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Abstract—In this paper, we show a formal equivalence between
histogram equalization and distribution-preserving quantization.
We use this equivalence to connect histogram equalization to
quantization for preserving anonymity under the k-anonymity
metric, while maintaining distributional properties for data ana-
lytics applications. Finally, we make connections to mismatched
quantization. These relationships allow us to characterize the
loss in mean-squared error (MSE) performance of privacy-
preserving quantizers that must meet distribution-preservation
constraints as compared to MSE-optimal quantizers in the high-
rate regime. Thus, we obtain a formal characterization of the
cost of anonymity.

Index Terms—data, histogram equalization, k-anonymity, mis-
matched quantization, neural information processing

I. INTRODUCTION

With the proliferation of information systems, there is grow-
ing societal interest in maintaining privacy, especially in set-
tings such as health care [1] and education [2]. In discussions
of privacy, a transmission principle is a constraint on the flow
(distribution, dissemination, transmission) of information in a
given context. The transmission principle parameter expresses
terms and conditions under which such transfers ought (or
ought not) to occur [3, p. 145]. As established in signal
processing and information theory, there are basic trade-offs
between privacy and utility inherent in transmission principles,
trade-offs governed by their parameters [4]–[6].

Several formal transmission principles have been proposed
[7]; we focus herein on k-anonymity, with parameter k. In
releasing data tables about people under k-anonymity, the data
for an individual should not be distinguishable from the data
of at least k − 1 other individuals [8], [9].

Given a data set, k-anonymity is often achieved via general-
izations and suppressions, or through the addition of noise. Of
particular note, k-anonymity can be achieved via quantization
of data. Quantization has also been widely discussed in mul-
timedia signal processing [10] and in theoretical explanations
of neural information processing [11], [12], where physical
constraints limit information rates.

In theoretical neuroscience, the principle of histogram
equalization is invoked to explain the nature of neural signals
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that seem to maximize information carried, in the sense of
maximum entropy. That is, by essentially appealing to the
fact noiseless (maximum entropy) and symmetric (capacity-
achieving input distribution) communication channels are best
used with equiprobable inputs, this approach is meant to
not waste channel capacity. Laughlin showed the response
of the large monopolar cell (LMC) in the fly visual system
uses this entropy maximizing scheme (the LMC responds
to contrast, and the probability distribution of contrasts of
natural scenes in habitats where flies live were measured) [11].
This approach to not waste channel capacity by ensuring that
quantization indices can be used directly with standard channel
coding schemes (which assume that input messages have equal
likelihood) have also been suggested in engineering [13].

Indeed, in histogram equalization, the probability mass of
the source distribution mapped to any representation index is
equal to any other, yielding equiprobable (maximum entropy)
codewords. Thus, as we show in the sequel, histogram equal-
ization quantization yields a kind of k-anonymity: the source
sample is divided into equal-sized groups whose number N
can be chosen sufficiently large to meet any k-anonymity
requirement with high probability.

Note that data-driven quantizer design algorithms such as
the k-means algorithm1 due to Lloyd and Max can be modified
to take the transmission principle parameter k (number of data
points in cluster) as input, rather than number of clusters N
as input [1], [14], though there are numerical difficulties.

Upon reconstructing from representation indices back to
the real line (and using subtractive dithering), histogram
equalization also ensures that the reproduction distribution
essentially matches the source distribution. This distribution-
preservation property is important in many data analytics
applications, such as covariate shift in regression, as we argued
previously [1]. We had previously noted that distribution-
preserving quantization has also been developed for perceptual
reasons in audio [15], [16] and also studied using quantization
theory [17].

The connections between quantization that achieves k-
anonymity, distribution-preserving quantization, and histogram
equalization quantization that are presented here, however, are

1Note the “k” in k-means is distinct from the “k” in k-anonymity.
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Fig. 1. Block diagram of a scalar quantizer, explicitly calling out the index
variable A.

new.
Histogram equalization achieves k-anonymity and preserves

distributions, but such quantization does not optimize for
fidelity criteria such as mean-squared error (MSE). For com-
panding quantizers, the quantizer point density function λ(u)
of histogram equalization is the probability density function
of the source itself fU (u) rather than λ(u) ∝ f

1/3
U (u) as

for MSE-optimality. A central contribution of this paper is to
characterize loss in MSE performance due to this suboptimal
choice for several typical source distributions such as Gaussian
and Laplacian. Although this loss, which we refer to as the
cost of anonymity, can often be computed precisely, we focus
on asymptotic characterizations in the high-rate regime to get
a sense of scaling [18]. To do so, we make connections to the
theory of mismatched quantization and draw on some extant
results from the theory [13], [19]–[21].

