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by the question of racial discrimination in decision-making scenarios such
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ABSTRACT | Racial discrimination in decision-making sce-

narios such as police arrests appears to be a violation of

expected utility theory. Drawing on results from the science

of information, we discuss an information-based model of

signal detection over a population that generates such behav-

ior as an alternative explanation to taste-based discrimina-

tion by the decision maker or differences among the racial

populations. This model uses the decision rule that maximizes

expected utility—the likelihood ratio test—but constrains the

precision of the threshold to a small discrete set. The preci-

sion constraint follows from both bounded rationality in hu-

man recollection and finite training data for estimating

priors. When combined with social aspects of human decision

making and precautionary cost settings, the model predicts

the own-race bias that has been observed in several econo-

metric studies.

KEYWORDS | Beliefs; decision making; quantization; racial

discrimination

I . INTRODUCTION

Quantization is prevalent in economic phenomena,

whether declaring recessions in macroeconomics, group-
ing citizens into districts in social choice theory, grading

agricultural commodities in trade [1], penny shaving and

similar arbitrage in finance (cf., [2]), advertisement tar-

geting in marketing, and even resource allocation in basic

microeconomics [3, p. 35]. Yet, studies of these phenomena

do not draw on insights from the science of information,

where compression and quantization as responses to infor-

mation constraints are understood deeply [4]–[6]. The

emergence of rational inattention theory [7] brings
Shannon-theoretic principles into economics, but con-

straining mutual information implicitly assumes the asymp-

totic latency or system size needed for coding theorems to

endow this constraint with operational significance [8].

Quantization theory [4], [5], however, is eminently

applicable when latency and size are not large. It is use-

ful for understanding the economic settings mentioned

above and beyond. Here, we use a quantization-theoretic
approach to develop a bounded rationality model of hu-

man decision making that may provide insight into a

most troubling aspect of civic life: racial discrimination.

In particular, our informational theory studies ensembles

of decision problems people face in their daily lives

when they have limited memory to characterize the spe-

cific decision problems drawn from the ensembles.

The theory builds on our past work on decision mak-
ing under memory constraints [9]–[12], but further using

facts from social cognition and social segregation. We

note that although many of the decision-theoretic and

quantization-theoretic aspects of the model were devel-

oped in [9] (together with some basic social implica-

tions), the central contribution of the present paper is in

placing model implications within the social science lit-

erature by making strong connections to extant work in
several fields including economics, sociology, psychology,

and law. Doing so requires new mathematical results,

e.g., in learning theory, which are also given.
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Racial discrimination often manifests in decision-
making settings where the subject and object of decision

making are members of different races. This phenome-

non is often attributed to a taste for discrimination

where the decision maker derives utility from differential

treatment of races or to statistical differences between

races leading to improved decision-making performance

via differential treatment. Often there is reason to sus-

pect these effects are not a complete explanation. We
ask whether there are alternative mathematical models

of behavior that may also provide explanation; we give a

model of limited human decision making that generates

racial discrimination independent of the other two

effects.

Decision making under risk and uncertainty is one of

the most basic economic actions. Typical decisions in-

clude the binary choice of whether to hire a worker, and
whether a rule is being violated. Such binary choice is

mathematically equivalent to detecting a signal in noise

(observations are never perfect). Indeed, signal detection

theory forms the core of psychological models of cogni-

tion, including choice and classification [13]. Many eco-

nomic analyses of choice use the decision rule that

maximizes expected utility [14]–[17], the likelihood ratio

test (LRT) [18]. The key parameter of the LRT is the
threshold. When an optimal strategy is employed, it is a

function of the prior probabilities of the two choices as

well as the costs assigned to the two types of errors.

If several decision problems with differing prior prob-

abilities are to be solved, the optimal strategy is to also

set thresholds differently each time. Examples of such

scenarios include calling of fouls by sports referees and

making of arrests by police officers, as each player/citizen
has a different prior probability of committing a foul or

crime. Now consider a decision maker who categorizes or

groups together population members by prior probability,

e.g., a police officer using categories law-abiding, delin-
quent, criminal, and nefarious in the decision to arrest a

citizen instead of using the citizen’s precise individual

prior probability of committing a crime.

We describe a model of decision making under uncer-
tainty that incorporates population categorization (and

consequently limited threshold precision), mathematized

using quantization theory [4], [9]. The proposed model

aims to explain the bias based on race, the so-called ra-

cial profiling observed in several decision-making scenar-

ios of the type described, including foul calls by National

Basketball Association (NBA) referees, arrests for minor

offences by police, and searches of stopped vehicles by
police [19]–[21].

LRTs are not only optimal detection rules, but psy-

chology experiments suggest human decision makers also

employ them [22], [23]. Psychology experiments also

suggest humans are able to use prior probabilities in de-

cision rules when available in natural formats [24]. The

use of prior probabilities to set the threshold makes the

decision rule Bayesian; Bayesian models are common in
both psychology and economics [25], [26].

There are two motivations for considering decision

makers who categorize according to prior probabilities.

First, using a different threshold for different decisions

puts much strain on a human decision maker (the ref-

eree or police officer). When decision makers make deci-

sions on members of a population, information

processing constraints lead to categorical and coarse
thinking [27]–[29]. Second, if the prior probabilities are

learned by the decision maker from noisy samples, then

categorization helps prevent the statistical phenomenon

of overfitting [30, Ch. 5.3].1

To reach an information-based model that generates

discrimination, rather than a taste-based, statistical, or

implicit one [32]–[34]2 we require a few ingredients in

addition to limited precision in the LRT threshold. These
additional ingredients arise from social structure [35]

and social cognition [36].

Distinct from the categorization due to information

processing limits or generalizable learning, social cogni-

tion theory predicts another form of categorization.

There is evidence that people tend to automatically cate-

gorize others according to race in multiracial societies

[37]–[39]. As a consequence, when decision makers
make decisions on members of a racially mixed popula-

tion, they may use different decision rules for different

racial groups.

The social interaction patterns of decision makers

may also influence their cognitive processes. One might

think social interaction history plays no role in economic

decisions, but social life and economic life are inextrica-

bly intertwined. We assume human decision makers are
unable to completely discount social experience in deter-

mining how to deploy their limited decision-making re-

sources (spillover may be due to the use of common

brain regions [40]). In studying racial bias, the relevant

parameter of social interaction is race. Due to segrega-

tion in social life, there is greater intrarace interaction

than interrace interaction; see, e.g., [41] and [42].

