: discrete (includ-
ing binary) and continuous [8], [9]. In the business analytics

examples above, outsourcing and having pre-sales activities
performed by a specialized group are both discrete treatments.
The amount of salary increase and the fraction of the sales
team having a technical job role are both continuous treatment
doses. In this paper, we focus on continuous treatment doses
and on the estimation of dose-response signals, i.e. estimating
the response as a function of the continuous dose along with
the uncertainty surrounding the function.

Furthermore, once a dose-response signal has been esti-
mated with its inherent uncertainty, a portfolio optimization
of doses may be performed to yield optimal responses subject
to risk constraints and application-specific constraints [10].
Hedging bets and balancing risk and reward are common
themes. Investors construct diversified stock portfolios to
maximize expected return while minimizing the variance of
the return [11]–[14]. Venture capitalists fund a collection of
startups in the same way. Even sponsors sign multiple top
athletes as brand ambassadors to hedge against the inevitable
failure of some of them [15].

However, in typical portfolio settings, the action of in-
vesting or sponsoring is not a treatment dose that has a
causal relationship with the response. Moreover, beyond a
simple budget constraint, there typically are not additional
application-specific constraints in investing. On the other hand,
in health, medicine, and other dose-response settings, portfolio
thinking is not typically employed because poor or even
catastrophic outcomes for some patients balanced out by very
good outcomes for other patients is not desirable. In this paper,
we examine the class of problems in which actions have direct
influence on results (with associated uncertainty) in a contin-
uous dose-response signal relationship, and in which portfolio
optimization of results is desired to maximize return subject
to risk and under potentially complicated resource allocation
constraints. This class of problems is under-studied in the
literature because of the separate contexts and applications in
which the two subproblems of estimation and optimization
have arisen. We put forth this new joint machine learning
and optimization paradigm motivated by business analytics
problems and develop techniques towards its solution.

In the remainder of the paper, we focus on the specific
salesforce analytics application described as follows. Large
enterprises must decide how to best deploy their salesforce
amongst their client base [16]. This is one of the most
important questions when running a large business because



salespeople bring in the revenue that the business needs to
operate and profit. Specifically, we would like to determine
the amount of sales effort that should be allocated to each
client to maximize total expected profit while minimizing
the variance of the profit. The most interesting aspect of the
problem is the inherent uncertainty and randomness in the
relationship between the sales effort expended on a client and
the corresponding profit earned, but also the possibility of there
being a signal within that noise.

We look at this relationship as a dose-response signal [8],
[9] and formulate its estimation as one of kernel regression.
Both the expected value of the dose-response function and the
variance are learned from historical data using the Nadaraya–
Watson formulation [17]–[19], and used to optimize the sales
effort allocated to each client so as to have large expected
profit but also small variance. Further constraints are also
incorporated in the optimization, such as requiring the total
allocated effort to be less than the size of the salesforce.
We discuss the difficulty of carrying out this optimization
and describe how it can be approximated as a knapsack
optimization problem and approximately solved.

Before setting out on this endeavor, it was not clear
whether there even was a pattern to be recognized between
(suitably normalized) sales effort and profit. As we show in
empirical results on corporate data, a nice relationship does
exist and salesforce deployment optimization based on it can
significantly increase profits without high risk. The practical
contribution of the research is in translating a mathematically
ill-defined business question into a statistical signal processing
formulation and putting all the components together into a uni-
fied predictive and prescriptive salesforce analytics solution.

Sales resource allocation is a problem that has been studied
in the management literature for a long time, including consid-
ering risk, but the majority of that research has been focused
on the optimization aspect and has not considered continuous
dose-response functions [20]. The closest related work in this
application domain is from the marketing literature and is
quite simplistic, limited to linear regression for estimation and
heuristics for optimization, does not consider risk, and does
not provide optimal effort allocations at an individual client
level [21]. Moreover, as discussed earlier, the combination
of dose-response signal inference and portfolio-based risk-
sensitive optimization is a novel combination that has not
been considered in the information processing and inference
literature before, neither in business applications nor other
applications.