The remainder of the paper is organized as follows. Sec. II
establishes notation by reviewing and reinterpreting results
in quantization theory. The histogram equalization approach
is also cast into the quantization theory framework. Sec. III
shows that a histogram equalization compander achieves k-
anonymity with high probability for sufficiently large datasets.
By using results in mismatched quantization, Sec. IV com-
putes the cost of anonymity in the high-rate regime. Sec. V
concludes by discussing how other principles in theoretical
neuroscience may be useful for privacy and anonymity.

II. QUANTIZED REPRESENTATIONS

To formalize our discussion, we review and reinterpret
some basic definitions and results from quantization theory,
following [22, Chapter 6.5.2] and [18].

Definition 1. A scalar quantizer q is a mapping from R to a
reproduction codebook C = {ûi}i∈A, where A is an arbitrary
countable index set. Quantization can be decomposed into two
operations, ϕD and ϕE , with q = ϕD ◦ϕE . The lossy encoder
ϕE : R 7→ A is specified by a partition {Si}I∈A of R with
partition cells Si = ϕ−1

E = {u ∈ R|ϕE(u) = i}, i ∈ A.
The reproduction decoder ϕD : A 7→ R is specified by the
codebook C.

The definition is depicted schematically in Fig. 1.
If each partition cell is an interval and the associated

reproduction point lies within that interval, the quantizer is
called regular. For settings we consider, there is no loss of
optimality in restricting to regular quantizers [23, Sec. 6.2],
which we do in the sequel.

A. Mean-Squared Error Optimality

One traditional measure of the quality of a quantizer is how
well the reproduction û represents the original u, as measured
using a distortion function d(u, û): smaller average distortion
means higher quality. A common distortion function is squared
error, d(u, û) = |u− û|2. In a data setting, the average distor-
tion is the sample average when the quantizer is applied to a
sequence of real data, but traditional theoretical development
views the data as sharing a common cumulative distribution
function (cdf) FU (u) and probability density function (pdf)
fU (u) corresponding to a generic random variable U . The
average distortion is

D = E
[
d(U, Û = q(U))

]
=
∑
i

∫
Si

d(u, ûi)f(u)du.

When used for data compression, another traditional measure
of the quality of a quantizer is the rate R. In the fixed-rate
setting, Rf = log2 |A|. Often there is thought to be an entropy
code being applied after the quantizer, and so the entropy lower
bound is used to measure rate as Re = H(A = ϕE(U)),
where H(A) is the entropy of the index variable A. When the
index variable A is equiprobable, the entropy of the index is
maximized and Rf = Re.

Since precise analysis of optimal quantizers balancing rate
and distortion may be difficult, Bennett’s high-resolution ap-
proach with companding quantizers is often used [24]. In
companding quantizers, a monotonic smooth nonlinearity G
called a compressor is applied to the source, followed by
a uniform quantizer having equally-spaced partition bound-
aries, and finally the inverse nonlinearity G−1 called the
expander is applied when reconstructing the signal. That is,
û = G−1(q�(G(u))), where q�(·) is a uniform quantizer. Any
nonuniform quantizer can be implemented as a compander.

For fixed-rate companding quantizers, the distortion is
asymptotically (in the high-resolution regime) given by

D ∼=
∆2

12

∫
fU (u)

g2(u)
du, (1)

where g(u) = dG(u)/d(u), ∆ is the width of the partition
cells of the uniform quantizer q�, and the integral is over the
granular range of the input. This is typically written in terms of
the quantizer point density function λ(u), whose integral over
a region gives the fraction of quantizer reproduction levels in
that region, as follows:

D ∼=
1

12

1

N2

∫
fU (u)

λ2(u)
du, (2)

where N satisfies Rf = 2N . Using variational techniques or
Hölder’s inequality, Bennett’s integral can be optimized to find
the optimal λ(u):

λ(u) =
f
1/3
U (u)∫

f
1/3
U (u)du

, (3)
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with corresponding mean-squared error

D ∼=
1

12

(∫
f
1/3
U (u)du

)3

2−2Rf (4)

This is called the Panter-Dite formula [25]. Panter and Dite’s
derivation demonstrated that an optimal quantizer has roughly
equal contributions to total average distortion from each parti-
tion cell, a result that is sometimes called the partial distortion
theorem.