In our model, the mismatch between exposure to dif-
ferent racial populations in social life and in economic

life is a central cause for the social welfare loss that may

accompany racial bias in decision making. We call this

social welfare loss the price of segregation. The price of

1A passage in [31] summarizes this perspective: “One obvious ex-
planation would be along the lines of bounded rationality—due to limi-
tations of the human mind, simpler theories are easier to conceive of,
recall, communicate, and test. While this explanation is certainly valid,
it is worth our while to ask whether there might be an innate advan-
tage in preferring simpler theories. That is, assume that you are pro-
gramming an organism endowed with unlimited computational power.
When the organism compares different theories, would you like to in-
struct the organism to prefer simpler ones (keeping accuracy and gen-
erality constant)? One may attempt an affirmative answer along the
following lines.… [The] argument is that the preference for simplicity
is a guarantee against overfitting.”

2See [32] for discussion on various forms of discrimination.
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segregation is a purely informational phenomenon rather
than one involving social capital or in-group/out-group

trust issues [43]–[45].

In most decision-making scenarios, one of the hy-

potheses leads to no action and is the default (null hy-

pothesis), whereas the other requires action (alternative

hypothesis). For example, no foul call, no arrest, and no

search are default actions. We call the utility function of

the decision maker precautionary if the cost of deciding
for the active hypothesis when the default hypothesis is

true is much greater than the cost of deciding for the de-

fault hypothesis when the active hypothesis is true. We

call the utility function dauntless if the cost ordering is

reversed.

In the overall model we develop, the utility function

of the decision maker must be precautionary to explain

greater active outcomes for the population that is of dif-
ferent race than the decision maker, such as those found

in many empirical observations. If the utility function is

dauntless, then the model predicts greater active out-

comes for the population that is of the same race, which

has also been observed occasionally, e.g. [46]. The pro-

posed model generates the interesting phenomenon that

the decision-making utility function of the decision

maker has a fundamental effect on the nature of racial
discrimination, a phenomenon that has not been de-

scribed before by a single model.

II . RELATED PRIOR WORK

The model we propose is based on categorization, specif-

ically the quantization of prior probabilities, due to

memory constraints and social cognition factors, and
generates discrimination in decision making. Here, we

review prior work on both quantization and on

discrimination.

A. Bounded Rationality and Quantization
Of late, economic theories and models have started

taking bounded rationality into account [47]–[50]. Two

basic kinds of models of imperfect memory may be con-
sidered. In the first kind, truly bounded rationality [49],

there is an explicit model of memory in which the deci-

sion maker is not aware of the limitation: the goal then

is to look for the implications of the constraints [51],

[52]. In the second kind of model, costly rationality [49],

the decision maker has a memory constraint but is fully

aware of this limitation. The decision maker can then

use an optimal strategy under the constraint [53]–[56].
Our model follows the costly rationality paradigm.

Although optimal quantization theory [4], [5] has not

appeared in previous economic models, forms of catego-

rization have. Dow looks at a sequential decision-making

scenario, where the decision maker is deciding whether

to purchase from one vendor or another [53]. The deci-

sion maker first observes the price of the first vendor,

but does not purchase. Then, the decision maker ob-
serves the price of the second vendor, compares the

prices, and purchases from the lower priced vendor.

However, due to bounded rationality, the decision maker

only remembers a quantized version of the first price

when comparing. The problem setup in that work is dif-

ferent than the scenario we discuss, but the analysis has

similar flavor.

Mullainathan also considers a sequential scenario and
is concerned with learning beliefs from data, but deci-

sion making is not a part of the framework [57]. In a se-

quence of observations, the decision maker perfectly

knows the state of an object. If a rational decision maker

keeps making observations for a long time, the empirical

frequencies of the observations converge to the true

probabilities. The model, however, inserts bounded ratio-

nality into the learning process. Quantization regions
partition the probability simplex; sequential updates to

the probabilities are based not on likelihoods from data,

but quantized versions of likelihoods from data. Because

decision making is not a part of the picture in the work,

the optimization criterion is not correctly matched; gen-

eral learning and learning for a particular purpose such

as decision making are not always equivalent.

B. Discrimination
Our model falls under the economics of information

[58] and is a theory of information-based discrimination,

but is distinct from statistical discrimination [33] and im-

plicit discrimination [34]. Quantization serves to reduce

the available amount of information. Unlike other studies

of discrimination, we assume that the racial populations

are identical in the relevant quality, that the measure-
ment process for judging quality is also identical, and

that there are no dynamic effects.

A possible way to model discrimination is that it hap-

pens because blacks commit more fouls or whites com-

mit more crimes. This assumption that the propensity to

commit a foul or crime is different in different racial

populations is called statistical discrimination [33]. For

example, Phelps [59] assumes the two populations are
not identical in propensity and Peski [60] assumes popu-

lation membership and propensity are correlated. These

heterogeneity assumptions are not required in the model

proposed here; we specifically focus on the situation

when the populations have identical distributions of

prior probabilities.

Another proposed explanation for discrimination is

via a dynamic process in which a group fails to invest in
human capital because it is not valued by the decision

maker, a self-fulfilling prophecy [33], [61], [62].

Knowles, et al. similarly argue that nonidentical propen-

sities arise as an equilibrium in the interaction of police

officers and citizens, also proposing an empirical test be-

tween statistical discrimination and taste-based discrimi-

nation [63]; Anwar and Fang give an alternate model
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and test that makes use of the police officer’s race [64].
Our model does not require a dynamic equilibrium but

generates racial discrimination in a static setting of iden-

tical prior probability distributions.

Another potential modeling component is that popu-

lation members of a different race as the decision maker

are observed with greater uncertainty than population

members of the same race. In addition to nonidentical

populations, Phelps [59] assumes there are different
levels of noise in measuring different populations. Other

work enforces identicalities over the populations, but re-

quires some difference in estimator performance to ex-

plain discrimination [65], [66]. Similarly, Cornell and

Welch [67] work with identical quality distributions in

the two populations, but assume a different quality of

measurements depending on whether the decision maker

and applicant for employment are of the same or differ-
ent race, specifically in tournament situations of screen-

ing; implications of their model are fairly similar to what

we find. Unlike these works, our model uses identical

measurement quality for different populations.

Like the model developed herein, Fryer and Jackson

[28] do not require differences among populations or

measurements, or feedback to explain bias. Their work

discusses how decision makers use categorization for in-
formation processing, how decisions for minority popula-

tions may be less accurate, and how this may lead to

discrimination against minority groups even without ma-

levolent intent. However, the model faces shortcomings

introduced by not considering the race of the decision

maker. It also implicitly requires the objects of decision

making to be members of minority groups, rather than

being a general model. Further, Fryer and Jackson [28]
do not consider categorization specifically for decision

making and yet despite this simplification say “we are

unable to prove general results about optimal categoriza-

tions, and this failure is itself informative” going on to

say that “providing a full description of what an optimal

categorization looks like … is a hard problem.” The sci-

ence of information overcomes both of these shortcom-

ings [4]. Unlike the Fryer–Jackson model, our explicit
decision-theoretic model implies that decision-making

attitude fundamentally impacts the nature of racial

discrimination. Additionally, our model yields the

price of segregation as a measure of social welfare loss,

something wholly absent in [28]. Finally, our model

has stronger empirical content, as it yields a quantita-

tion of difference in differences in decision-making

performance.

