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ABSTRACT

In signal detection, Bayesian hypothesis testing and minimax hy-
pothesis testing represent two extremes in the knowledge of the prior
probabilities of the hypotheses: full information and no information.
We propose an intermediate formulation, also based on the likeli-
hood ratio test, to allow for partial information. We partition the
space of prior probabilities into a set of levels using a quantization-
theoretic approach with a minimax Bayes risk error criterion. Within
each prior probability level, an optimal representative probability
value is found, which is used to set the threshold of the likelihood
ratio test. The formulation is demonstrated on signals with additive
Gaussian noise.

Index Terms— quantization, categorization, hypothesis testing,
signal detection, Bayes risk error

1. INTRODUCTION

Signal detection or hypothesis testing is one of the basic endeav-
ors in statistical signal processing. The likelihood ratio test is the
optimal decision rule for most variations of this task [1]. Different
variations, including Bayesian, Neyman–Pearson and minimax, in-
duce different thresholds to which the likelihood ratio is compared.
Thus, the setting of the threshold is the key component of the hy-
pothesis test. In this paper, we devise a new formulation for setting
the threshold that interpolates between Bayesian and minimax hy-
pothesis testing using an application of quantization theory [2]. We
term this formulation multilevel minimax hypothesis testing.

In the binary Bayesian formulation, the decision rule is chosen
to minimize the Bayes risk. The ratio of the prior probabilities of
the two hypotheses is one factor in the threshold of the optimal like-
lihood ratio test. Thus the Bayesian threshold requires prior knowl-
edge of the prior probabilities. In many real-world scenarios, it is
difficult to obtain the exact prior probabilities before a signal detec-
tion system is deployed. This difficulty motivates minimax hypoth-
esis testing. In minimax hypothesis testing, the threshold is chosen
to minimize the Bayes risk under the worst-case prior probabilities
of the hypotheses. However, the worst-case formulation ignores any
possible partial information about the prior probabilities that may be
available in advance.

We formulate multilevel minimax hypothesis testing to incorpo-
rate partial knowledge of the prior probability in the following form.
An interval or cell of the probability simplex where the true prior
probability lies is known and the threshold is set to minimize the
worst-case error between the Bayes risk over the cell and the Bayes
risk had the true prior probability been known exactly. This formula-
tion appeals to quantization theory and the Bayes risk error distortion
measure that we introduced previously in [3, 4].

Our previous work reduced to quantization that minimizes ex-
pected distortion [3, 4]. Here the problem is quantization to min-
imize maximum distortion; the formulation here is minimax Bayes
risk error quantization of prior probabilities rather than minimum
mean Bayes risk error quantization. To the best of our knowledge,
there has been no other previous work on the quantization of prior
probabilities for hypothesis testing. Studies and results in quanti-
zation theory typically focus on expected distortion but maximum
distortion does also appear occasionally, e.g. [5, 6, 7], and has con-
nections to ε-covering and ε-entropy [8]. Our work, providing a
means to consider intervals of prior belief rather than exact prior
belief, is similar in spirit but differs in details to decision making
based on interval-valued probability described in [9]. There are also
connections to representative prior distributions [10] and the robust
Bayesian viewpoint [11, 12].

The remainder of the paper is organized in the following manner.
In Sec. 2, we describe the signal detection setup under consideration
and the minimax quantization optimization problem that follows. In
Sec. 3, we derive the Lloyd–Max optimality conditions for mini-
max Bayes risk error quantization. We provide examples of optimal
quantizers and corresponding maximum distortions in Sec. 4. Fi-
nally, Sec. 5 concludes with discussion.

2. MATHEMATICAL FORMULATION

Consider the binary hypothesis testing problem. There are two hy-
potheses h0 and h1 with prior probabilities p0 = Pr[H = h0]
and p1 = Pr[H = h1] = 1 − p0, a noisy observation Y , and
likelihoods fY |H(y|H = h0) and fY |H(y|H = h1). A deci-
sion rule ĥ(y) that uniquely maps every possible y to either h0 or
h1 is to be determined. There are two types of error probabilities:
pI
E = Pr[ĥ(Y ) = h1|H = h0] and pII

E = Pr[ĥ(Y ) = h0|H = h1].
The optimal decision rule ĥ(y) minimizes the Bayes risk func-

tion J(p0):

J(p0) = c10p0p
I
E(p0) + c01(1− p0)pII

E(p0), (1)

where c10 is the cost of the first type of error and c01 is the cost of
the second type of error. The error probabilities are functions of the
prior probability p0 via the threshold on the right side of the Bayes
risk optimal decision rule:

fY |H(y|H = h1)

fY |H(y|H = h0)

ĥ(y)=h1

R
ĥ(y)=h0

p0c10
(1− p0)c01

. (2)

The function J(p0) is zero at the points p0 = 0 and p0 = 1 and
is positive-valued, strictly concave, and continuous in the interval
(0, 1) [13].
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Fig. 1. Example J(p0) (black curve) and J(p0, a) (cyan line).