B. Histogram Equalization

The Panter-Dite derivation suggests quantizers optimized for
distortion should have each partition cell contribute roughly
equally to average distortion, but the concept of histogram
equalization that has been developed in both theoretical neuro-
science and in multimedia signal processing requires partition
cells to have probability mass that is roughly equal [11].

Let us restrict to companding quantizers and determine the
point density function λ(u). For histogram equalization, we
require that the index variable be distributed equiprobably,
pA(ai) = 1/N for all i ∈ A. That is to say,∫

Si

fU (u)du = 1/N for all i ∈ A. (5)

Since q� is a uniform quantizer, in order to meet this condition
in the high-resolution regime, we need the expanded random
variable G(U) to be a uniform random variable. As per the
probability integral transformation, the choice G(·) = FU (·)
yields the desired result, which further implies λ(u) = fU (u).

Note that since the expander reverses the compressor, i.e.
G−1 = F−1

U , the reproduction variable Û has cdf FU , just
like U does. As a consequence, histogram equalization is
distribution-preserving. This Rosenblatt transformation prop-
erty of quantization is important for data analytics [1] and
perceptual applications [16]. In finitary rate regimes, we have
previously noted that such probability integral transformation
scalings yield k-anonymity [1]. Now let us investigate k-
anonymity in the high-rate regime.

III. EQUIVALENCE THEOREM

By proving a concentration inequality in this section, we
argue that a companding histogram equalization approach to
quantization does achieve a kind of k-anonymity for specific
finite-length realizations of data. This is especially important
since companders are easy to implement but the quantization
procedure of [14] is fraught with many numerical difficulties,
only partially addressed by the numerical tricks described in
the appendix therein.

Recall we are considering regular quantizers, and so par-
tition cells are intervals. Let us denote these semi-closed
intervals Si by their boundary points, Si = (bi, bi+1]. We want
to show that the empirical measure of random data will give
roughly the same number of points in each quantization bin as
any other. This argument can be made with any concentration

of measure result. The strong law of large numbers essentially
shows there will be concentration, and the Glivenko-Cantelli
theorem shows this concentration is uniform. We use the
Dvoretzky-Kiefer-Wolfowitz inequality which quantifies the
rate of convergence [26], [27].

Lemma 1 ( [26], [27]). Let X1, X2, . . . , Xn be real-valued
independent and identically distributed random variables with
cdf FX(·). Let F

(n)
X denote the associated empirical cdf

defined by

F
(n)
X =

1

n

n∑
i=1

1Xi≤x, for x ∈ R,

where 1 denotes the indicator function. Then,

Pr

(√
n sup

x∈R
|F (n)

X (x)− FX(x)| > λ

)
≤ 2e−2λ2

, (6)

for every λ > 0.

This leads to our concentration result for the k-anonymity
of histogram equalization quantizers.

Theorem 1. Let un
1 be the actual data to be quantized, drawn

i.i.d. from the common distribution FU (u). They are quantized
using the companding quantizer with compressor G = FU . Let
the number of data points that lie in Si = (bi, bi+1] be ki, for
all i ∈ A. Let ∆� be a constant independent of i. Then

Pr[(ki −∆�) > ϵ] ≤ 4e−
n2ϵ2

2 ,

for every ϵ > 0.

Proof: Recall the probability that a random variable X
lies in the semi-closed interval (a, b], where a < b, is Pr[a <
X ≤ b] = FX(b) − FX(a). Thus by the definition of the
empirical measure, ki = n(F

(n)
U (bi+1) − F

(n)
U (bi)). Let us

subtract the quantity n(FU (bi+1) − FU (bi)) from both sides
to get

ki − n(FU (bi+1)− FU (bi))

= n(F
(n)
U (bi+1)− F

(n)
U (bi))− n(FU (bi+1)− FU (bi)).