III . DECISION-MAKING MODEL

In this section, we propose a model of decision making

where the prior probabilities that go into the LRT thresh-

old are optimally quantized, motivated by recall limita-

tions of people or generalizable learning. (The learning

motivation is explicated in Section IV.) The model is
further extended to have separate optimal quantizers for

different racial populations, as motivated by social cog-

nition factors.

A. Bayes Risk and Likelihood Ratio Test
Detection Rule

Consider signal detection in which a decision maker
uses a noisy observation Y to determine whether an ob-

ject (citizen or player) is in state h0 or h1. State h0 corre-

sponds to a null hypothesis such as no foul committed,

whereas h1 corresponds to an alternative hypothesis such

as foul committed. Noisy observations on whether a foul

was committed are modeled by likelihood functions

fYjHðyjh0Þ and fYjHðyjh1Þ. The object has prior probability

p0 of being in state h0 and p1 ¼ 1� p0 of being in state
h1, i.e., p0 ¼ Pr½H ¼ h0� and p1 ¼ Pr½H ¼ h1�. In a popu-

lation of objects, each object may have a different prior

probability. That is, different citizens may have different

prior propensities for crime. The population is modeled

by a probability density function fP0ðp0Þ supported on the

unit interval (2-D probability simplex); this is a probabil-

ity distribution on probabilities.

The detection rule ĥðyÞ of the decision maker is
the LRT

fYjHðyjh1Þ
fYjHðyjh0Þ

G
9

ĥðyÞ¼h0

ĥðyÞ¼h1

c10a

c01ð1� aÞ (1)

where cij is the nonnegative cost of deciding hj when
the true state is hi (we assume the decision maker as-

signs no cost to correct decisions). Parameter a weights

the decision rule so as to allow the incorporation of

prior beliefs. There are two types of errors, with the

following probabilities:

pIE ¼ Pr½ĥðYÞ ¼ h1jH ¼ h0�
pIIE ¼ Pr½ĥðYÞ ¼ h0jH ¼ h1�:

The Bayes risk, the performance of the decision rule, may

be expressed in terms of those error probabilities as

Jðp0; aÞ ¼ c10p0p
I
EðaÞ þ c01ð1� p0ÞpIIE ðaÞ: (2)

Error probabilities depend on a through ĥð�Þ, given in (1).

If parameter a is set so a ¼ p0, the decision rule (1) is the

Bayes optimal decision rule, minimizing Bayes risk (2).

The function of one variable Jðp0; p0Þ is zero at points

p0 ¼ 0 and p0 ¼ 1 and is positive-valued, strictly concave,

and continuous in the interval ð0; 1Þ. Note that Jðp0; aÞ is
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a linear function of p0 with slope ðc10pIEðaÞ � c01p
II
E ðaÞÞ

and intercept c01p
II
E ðaÞ; furthermore, Jðp0; aÞ is tangent to

Jðp0; p0Þ at a.

B. Quantized Prior
The choice a ¼ p0 in the LRT (1) is the fully rational

one. An essential piece of our model, however, is that

the decision maker is bounded to be a coarse thinker and

must use the same prior belief parameter a for different
objects. Thus, the decision maker only has access to

which category an object belongs to, when making deci-

sions about that object. Categorization of objects (in the

prior probability space) is modeled as a quantizer for the

population distribution fP0ðp0Þ. A K-point quantizer of

fP0ðp0Þ partitions the interval ½0; 1� into K regions

R1; . . . ;RK . For each quantization region Rk, there is a

representation point ak to which elements are mapped.
This value ak may be thought of as the prior probability

for a prototype member of the kth category. For deter-

ministic regular quantizers,3 regions are subintervals

R1 ¼ ½0; b1�;R2 ¼ ðb1; b2�; . . . ;RK ¼ ðbK�1; 1� and repre-

sentation points ak are in Rk. A quantizer can be viewed

as a nonlinear function qKð�Þ such that qKðp0Þ ¼ ak for

p0 2 Rk.

With constraint, the decision maker uses the prior
belief parameter a ¼ qKðp0Þ in the LRT (1). There are

many possible quantization functions or categorizations

of objects; following costly rationality, qKð�Þ should be

optimal in terms of decision-making performance. We

propose that qKð�Þ (for fixed K) minimizes

D ¼ E½JðP0; qKðP0ÞÞ � JðP0; P0Þ�, where the expectation is

with respect to fP0ðp0Þ. As such, the quantization fidelity

criterion is the difference between the Bayes risk with
quantized priors and the optimal Bayes risk with unquan-

tized priors.

We term the quantization distortion function

dðp0; aÞ ¼ Jðp0; aÞ � Jðp0; p0Þ the Bayes risk error (BRE).

As the difference of the tangent line to a strictly convex

function and that convex function, the BRE is a Bregman

divergence [70]. It is nonnegative and only equal to zero

when p0 ¼ a, is continuous and strictly convex as a func-
tion of p0 2 ð0; 1Þ for all a, and for any deterministic

LRT has exactly one stationary point as a function of a 2
ð0; 1Þ for all p0, which is a minimum. The BRE is quasi-

convex as a function of a 2 ð0; 1Þ for all p0: a slightly

weaker condition than having exactly one stationary

point that is a minimum [71, Sec. 3.4.2].

1) Quantized Prior Mathematical Details: In general, the
design of an optimal quantizer does not have a closed-

form solution. Nevertheless, there are three conditions
that an optimal quantizer must satisfy. These three nec-

essary conditions are known as the centroid condition,

the nearest neighbor condition, and the zero probability

of boundary condition [4], [72]–[74].

Let us define the centroid centðRÞ of a random vari-

able P0 in a region R with respect to a distortion func-

tion dð�; �Þ as

centðRÞ ¼ argmin
a

E½dðP0; aÞ j P0 2 R�: (3)

Condition 1 (Centroid): For a given set of quantization

regions fRkg, the optimal representation points satisfy

ak ¼ centðRkÞ and for BRE (and any other Bregman di-

vergence [75]), ak ¼ E½P0 j P0 2 R�.

Condition 2 (Nearest Neighbor): For a given set of rep-

resentation points fakg, the quantization regions satisfy

Rk � fp0 j dðp0; akÞ � dðp0; ajÞ for all j 6¼ kg: (4)

For BRE, the boundary point bk 2 ½ak; akþ1� is the ab-

scissa of the point at which the lines Jðp0; akÞ and
Jðp0; akþ1Þ intersect. This point is

bk ¼
c01 pIIE ðakþ1Þ � pIIE ðakÞ

� �
c01 pIIE ðakþ1Þ � pIIE ðakÞ

� �� c10 pIEðakþ1Þ � pIEðakÞ
� � :

The intersection point is obtained by manipulating the

slopes and intercepts of Jðp0; akÞ and Jðp0; akþ1Þ.