The remainder of the paper is organized as follows. In
Section II, we detail the salesforce analytics problem setup,
including notation and available data. Section III describes the
kernel regression formulation. Section IV describes the for-
mulation for portfolio optimization. Empirical results on two
sets of real-world enterprise data showing the efficacy of the
approach are presented in Section V. Section VI summarizes
the contributions and provides directions for future research.

II. PROBLEM DESCRIPTION

In this section, we describe the problem specifically in the
context of allocating the effort of sales teams to clients for
concreteness, while maintaining that the same general math-
ematical problem arises in several other business problems.
Each sales resource expends a certain amount of effort selling
to each client. This can be measured in full-time equivalents
(FTEs) where 1 FTE equals 100% effort of 1 seller over a
1 year period. Thus, a seller dedicating 2 months solely to
a single client expends 1/6 FTEs on that client. If, however,
the seller distributes her effort equally across two clients for
2 months, then the effort for each client is 1/12 FTEs. Often,
teams of salespeople cover clients; the total effort spent on a
client is the sum of the effort spent by each salesperson.

Let the effort spent by the salesforce on client i be denoted
ei ∈ [0,∞), i = 1, . . . , n, where n is the number of clients.
Also, let pi ∈ R be the profit from client i, where profit is
revenue from the client minus costs and expenses. We would
like to find a dose-response relationship between sales effort
and profit; however, we must consider one additional aspect to
the problem first. Not all clients are the same; some are larger
and some are smaller. Without even considering the details
of the sales effort, it is known beforehand that clients will
produce revenue in a certain range due to various reasons,
such as client size, prior client-company relationship, and
market growth. This prior knowledge of revenue size, known
as aspirational revenue, denoted ai ∈ [0,∞), is determined
by combining knowledge from subject matter experts with
estimation techniques [22]. The response that we are really
interested in is the ratio of profit to aspirational revenue
yi = pi/ai, capturing the so-called lift, or performance above
or below aspiration, provided by the salesforce deployment.

In the treatment dose, the sales effort, we also take aspi-
rational revenue into account. Asking how many FTEs per
dollar of aspirational revenue to allocate to a client is a more
meaningful question than simply asking how many FTEs.
This normalization by the size of the client account allows
us to compare small and large clients on an even basis.
In real corporate data, the ratio ei/ai spans several orders
of magnitude and thus we take its logarithm for improved
estimation, giving a dose variable di = log10 (ei/ai). With
normalized effort as the dose, we can apply the estimated
dose-response signal to make predictions on a new client with
a given aspirational revenue. In Section III we discuss how to
estimate the dose-response function ŷ(d).

III. ESTIMATION FORMULATION

Given historical samples of effort spent, profit earned, and
revenue aspired, for different clients of the company, we
can construct training samples {(d1, y1), . . . , (dn, yn)}. The
estimator we use in estimating the dose-response function from
samples is the Nadaraya–Watson estimator, a form of kernel
regression. The functional form of the estimate is:

ŷ(d) =

∑n
i=1 yiK

(
di−d
h

)∑n
i=1 K

(
di−d
h

) , (1)



where K(·) is a kernel function, such as a Gaussian kernel or
Epanechnikov kernel, and h is a bandwidth. The bandwidth
can be set using standard methods from the literature including
plug-in rules of thumb [19].

The inherent uncertainty in the dose-response relationship
is captured by estimating the variance surrounding ŷ(d) [19]:

σ̂2(d) =

∑n
i=1 y

2
iK

(
di−d
h

)∑n
i=1 K

(
di−d
h

) − ŷ(d)2. (2)

Note that this variance is of the phenomenon itself, not of
estimation error. Given ŷ(d) and σ̂2(d), optimization can be
applied to a client set to determine the best doses.