(7)

From the construction of histogram equalization compand-
ing, we can note that this quantity that was subtracted,
n(FU (bi+1)− FU (bi)), is a constant for all i, which we will
call ∆�. Thus,

ki−∆� = n(F
(n)
U (bi+1)−F

(n)
U (bi))−n(FU (bi+1)−FU (bi)),

(8)
which can be rearranged as

ki−∆� = n(F
(n)
U (bi+1)−FU (bi+1))−n(F

(n)
U (bi)−FU (bi)).

(9)
Now consider the quantity Pr[(ki−∆�) > ϵ] for every ϵ > 0.
Letting B1 = (F

(n)
U (bi+1)−FU (bi+1)) and B2 = (F

(n)
U (bi)−
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FU (bi)), by the equality (9) above,

Pr[(ki −∆�) > ϵ] = Pr [n(B1 −B2) > ϵ] (10)
≤ Pr[nB1 > ϵ

2 ] + Pr[nB2 < − ϵ
2 ] (11)

≤ Pr[n|B1| > ϵ
2 ] + Pr[n|B2| > ϵ

2 ] (12)

≤ 2e−
n2ϵ2

2 + 2e−
n2ϵ2

2 for ϵ > 0 (13)

≤ 4e−
n2ϵ2

2 for ϵ > 0, (14)

where the penultimate step (13) was two applications of
Lemma 1, the Dvoretzky-Kiefer-Wolfowitz inequality. This is
the desired result.

Note that this one-sided bound on the number of data points
in a given quantizer representation interval can be directly
extended to a two-sided bound.

Thus we see for sufficiently large numbers of data points,
there is a concentration of measure such that an equal number
of points lie in each cell, with exceedingly large probability.
That is, k-anonymity is achieved by histogram equalization
companding quantizer with exponentially high probability.

Note that this result does not require any high-rate asymp-
totics; it holds for any rate and number of partition cells N .
The design of the companding quantizer is applicable at all
rates, however, is motivated by high-rate considerations.

IV. COST OF ANONYMITY

Having established that quantizers that implement
histogram-equalizing compander strategies achieve k-
anonymity, we now concern ourselves with how much MSE
distortion is incurred as compared to companding quantizers
that are optimized for MSE. That is to say, we determine
how much distortion is incurred by using λHE(u) = fU (u)

rather than λMSE(u) = f
1/3
U (u), which is optimal for MSE.

We compute the average distortion as a function of N , the
number of representation points in the quantizer, and term this
performance as the cost of anonymity, Canon. The analysis is
in the asymptotic regime of high rate.

A. Uniform Sources

Consider a source of data, U , that is governed by a uniform
distribution over the support interval [c1, c2], i.e.

fU (u) =

{
1

c2−c1
, u ∈ [c1, c2]

0, otherwise.

Then, since 11/3 = 1, we see that λMSE(u) = λHE(u) =
fU (u) and the two quantizers coincide. Since U is already
uniform, there is no need for any companding. Thus we
observe that for this source, there is no additional cost of
anonymity, beyond an MSE-optimal quantizer. This is the
only family of sources for which fU (u) = f

1/3
U (u) for all

u and therefore the only class of sources that do not incur any
additional cost of anonymity.

In fact there is no cost of anonymity for uniform sources
in non-asymptotic regimes either. This follows directly from

the facts that uniform quantizers are histogram equalizers for
uniform sources and that uniform quantizers are MSE-optimal
for uniform sources.

As is well-known, Canon is O(1/N2) and more precisely

Canon =
(c2 − c1)

2

12

1

N2
. (15)

B. Gaussian Sources

Although it is possible to apply Lloyd-Max type algorithms
and other algorithms for finding k-anonymous quantizers for
any source, as described in [1], [14], we are interested in
analyzing performance in the high-rate regime, to get a closed-
form asymptotic expression for Canon.