Condition 3 (Zero Probability Boundary): The third nec-

essary condition for quantizer optimality only arises

when dealing with probability distributions that contain

a discrete component and are thus not absolutely contin-
uous. The random variable P0 must have zero probability

of occurring at a boundary between quantization regions.

This condition from optimal quantization theory [4] was

rediscovered in economics by Fryer and Jackson [28,

Lemma 1].

Theorem 1 [4], [72]–[74]: Conditions 1, 2, and 3 are

necessary for a quantizer to be optimal.
If additional conditions are met, then the necessary

conditions for optimality are also sufficient for local

optimality.

Theorem 2: If the following conditions hold:

1) fP0ðp0Þ is positive and continuous in ð0; 1Þ;
2)

R 1

0
dðp0; aÞfP0ðp0Þdp0 is finite for all a; and

3There is no loss of optimality in restricting attention to determin-
istic regular quantizers and the Voronoi partitions they imply since the
Bayes risk error dðp0; aÞ is strictly convex in p0 for all a; see [4, Lemma
6.2.1]. Moreover according to the psychological principles of grouping
according to proximity, humans are thought to categorize according to
considerations of perceived similarity between objects [68], [69],
which is regular quantization.
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3) dðp0; aÞ is zero only for p0 ¼ a, is continuous in
p0 for all a, and is continuous and quasi-convex

in a;
then the nearest neighbor condition, the centroid condi-

tion, and zero probability of boundary conditions are suf-

ficient to guarantee local optimality of a quantizer.

Proof: Minor modification of results in [76]. h
One can note that the first and second conditions of

Theorem 2 are met by common distributions such as the
family of beta distributions. The third condition is satis-

fied by BRE, as described above. The conditions for opti-

mality suggest the iterative Lloyd–Max algorithm [4],

[73], [74].

C. Separate Quantizers for Different Racial
Populations

We now turn to the situation in which the decision

maker must deal with subpopulations distinguished ac-

cording to a socially observable part of identity like race
[77]. For clarity and ease of connection to empirical

studies, we restrict to two groups and use “black” and

“white” to denote them. The rational coarse-thinking de-

cision maker should ignore the irrelevant dimension of

race altogether and simply partition along the p0 dimen-

sion, but social cognition constraints prevent the deci-

sion maker from doing so.

Automaticity of racial categorization results in two
quantizers designed separately for the two populations.

The total quota on representation points Kt is split into

some number of points for whites and some number for

blacks, denoted Kt ¼ Kw þ Kb. The separate quantizers

may then be denoted qKw
ð�Þ and qKbð�Þ.

We can extend the definition of mean BRE to two

populations as

Dð2Þ ¼ mw

mw þ mb
E½JðP0; qKw

ðP0ÞÞ�

þ mb

mw þ mb
E½JðP0; qKbðP0ÞÞ� � E½JðP0Þ� (5)

where mw and mb are the number of whites and blacks

within the social and economic ambit of the decision

maker. Under costly rationality, the goal is to minimize

this extended BRE by finding optimal quantizers qKw
ð�Þ

and qKb
ð�Þ and optimal allocation of representation points

Kw and Kb.

The model we propose assumes that the two popu-
lations are identical. Thus, qKwð�Þ and qKb

ð�Þ should be

designed as discussed earlier. The problem reduces to

minimizing expected BRE over all Kt � 1 possible allo-

cations of Kw and Kb. Although there are sophisticated

algorithms for optimal allocation of levels [78], just

measuring the performance of all allocations and

choosing the best one suffices.

Fryer and Jackson [28] previously suggested it is bet-

ter to allocate more representation points to a majority

population than to a minority population. Optimal alloca-

tion in this model yields the same result when the notion

of majority and minority are with respect to the decision
maker’s interaction pattern. If mw is larger than mb, it is

better to allocate more representation points to whites

whereas if mb is larger than mw, it is better to allocate

more representation points to blacks. An example of op-

timal allocation is shown in Fig. 1.

In this section, we have proposed a Bayesian LRT

that incorporates prior probability quantization to model

human decision making. The model has been further ex-
tended for decision making on distinct racial populations

through separate quantization functions to incorporate

social cognition factors. Section V quantitatively and

qualitatively shows the implications of this model.

IV. LEARNING

To this point in the paper, the motivation for the LRT

model with quantized priors has been bounded rational-

ity on the part of the human decision maker. In this sec-

tion, we present an alternate motivation that is statistical
in nature—the prevention of overfitting—and arises en-

dogenously without appealing to human memory or in-

formation processing constraints. Overfitting is the

statistical phenomenon of an overly complex model

learned from training data having poor predictive perfor-

mance or generalization on new unseen data drawn from

the same distribution as the training data [79].

Fig. 1. Optimal allocation of quantizer sizes to the white

population and black population for Kt ¼ 7 as a function of the

proportion of whites. The gray line is Kw and the black line is

Kb. The distribution of the prior probability is beta(5, 2), the

measurements are observed through additive white Gaussian

noise with unit signal-to-noise ratio, and the Bayes costs are

c10 ¼ c01 ¼ 1.
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A. Decision-Maker Training Model
The prior probability quantization described thus far

in the paper is based on a known population distribution

fP0ðp0Þ. Here we consider the situation in which this dis-
tribution is assumed to be unknown directly. Available to

the decision maker is a set of noisy estimates of prior

probabilities p̂0;j, j ¼ 1; . . . ; n, i.e., noisy prior probably

estimates for n players or citizens in the population.

These n players are drawn independently from fP0ðp0Þ
and have true prior probabilities p0;j, j ¼ 1; . . . ; n.

The noisy estimates are specifically as follows. For a

particular player j, the referee observes mj plays of that
player. A play is of hypothesis h0 with probability p0;j and
hypothesis h1 with probability 1� p0;j. The referee observa-
tion is a random variable Yj which has mean zero when the

hypothesis is h0 and has mean one when the hypothesis is

h1; the distribution around the specified mean is identical

under each hypothesis. A simple unbiased, consistent, uni-

versal estimate for p0;j from these mj samples is

p̂0;j ¼ 1� 1

mj

Xmj

i¼1

yj;i (6)

which we assume the decision maker takes as the prior

probability for player or citizen j.
The proposed model of samples may be understood

by considering what data the decision maker might ob-

serve when learning about the population. Populations

contain a finite number of objects, which is why the fi-

nite number n is included in the model. In training, the

decision maker can only observe each object a finite

number of times mj. When the decision maker is

learning about the population, perfect measurements of

the object state or hypothesis may not be available. These

measurements will generally be noisy; the variables yj;i
capture any measurement noise. Overall, this formula-

tion models a referee who learns prior probabilities of

players from repeated noisy observations of their plays.
The estimate p̂0;j may be used by the decision maker

directly in the LRT threshold for citizen j. Alternatively,
the collection of p̂0;j may first be grouped into K < n
clusters with the threshold for citizen j a function of his

or her cluster center. The appropriate clustering here is

K-means clustering to minimize BRE [80]. Such cluster-

ing is a way to reduce complexity and prevent overfit-

ting. Note that clustering with K ¼ n is equivalent to not
clustering.