IV. OPTIMIZATION FORMULATION

The estimated dose-response function and its variance can
now be applied to optimize doses for a new portfolio of m
clients with aspirational revenues {a1, . . . , am}. These clients
are assumed to be similar to those from which the relationships
were learned; one such scenario involves learning based on
the previous year’s efforts and profits, and optimizing effort
allocations using the current year’s aspirational revenues.

The optimization problem we pose is as follows.

maximize
m∑
j=1

aj ŷ(dj)− λ
m∑
j=1

a2j σ̂
2(dj)

subject to
m∑
j=1

aj10
dj ≤ S, (3)

where S is the total number of salespeople in the salesforce.
The objective balances risk and reward using the parameter
λ. The value of λ is related to an upper bound for the
variance, which can be seen by viewing the objective as a
Lagrangian form. The constraint ensures that total allocated
effort is less than the salesforce size because it is not feasible to
allocate more effort than what can be handled by the existing
salespeople.

The kernel regression estimates ŷ(d) and σ̂2(d) have no
convexity or concavity guarantees, making the m-dimensional
constrained optimization problem (3) difficult to carry out
in practice. To approximate (3), we can do one-dimensional
unconstrained optimizations for each of the m clients, finding
d∗j to maximize aj ŷ(dj)−λ1a

2
j σ̂

2(dj). Then, if constraint (3)
is not binding, i.e. the sum of the aj10

d∗
j values is less than

or equal to S, we have the solution to the original problem.
If the constraint is binding, then we may express the

problem as a knapsack optimization problem in which we
decide not to sell to some of the clients [23]. This zero-one
knapsack optimization problem is:

maximize
m∑
j=1

xjaj ŷ(d
∗
j )− λ

m∑
j=1

xja
2
j σ̂

2(d∗j )

subject to
m∑
j=1

xjaj10
dj ≤ S, xj ∈ {0, 1}, (4)
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Fig. 1. Historical data for business unit A.

where the xj are the decision variables by which we decide
not to sell to clients. There are several ways to approximately
solve problem (4) efficiently [23]. Thus overall, we have
proposed a new formulation to find the optimal doses that
balance expected return and the variance of the return for a
new portfolio based on historical dose-response samples. We
apply this formulation to real-world data from the salesforce
management problem in the next section.

V. EMPIRICAL RESULTS ON REAL-WORLD DATA

In this section, we present empirical results for subsets of
clients from two different business units of a large multina-
tional technology company using revenue and sales effort over
a one year period.

In historical data, business unit A had n = 980 clients, had
total sales effort S = 364.69 FTEs, and achieved $4.33× 108

in total profit from all clients. The (di, yi) samples are shown
in Fig. 1 along with a histogram of the doses. Using (1) and
(2) on the data shown in Fig. 1, we obtain ŷ(d) and σ̂2(d).
The estimate of the dose-response relationship is plotted in
Fig. 2 surrounded by the estimated inherent uncertainty. The
estimated dose-response curve shows a nice, clear pattern.
The first interesting thing to note is that the company lost
money, i.e. ŷ < 0, when lots of sales effort per dollar
of aspirational revenue (d & −5) was put in. This makes
business sense because overstaffing implies high expenses,
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Fig. 2. Dose-response estimates for business unit A (ŷ(d)± σ̂(d)/10).

resulting in an overall loss. The second interesting thing to
note is that there is an intermediate response-maximizing dose:
d = −6.4 or 10−6.4 FTEs per dollar of aspirational revenue.
The third interesting thing to note in the learned relationships
is that variance tends to increase with increasing d; specifically,
d = −6.4 has much higher variance than some of the smaller
values of d.