Consider quantization of the zero-mean, unit-variance Gaus-
sian source U ,

fU (u) =
1√
2π

exp

{
−u2

2

}
. (16)

Then the λMSE(u) is given by:

λMSE(u) ∝
(

1√
2π

exp

{
−u2

2

})1/3

(17)

∝
(

1√
2π

)1/3(
exp

{
−u2

2

})1/3

(18)

∝ exp

{
−u2

6

}
. (19)

So we see that λMSE(u) corresponds to the pdf of a Gaussian
random variable with variance 3 instead of variance 1.

We are facing a special case of Na’s results on mismatched-
variance quantizers [20], which has recently been studied
further to determine a simplified asymptotic average distortion
expression [13]. With a so-called mismatch factor of

√
3 in the

heavy-mismatch regime, to use Na’s terminology, the average
distortion incurred by the histogram equalization approach,
Canon(N), is O(1/N lnN). Although the specific distortion
function is fairly straightforward to write, we recall an easier-
to-interpret asymptotic expression [13] that is more precise
than Na’s expression when particularized for scalar quantiza-
tion. It is:

lim
N→∞

Canon(N)N lnN =
13

12
. (20)

C. Laplacian Sources

Now instead of a Gaussian source, let us consider finding
the cost of anonymity for a Laplacian source. We will use the
same basic technique for the Gaussian case, using Na’s results
for mismatched Laplacians [19], [21].

Let U be a mean-zero, unit-variance Laplacian random
variable.

fU (u) =
1√
2
exp

{
−
√
2|u|

}
.
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Then the λMSE(u) is given by:

λMSE(u) ∝
(

1√
2
exp

{
−
√
2|u|

})1/3

(21)

∝
(

1√
2

)1/3
(
exp

{
−
√
2|u|
3

})
(22)

∝ exp

{
−
√
2|x|
3

}
(23)

which is Laplacian with variance 9 or standard deviation 3. So
the degree of mismatch in Na’s terms is ρ = 3, in the heavy-
mismatch regime. The main result is that N is O(1/N). More
precisely,

Canon(K = N/2) =
c(3)

K
− 3

8

1

K2
− 1

40

1

K4
+O

(
1

K2

)
,

(24)
where c(3) = 6.8887. Moreover, Bennett’s integral gives a
fairly good approximation:

Canon(N) ≈ 3

4

1

N
− 3

2

1

N2
. (25)

V. CONCLUSION

This paper has made a novel link between privacy
and theoretical neuroscience, establishing k-anonymity and
distribution-preservation can be achieved simultaneously using
a histogram-equalizing quantization approach. Moreover, that
a compander-based approach to histogram equalization will
achieve k-anonymity with exponentially large probability. Fi-
nally, the cost of anonymity has been defined as the average
distortion performance of the histogram equalization quantizer
and computed for several sources. For uniform sources the cost
of anonymity is O(1/N2), for Gaussian sources the cost of
anonymity is O(1/N lnN), and for Laplacian sources the cost
of anonymity is O(1/N). It remains to compute the cost of
anonymity for other kinds of sources, e.g. in the generalized
Gaussian family, or to determine which classes of sources
suffer the greatest cost of anonymity (and are therefore hardest
to release with both utility and privacy).

It is worth noting that the method of privacy preservation
through histogram-equalizing quantization presented here re-
tains more information about the data sample than simply
the empirical cdf, as would happen in permutation-invariant
data compression [28]. Some knowledge of the individual data
points can be recovered.

The formulation and analysis herein suggests a change in
the architecture for distribution-preserving anonymization as
described in [1]: one should first perform companding or
Rosenblatt’s transformation to obtain a uniform distribution
first, before quantization or clustering. This is because the
equiprobable (k-member) constraint for clustering makes the
optimization harder to carry out. Specifically, the procedure
of [14] suffers from many numerical difficulties, that are

not fully mitigated by the numerical tricks described therein.
Compander-based quantization is simple to implement.

The entropy maximization principle present in histogram
equalization led to further developments in neural computa-
tion, such as independent component analysis (ICA) which
transforms multidimensional signals into components that are
as statistically independent as possible [29]. It is of interest
to explore whether ICA and similar techniques hold promise
for anonymous data release in realistic multivariate settings.
In fact, whitening and similar transformations have recently
been proposed in the privacy literature [30], [31, Section 5.8].
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