As the number of samples n increases, the sequence

of clusterings learned from p0;1; . . . ; p0;n converges to the

quantizer designed from fP0ðp0Þ under conditions on the

distortion function met by the BRE due to convexity and

quasi-convexity in its two arguments [81], [82]. In our

case, it is not the p0;1; . . . ; p0;n, but the consistent esti-

mates p̂0;1; . . . ; p̂0;n that are available, so all of the mj

must also increase for overall convergence. However, our

interest is not in studying the situation of n and mj

growing without bound, but to consider the situation

with finite n and mj.

B. Decision-Maker Generalization Behavior
With prior probability estimation, minimum mean

BRE K-means clustering, and LRT detection as defined

above, we would like to examine the behavior of the

minimum mean BRE as a function of K, which tells us

the generalizability of the detection rule learned from mj

noisy samples.

For specificity, we focus on a model in which the

likelihood functions fYjHðyjh0Þ and fYjHðyjh1Þ are Gaussian

Fig. 2.Mean BRE with quantization of known fP0 ðp0Þ (gray line),

and with K-means clustering of noisy prior probability estimates

with m ¼ 100 (black line), uniform P0, and c10 ¼ 1, c01 ¼ 4.

Fig. 3. Zoomed in portion of Fig. 2.
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with means zero and one, and the same variance. We

take the noisy measurements that the decision maker

uses in learning about the population to be a mixture of
two Gaussians with means zero and one, and the same

variance. The mixture weights are p0;j and 1� p0;j. Thus,
the noisy measurements used by the decision maker in

learning about the population are of the same type as

used when doing the LRT. The number of observations

per player or citizen mj is taken to be the same value m
across all n players or citizens in the population.

The mean BRE of this formulation with noisily
learned prior probabilities is plotted as a function of the

number of clusters K for a particular choice of parame-

ters. (The same behavior repeats for other choices of pa-

rameters.) A zoomed in portion appears in Fig. 3. The

black lines are the mean BRE values of the formulation

with learning, and the gray lines are the mean BRE

values of the formulation with quantization of known

fP0ðp0Þ. The black lines are not smooth due to the sto-
chastic nature of the random sampling and the discrete

nature of K-means clustering.

The mean BRE of clustering noisy estimates is greater

than the mean BRE of quantizing the population distri-

bution. Importantly, whereas the mean BRE of quantiza-

tion goes to zero as K goes to infinity, the mean BRE of

clustering does not go to zero. In fact, there is an inter-

mediate value of K at which the mean BRE is minimized.
This is most obviously seen in Fig. 3. This behavior is a

manifestation of the overfitting phenomenon. By limiting

complexity through limiting prior probability precision,

decision-making performance improves.

We further examine the effect of the training set

size. The best value of K for a given m is plotted in

Fig. 4. Just as importantly, we see that a larger training

set implies that more clusters should be used. Since the
estimate p̂0;j gets closer to p0;j as m increases, less regu-

larization in the form of clustering is needed.

The formulation of this section exhibits the hallmark

behavior of overfitting in statistical learning. This be-

havior may be analyzed theoretically within the context

of the class proportion estimation (CPE) problem [83].

For example, existing risk bounds for the CPE problem

(in which complexity is controlled by other means)

[84]–[86] may be modified by characterizing the
Rademacher complexity of K-means clustering via

�-entropy [87].
To summarize, even when quantization/clustering is

not imposed as a form of bounded rationality on the part

of the decision maker, we discover that clustering is opti-

mal from a statistical learning perspective. Furthermore,

it is true that if we have two different amounts of training

mw and mb, then K�
w � K�

b for mw > mb, and K�
b � K�

w for
mb > mw. These relationships are the same as before, but

here obtained without decision-maker processing limitations.

V. MODEL PREDICTIONS

Having established a mathematical model of optimal de-

cision making under memory and social cognition con-

straints, we explicitly put forth some model predictions.

A. Price of Automaticity
Bayes risk performance does not get worse when the

number of quantization levels K is increased, under opti-

mal memory-constrained decision making. Let

D�ðKÞ ¼
XK
k¼1

Z

R�
k

dðp0; a�kÞfP0ðp0Þdp0

denote mean BRE for an optimal K-point quantizer.

Then, D�ðKÞ is a nonincreasing sequence of K [9]. In

typical settings (Fig. 5), performance strictly improves

with each increase in the number of quantization levels.

Fig. 4. Number of clusters that minimize mean BRE with K-means

clustering of noisy prior probability estimates for several values

of m, uniform P0, and c10 ¼ 1, c01 ¼ 4.

Fig. 5.Mean BRE of optimal quantizers as a function of the

number of quantizer cells K. The distribution of the prior

probability is beta(5, 2), the measurements are observed through

additive white Gaussian noise with unit signal-to-noise ratio, and

the Bayes costs are c10 ¼ c01 ¼ 1.
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A referee will perform better with more categories

rather than fewer. A police officer confronting an individ-

ual with whom she has prior experience will make a bet-

ter decision if she has the mental categories law-abiding,
delinquent, criminal, and nefarious, rather than just good
and bad.

Since there is a finite budget of categories, automatic-

ity of racial categorization leads to coarser categories and

loss in BRE performance for each of the subpopulations,

the price of automaticity. In Fig. 5, halving the number of

levels (e.g., in evenly splitting across two subpopula-

tions) from 8 to 4 has much less effect on mean BRE

than going from 4 to 2 or 2 to 1. As the number of quan-

tization levels tends to infinity, halving has negligible ef-
fect (see [9, Sec. IV] for precise high-resolution

characterization). Fig. 6 demonstrates a decrease in the

price of automaticity as the prior probability distribution

becomes more concentrated. If the prior distribution

were supported on a finite set of mass points with cardi-

nality less than Kw and Kb, the price of automaticity

would be zero.

If contrary to our assumptions that subpopulations
have identical prior probability distributions, there are

significant statistical differences among subpopulations

(as in statistical discrimination [33]), separate quantizers

with fewer levels may yet be better. This is if the perfor-

mance degradation from mismatch is more than perfor-

mance degradation from rate loss.

B. Difference in Differences
Many aspects of social segregation might impact deci-

sion making, but our interest is in exposure: the amount

of contact and interaction between members of different

groups [35], [41]. Due to racial isolation from social seg-

regation, there is greater intrapopulation interaction

than interpopulation interaction. Whites interact more

with whites whereas blacks interact more with blacks.

This is how even if economic life is identical, small eco-
nomically irrelevant differences in cognitively intertwined

social life can have an impact.