Fig. 3 shows the results of the optimization. At λ = 0,
all clients are assigned at the peak value of 10−6.4 FTEs per
dollar of aspirational revenue. This dose solution results in an
expected total profit of $4.51×108 using 203.46 FTEs. The S
constraint is not binding in this case. The total profit variance
for this solution is 3.44×1017. In the λ = 0 case, the company
is able to achieve $1.84×107 more in profit using 161.23 fewer
FTEs of effort in expectation by optimizing the deployment of
the sales resources. As more importance is given to controlling
risk with increasing λ, the total variance drops quite a bit. For
example, at λ = 5×10−9, the total variance is only 6.94×1015

while still having an expected total profit of $3.65× 108. The
optimal dose distribution (Fig. 3) has mass mostly at the peak
of ŷ(d), but with some smaller doses as well.

Business unit B had n = 453 clients, sales effort S =
982.11, and total profit $4.48 × 108. Its dose-response data
samples and dose histogram are shown in Fig. 4. The kernel
regression estimate for this business (Fig. 5) exhibits the same
general shape as the one for business unit A. This time the
maximum of ŷ(d) is at −6.1. However, if the corresponding
number of FTEs is allocated to all clients, then the total effort
across all clients will be 4782.08 FTEs, which violates the S
constraint. Since the constraint is binding for this business,
we must apply the knapsack optimization (for small values of
λ). Applying Dantzig’s greedy heuristic to solve the knapsack
component, we obtain the solution paths seen in Fig. 6.
The historical profit can be quadrupled through an optimal
allocation. Looking at the optimal allocation for λ = 5×10−9,
the total expected profit is $1.61 × 109 with a variance of
3.47× 1017 and requires 702.79 fewer FTEs to achieve. Both
examples, but especially the one for business unit B, show how
significant an improvement can be made in a company’s profit
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Fig. 3. Total effort, expected profit and variance of profit from optimal doses
as a function of λ, and the optimal doses for λ = 5×10−9 for business unit
A.
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Fig. 4. Historical data for business unit B.
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Fig. 5. Dose-response estimates for business unit B (ŷ(d)± σ̂(d)/10).

by using the proposed approach considering dose-response and
portfolio-based optimal salesforce allocations.

VI. CONCLUSION

We have presented a novel approach to the fairly general
problem of optimally assigning resources to business activities
having uncertain but partly predictable outcomes with the
aim of maximizing returns while minimizing the associated
risk. Motivated by the application of salesforce management,
we formulate this problem as one of estimating a dose-
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Fig. 6. Total effort, expected profit and variance of profit from optimal doses
as a function of λ, and the optimal doses for λ = 5×10−9 for business unit
B.



response function followed by resource allocation optimization
using the estimated value and variance functions. Empirical
results on two real-world datasets from the salesforce analytics
domain show that substantial increases in profits from a set of
clients can be achieved by using less sales effort and with
lower risk by allocating sellers via this approach.

Going forward, we are exploring several extensions. First,
we are investigating applying the analytics methodology pro-
posed in this paper to other business problems besides sales
effort assignment to clients for profitability, including a few
mentioned in the first paragraph of Section I. Second, it is
often infeasible to optimize over the entire client/seller space
as it may entail expensive and logistically difficult wholesale
movement of sellers. As such, we are incorporating more
constraints in the optimization, such as disallowing a seller
from covering clients in multiple geographic regions. Such
an extension still fits within the multidimensional knapsack
formulation. Other such application-specific constraints arise
in other business problems as well.

Third, different types of sellers are skilled in different tasks
and, thus, the composition of the sales team assigned to a
client plays an integral part in determining the profit attained.
The effect of sales team composition on the profit can be sim-
ilarly modeled as a multi-dimensional dose-response function
estimation problem. Multi-dimensional continuous treatment
doses have not been studied in the literature. Another avenue of
further research is to examine Gaussian process regression for
the signal inference rather than kernel regression, which may
be more amenable to multi-dimensional signal estimation and
also allow the injection of prior knowledge [24]. Longer term
planning horizons may also be considered in the optimization.
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“MCMC inference of the shape and variability of time-response signals,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Prague, Czech
Republic, May 2011, pp. 3680–3683.
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