In the model, one would expect mw=ðmw þ mbÞ of a

white decision maker to be greater than mw=ðmw þ mbÞ
of a black decision maker. Putting this fact together with

optimal representation point allocation and monotonicity

implies a white decision maker would perform worse

than a black decision maker when dealing with blacks
and a black decision maker would perform worse than a

white decision maker when dealing with whites, measur-

ing by expected Bayes risk.

Econometric studies provide a source for comparison

to the proposed decision making model. A major diffi-

culty in interpreting these studies, however, is that

ground truth is not known. Higher rates of arrest or

foul calls may be explained by either a greater pIE or
smaller pIIE . It is possible that a greater probability of

missed fouls would actually decrease the number of fouls

called. This motivates a closer look at the Bayes risk; we

tease it apart into its constituent parts and examine the

Bayes costs in detail.

Using sports officiating as our running example, the

measurable quantity is the probability that a foul is

called. This rate of fouls is

Pr½ĥðYÞ ¼ h1� ¼ 1� p0 þ p0p
I
E � ð1� p0ÞpIIE : (7)

Looking at the average performance of a referee over the

populations of black and white players, we compare the
expected foul rates on whites and blacks

�ðc10; c01Þ ¼ E Pr½ĥKbðYÞ ¼ h1� � Pr½ĥKw
ðYÞ ¼ h1�

h i

¼ E½P0pIEðq�Kb
ðP0ÞÞ � ð1� P0ÞpIIE ðq�Kb

ðP0ÞÞ
� P0p

I
Eðq�Kw

ðP0ÞÞþð1�P0ÞpIIE ðq�KwðP0ÞÞ�: (8)

If this discrimination quantity � is greater than zero,

then the referee is calling more fouls on blacks. If � is

less than zero, then the referee is calling more fouls on

whites.

The dependence of � on c10 and c01 has been explic-

itly notated on the left-hand side of (8) and is implicit in

the two types of error probabilities on the right-hand
side of (8). The value of � also depends on the unquan-

tized prior distribution fP0ðp0Þ, the values of Kw and Kb,

and the measurement model. Fixing these, we can deter-

mine the regions in the c10 � c01 plane where a referee

would call more fouls on blacks and where a referee

would call more fouls on whites. This is shown in Fig. 7.

For the uniform prior fP0ðp0Þ, the two regions are divided

Fig. 6. Price of automaticity (mean BRE difference of optimal

quantizers in halving the number of levels), as a function of the

concentration parameter � for the distribution of the prior

probability being beta(2, �), with the measurements observed

through additive white Gaussian noise with unit signal to noise

ratio, and Bayes costs c10 ¼ c01 ¼ 1.
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by the line c01 ¼ c10. For the beta distribution prior de-

picted, the dividing line is c01 ¼ �c10, where � > 1.
For any population model and measurement model,

there is one half-plane where a referee would call more

fouls on black players and the other half-plane where the

referee would call more fouls on white players. To reiter-

ate, just because the Bayes risk for foul-calling on black

players is greater than that for white players, it does not

automatically imply that the foul call rate for blacks is

higher. The high Bayes risk could well be the result of a
preponderance of missed foul calls.

This result may be interpreted in terms of precaution-

ary and dauntless decision making. The precautionary

principle corresponds to Bayes cost assignment with

c01 	 c10, whereas the dauntless principle corresponds

to Bayes cost assignment with c01 
 c10. Thus, we may

call a referee with Kw > Kb that calls more fouls on black

players as precautionary and that calls more fouls on
white players as dauntless. A referee with Kw < Kb that

calls more fouls on black players is dauntless and more

fouls on white players is precautionary.

Econometric studies often give differences in differ-

ences to show racial bias. The first “difference” is the dif-

ference in foul call rate between black players and white

players, which in our notation is �. The second “differ-

ence” is the difference in � between white referees and
black referees. Denoting the foul call rate difference of a

white referee by �W and the foul call rate difference of

a black referee by �B, the difference in differences is

�W ��B.

Fig. 8 plots the difference in differences as a function

of the ratio c01=c10 for two different population distribu-

tions, a beta distribution and the uniform distribution.

The right-hand side of the plot is the precautionary re-

gime, where white referees would call more fouls on

black players than black referees. For the particular ex-
amples, if c01=c10 ¼ 10, then the white referee has a foul

call rate 0.0132 greater than the black referee on black

players for the beta distribution and 0.0142 greater for

the uniform distribution.

The left-hand side of the plot is the dauntless regime,

where white referees would call fewer fouls on black

players than black referees. For the particular examples,

if c01=c10 ¼ 0:1, then the white referee has a foul call
rate 0.0013 less than the black referee on black players

for the beta distribution and 0.0142 less for the uniform

distribution. In these examples, the white referee has

Kw ¼ 4, Kb ¼ 3, and the black referee has Kw ¼ 3,

Kb ¼ 4.4

C. Price of Segregation
Decision makers of different races exhibit different

biases because they have different Kw and Kb allocations

due to different mw=ðmw þ mbÞ ratios. This ratio is not

the actual fraction of whites whose actions are assessed

by the decision maker, but is determined in part by the

decision maker’s segregated social life. If decision makers

of all races have a bias that matches the true white frac-
tion, then the phenomenon of racial bias would actually

achieve optimal social welfare.5 Different decision-

Fig. 8. Difference in differences in foul calling as a function of

the Bayes cost ratio. The white referee has Kw ¼ 4, Kb ¼ 3 and

the black referee has Kw ¼ 3, Kb ¼ 4. For the dashed line, the

prior probability distribution is beta(5, 2) and measurements

are through additive white Gaussian noise with unit

signal-to-noise ratio. For the solid line, the prior probability

distribution is uniform.

4There is no requirement for the white referee to have Kw > Kb

and the black referee to have Kw < Kb. It is only required that the Kw

of the white referee be greater than the Kw of the black referee (assum-
ing the same Kt). We get a plot qualitatively similar to Fig. 8 if for ex-
ample the white referee has Kw ¼ 5, Kb ¼ 2, and the black referee has
Kw ¼ 4, Kb ¼ 3.

5This phenomenon is precisely statistical discrimination; its social
welfare optimality is why courts have ruled it legal.

Fig. 7. Dividing line between Bayes cost region in which referee

will call more fouls on blacks and region in which referee will call

more fouls on whites. A referee with Kb < Kw will call more fouls

on blacks in the upper left region and more fouls on whites in

the lower right region, which correspond to precautionary and

dauntless respectively. For (a), the prior probability distribution

is beta(5, 2), measurements are through additive white

Gaussian noise with unit signal-to-noise ratio, and level

allocation is Kb ¼ 3, Kw ¼ 4. For (b), the prior probability

distribution is uniform.
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making biases by different decision makers, however,
cannot simultaneously be societally optimal.

Our model fixes limitations of human information

processing, automaticity of racial classification, and inter-

twining of social and economic life. Social segregation

causes mismatch between social and economic lives and

is, therefore, the root cause of nonoptimal racial bias. To

draw connections to econometric studies where ground

truth is not known, the previous section used differences
in differences. In analogy with notions of welfare loss in

economic theory like deadweight loss, the social cost of

monopoly [88], and the price of anarchy [89], a price of
segregation is defined here as a way to measure the dele-

terious effect of segregation.

Let �true be the fraction of whites in the economic

decision-making setting. A particular decision maker

that leads a segregated life, on the other hand, will
have a white ratio �seg ¼ mw=ðmw þ mbÞ. The mean

BRE, from the perspective of society, under the true

white fraction is

Dð2Þð�trueÞ ¼ �trueE½JðP0; qKwð�trueÞðP0ÞÞ�
þ ð1� �trueÞE½JðP0; qKbð�trueÞðP0ÞÞ� � E½JðP0; P0Þ�

whereas the mean BRE, from the perspective of society,

under the segregated white fraction is

Dð2Þð�segÞ ¼ �trueE½JðP0; qKwð�segÞðP0ÞÞ�
þ ð1� �trueÞE½JðP0; qKbð�segÞðP0ÞÞ� � E½JðP0; P0Þ�:

The difference between these two is the price of segregation

�¼ Dð2Þð�trueÞ � Dð2Þð�segÞ
¼ �true E½JðP0;qKwð�trueÞðP0ÞÞ��E½JðP0;qKwð�segÞðP0ÞÞ�

n o

þ ð1� �trueÞ E½JðP0; qKt�Kwð�trueÞðP0ÞÞ�
n

� E½JðP0; qKt�Kwð�segÞðP0ÞÞ�
o
:

The price of segregation � depends strongly on the discon-

tinuous, integer-valued Kwð�Þ function, and is also discontin-
uous. The price of segregation is a nondecreasing function
of the level of segregation mismatch j�true � �segj. An exam-

ple of the price of segregation for a particular society and

several values of �true is shown in Fig. 9. Notice that if the

level of mismatch is small, there may be no price of

segregation.

The model predicts that greater homogeneity of social

interaction among people would mitigate the price of

segregation by driving the �seg for all decision makers

closer to �true.

VI. CONCLUSION

In this paper, we have formulated a model of LRT detec-

tion with quantized priors which generates discrimina-

tive behavior when combined with theories of social

cognition and facts about social segregation. The discrim-
inative behavior arises despite having identical distribu-

tions for different populations and despite no malicious

intent on the part of the decision maker. The quantiza-

tion of priors model is developed not only because “cate-

gorizing serves to cut down the diversity of objects and

events that must be dealt with uniquely by an organism

of limited capacities” [90, p. 235], but also because limit-

ing complexity promotes good generalization and pre-
vents overfitting in learning [30, Ch. 5.3].

A. Empirical Comparisons
The proposed model predicts that decision-making

performance of a decision maker of the opposite race as

the citizen or referee is worse than performance of a de-

cision maker of the same race. This prediction is, in fact,
born out experimentally. A large literature in face recog-

nition shows exactly the own-race bias effect that we

predict, observed colloquially as “they [other-race per-

sons] all look alike.” In particular, both kinds of errors

that factor into Bayes risk increase when trying to recog-

nize members of the opposite population [91], as verified

with laboratory experiments.

Fig. 9. The price of segregation � as a function of the level of

segregation mismatch �true � �seg for several values of

�true. The distribution of the prior probability is beta(5, 2),

the measurements are observed through additive white

Gaussian noise with unit signal-to-noise ratio, the Bayes costs

are c10 ¼ c01 ¼ 1, and Kt ¼ 7.
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Econometric studies also provide a source for compari-
son to the proposed model, but as noted, only Pr½ĥðYÞ ¼
h1� is observed. We note that the addition of police officers

of a given race is associated with an increase in the number

of arrests of suspects of a different race but has little im-

pact on same-race arrests. The effect is more pronounced

for minor offenses [20] where the prior probability pre-

sumably plays a bigger role than the measurement. There

are similar own-race bias effects in the decision by police
to search a vehicle during a traffic stop [21] and in the de-

cision of NBA referees to call a foul [19]. The rate of

searching and the rate of foul calling are greater when the

decision maker is of a different race than the driver and

player, respectively. These studies are consistent with

model predictions if decision makers are precautionary.

For example, Antonovics and Knight [21] report

Pr½ĥðYÞ ¼ h1� ¼ 0:0097 for white officers and black
drivers, Pr½ĥðYÞ ¼ h1� ¼ 0:0040 for white officers and

white drivers, Pr½ĥðYÞ ¼ h1� ¼ 0:0082 for black officers

and black drivers, and Pr½ĥðYÞ ¼ h1� ¼ 0:0062 for black

officers and white drivers. Thus, �W ¼ 0:0097�
0:0040 ¼ 0:0057 and �B ¼ 0:0082� 0:0062 ¼ 0:0020,
resulting in a difference in differences of 0:0037. This is
of the same order of magnitude seen in Fig. 8 with pre-

cautionary cost settings. Interestingly, there are two dif-
ferent precautionary cost settings that yield a given

difference in differences value: one in which the cost ra-

tio is fairly small and another in which the cost ratio is

quite large. An exact numerical prediction for the differ-

ence in differences curve could be made from the model

if we had knowledge of fP0ðp0Þ, Kw, and Kb.

An experiment found jurors in a simulated rape trial

in Canada convicted same-race defendants more than
other-race defendants, though there were confounding

variables [46]. This study is consistent with model pre-

dictions if decision makers are dauntless. A precaution-

ary utility function leads to higher ĥ ¼ h1 rates for the

opposite race whereas a dauntless view leads to higher

rates for the own race. Such a phenomenon of the deci-

sion maker’s attitude fundamentally altering the nature

of discrimination seems not to have been described be-
fore. The Bayes costs of decision makers are revealed in

their bias; the model suggests Canadian jurors truly do

believe in the standard of proof and the concept of

“innocent until proven guilty.”

Note that utility elicitation may be used to determine

whether a decision maker is precautionary or dauntless

[92]. As such, our theoretical framework is empirically

falsifiable by observed inconsistency between attitude
and bias.

B. Testing for Quantization-Based Discrimination
Due to legal and policy considerations, economists

have developed several empirical tests to differentiate

statistical discrimination (in the strict sense of [33])

from taste-based discrimination [21], [63], [64]. These

tests are designed to determine whether there are differ-
ences between racial populations in the dimension rele-

vant to the decision-making task. If the test finds no

basis for statistical discrimination, then the discrimina-

tion is attributed to taste-based discrimination.

Our model assumes there is no difference between

racial populations and therefore no basis for statistical

discrimination. Our information-based discrimination

can be differentiated from statistical discrimination using
the same tests as for taste-based discrimination. Indeed,

our model of decision making provides an alternate ex-

planation for racial bias that has traditionally been attrib-

uted to a taste for discrimination.

Both our information-based discrimination and taste-

based discrimination can be differentiated from statistical

discrimination on the basis of econometric data, but one

might wonder whether the two can be differentiated
from each other. Recall the expression for the threshold

in the LRT (1): ðc10a=c01ð1� aÞÞ. Taste-based discrimina-

tion implies different Bayes costs cij for citizens of differ-
ent races whereas information-based discrimination may

imply different prior belief parameters a for citizens of

different races. Since Bayes costs and prior belief param-

eter are mixed together in the threshold, their individual

effects cannot be discerned without independent data
about c10=c01 or about a=ð1� aÞ. As Radner remarked

[93], “differences of opinion (as embodied in different a

priori distributions, for example)… [are equivalent to]

conflicts of interest,” i.e., a taste for discrimination.

The courts have often declared taste-based discrimi-

nation illegal but have found rational statistical discrimi-

nation legal [21], [63], [94], since statistical

discrimination is not the product of animus [95]. Here
we have developed a model of information-based dis-

crimination free from animus, that is often empirically

indistinguishable from taste-based discrimination. Hence,

the legal evidentiary standard for taste-based discrimina-

tion may need to be revisited.

As a final note, implicit discrimination [34] is said to

arise due to implicit pro-white/anti-black cognitive asso-

ciations among both white and black decision makers
[96]–[99]. It is very different from our information-based

discrimination and from taste-based discrimination. Due

to its asymmetry, it should be readily differentiable in

empirical data.

C. Model Extensions
The present model of decision making can be ex-

tended to higher dimensions of various types. First, one
may consider M-ary hypothesis testing rather than just

binary, e.g., for a stage in sequential hypothesis testing,

or in college admissions where outcomes include {admit,
reject, waitlist}. The resultant vector quantization prob-

lem partitions the ðM� 1Þ-dimensional probability sim-

plex. Second, one may increase the number of racial

groups from two to N. An exhaustive search over
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representation point allocations for integer partitions of
Kt : Kt ¼ K1 þ K2 þ � � � þ KN may be used; this only in-

volves the design of a linear number of quantizers and a

small optimization problem. Third, one may consider ef-

fects of a higher dimensional socially observable attribute

space; identity is not just race. In fact, some social di-

mensions may be consciously and explicitly correlated in

order to further define identity [77]. The gains of vector

quantization over scalar quantization are enhanced when
there is dependence among dimensions [4].

Besides extensions to higher dimensions, one can

consider a restricted class of quantizers rather than opti-

mal quantization. Such restriction may model further

cognitive constraints on decision makers. In particular,

Fryer and Jackson [28] have suggested a heuristic algo-

rithm for quantizer design based on splitting groups,

which is a rediscovery of the tree-structured vector quan-
tizer design algorithm given by [100, Fig. 20].

One may also consider group decision making, where

team-theoretic and game-theoretic considerations arise

[11], [101].

D. Discussion
Discrimination on the basis of race has been a trou-

blesome problem in civic life. This paper has presented a
formal model of decision making reflecting ideas from

psychology, social cognition theory, and sociology, which

generates such discriminative behavior. It includes full

Bayesian rationality as a limiting case that displays no

discrimination. Biased decision making arises despite

having identical ex ante propensity distributions for dif-
ferent populations and despite no taste for discrimination

or implicit discrimination on the part of the decision

maker.

In a sense, the model predicts that greater homogene-

ity of social interaction among decision makers would

mitigate the price of segregation. This draws a connec-

tion to one branch of intergroup contact theory, which

suggests that contact reduces prejudice since it allows in-
dividuals the chance to see previously unnoticed similari-

ties and counterstereotypic characteristics and behaviors

in one another [102], [103], a conclusion similar to

model predictions. Perhaps unexpectedly, social interac-

tion is not linear in the overall ratio of subgroup popula-

tions [42], perhaps due to structural reasons [35].

We have drawn on the science of information to sug-

gest a mechanism by which discrimination may arise de-
spite lack of malevolence and a priori identicality

between populations. Discrimination in the model arises

through assumptions of automaticity of classification

along social characteristics and the finite human capacity

for information processing. This complements taste-

based, statistical, and implicit mechanisms that explain

racial discrimination. h
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Birkhäuser, 2004, pp. 253–297.

[3] G. S. Becker, A Treatise on the Family,
enlarged ed. Cambridge, MA, USA:
Harvard Univ. Press, 1991.

[4] A. Gersho and R. M. Gray, Vector
Quantization and Signal Compression.
Boston, MA, USA: Kluwer, 1992.

[5] R. M. Gray and D. L. Neuhoff,
“Quantization,” IEEE Trans. Inf. Theory,
vol. 44, no. 6, pp. 2325–2383, Oct. 1998.

[6] T. Berger and J. D. Gibson,“Lossy source
coding,” IEEE Trans. Inf. Theory, vol. 44,
no. 6, pp. 2693–2723, Oct. 1998.

[7] C. A. Sims, “Implications of rational
inattention,” J. Monet. Econ., vol. 50, no. 3,
pp. 665–690, Apr. 2003.

[8] C. E. Shannon, “A mathematical theory of
communication,” Bell Syst. Tech. J., vol. 27,
pp. 379–423, 623–656, Jul./Oct. 1948.

[9] K. R. Varshney and L. R. Varshney,
“Quantization of prior probabilities for
hypothesis testing,” IEEE Trans. Signal

Process., vol. 56, no. 10, pp. 4553–4562,
Oct. 2008.

[10] K. R. Varshney and L. R. Varshney,
“Optimal grouping for group minimax
hypothesis testing,” IEEE Trans. Inf. Theory,
vol. 60, no. 10, pp. 6511–6521,
Oct. 2014.

[11] J. B. Rhim, L. R. Varshney, and V. K. Goyal,
“Quantization of prior probabilities for
collaborative distributed hypothesis testing,”
IEEE Trans. Signal Process., vol. 60, no. 9,
pp. 4537–4550, Sep. 2012.

[12] J. B. Rhim, L. R. Varshney, and V. K. Goyal,
“Distributed decision making by
categorically-thinking agents,” in Decision
Making and Imperfection, T. V. Guy,
M. Karny, and D. H. Wolpert, Eds.
New York, NY, USA: Springer-Verlag,
2013, pp. 37–63.

[13] B. M. Turner, T. Van Zandt, and S. Brown,
“A dynamic stimulus-driven model of signal
detection,” Psychol. Rev., vol. 118, no. 4,
pp. 583–613, Oct. 2011.

[14] F. P. Ramsey, “Truth and probability,” in
The Foundations of Mathematics and Other
Logical Essays, R. B. Braithwaite, Ed.,
New York, NY, USA: Harcourt, Brace and
Company, 1931, pp. 156–198.

[15] B. de Finetti, “La prévision: Ses lois logiques,
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