The Bayesian hypothesis testing threshold on the right side of (2)
relies on the true prior probability p0. As discussed in Sec. 1, this
value may not be known in advance. When the true prior probability
is p0, but the threshold in ĥ(y) uses some other value a, there is mis-
match. The Bayes risk of the decision rule with threshold ac10

(1−a)c01
is:

J(p0, a) = c10p0p
I
E(a) + c01(1− p0)pII

E(a). (3)

J(p0, a) is a linear function of p0 with slope (c10pI
E(a)−c01pII

E(a))
and intercept c01pII

E(a). J(p0, a) is tangent to J(p0) at a and
J(p0, p0) = J(p0). Example J(p0) and J(p0, a) are shown in
Fig. 1.

The minimax hypothesis testing threshold is determined by find-
ing the a that minimizes the worst-case J(p0, a), that is:

a∗minimax = argmin
a

max
p0

J(p0, a). (4)

In such notation, a∗Bayesian = p0. Thus in Bayesian hypothesis testing,
a continually changes with p0, whereas in minimax hypothesis test-
ing, there is a single value of a for all p0. In the multilevel minimax
hypothesis testing that we propose, there are K different possible
values of a that depend discontinuously on p0 through the quantizer
function qK(p0).

TheK-level regular quantizer function qK(p0) is defined as fol-
lows. The probability simplex [0, 1] is partitioned into K intervals
Q1 = [0, b1], Q2 = (b1, b2], Q3 = (b2, b3], . . . , QK = (bK−1, 1].
There are also K representation points ak ∈ Qk, k = 1, . . . ,K.
The quantizer function is qK(p0) = ak for p0 ∈ Qk. The quantizer
design problem is to determine {b1, . . . , bK−1} and {a1, . . . , aK}
to optimize some objective.

The multilevel minimax hypothesis testing formulation that we
propose is captured by the following quantizer design problem:

q∗K = argmin
qK

max
p0

d(p0, qK(p0)), (5)

where as in [3, 4], the Bayes risk error d(p0, a) is:

d(p0, a) = J(p0, a)− J(p0). (6)

Operationally, knowing in advance that the true prior probability p0
falls in level Qk, multilevel minimax hypothesis testing indicates
that the representation point ak be used in setting the threshold.

In the K = 1 case, it is straightforward to show that the rep-
resentation point of q∗1 , a∗1, equals the minimax hypothesis testing

value a∗minimax, and occurs at the peak of J(p0). However forK > 1,
the representation point ak within an intervalQk is not the point that
minimizes the maximum Bayes risk J(p0, a); rather it is the point
that minimizes the maximum Bayes risk error d(p0, a).

In this section, we have defined an intermediary formulation be-
tween Bayesian and minimax hypothesis testing that we call multi-
level minimax hypothesis testing. At its extremes, this formulation
reduces to the two well-established hypothesis testing methodolo-
gies: minimax at K = 1 and Bayesian at K = ∞. Toward this
end, we have formulated a minimax quantization problem. The next
section discusses how to find the optimal quantizer q∗K .

3. OPTIMALITY CONDITIONS

This section develops necessary conditions for local optimality of
a quantizer for the probability simplex under the multilevel mini-
max criterion defined above. In particular, first we find a centroid
condition to locally optimize a representation point ak when its cor-
responding interval boundaries bk−1 and bk are fixed. Then we find
a nearest neighbor condition to locally optimize a boundary point
bk when its adjacent representation points ak and ak+1 are fixed.
Optimal quantizers can be found by alternately applying the nearest
neighbor and centroid conditions through a version of the iterative
Lloyd–Max algorithm [2, 5].

3.1. Centroid Condition

Within a fixed quantization interval Qk with boundaries bk−1 and
bk, we would like to derive an expression for the optimal represen-
tation point ak. The optimization problem is:

ak = arg min
a∈Qk

max
p0∈Qk

d(p0, a). (7)

Let us first focus on the inner maximization. As an initial step,
we write the equation for the Bayes risk error in terms of the deriva-
tive of the Bayes risk function, which we denote as J ′(p0).

d(p0, a) = (p0 − a)J ′(a) + J(a)− J(p0). (8)

From this form, we see that the second derivative of d(p0, a) with
respect to p0 is −J ′′(p0), which is greater than zero due to the strict
concavity of J(p0). Thus, d(p0, a) has no local maxima in the inte-
rior ofQk; the maximum occurs at an endpoint: bk or bk−1. Conse-
quently,

max
p0∈Qk

d(p0, a) = max{d(bk, a), d(bk−1, a)}

=
d(bk−1, a) + d(bk, a) + |d(bk−1, a)− d(bk, a)|

2
. (9)

Substituting (8) into (9) and simplifying, we find that (9) equals

(bk−1 + bk − 2a)J ′(a)− J(bk−1)− J(bk) + 2J(a)

2

+
|(bk−1 − bk)J ′(a)− J(bk−1) + J(bk)|

2
, (10)

which is to be minimized with respect to a ∈ Qk.
Due to the absolute value function, there are two cases to con-

sider:

1. (bk−1 − bk)J ′(a)− J(bk−1) + J(bk) ≤ 0 and

2. (bk−1 − bk)J ′(a)− J(bk−1) + J(bk) > 0.
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Due to the concavity of the Bayes risk function, J ′(a) is monotoni-
cally decreasing. Therefore, since (bk−1 − bk) is negative, (bk−1 −
bk)J

′(a)−J(bk−1)+J(bk) is a monotonically increasing function
of a. Consequently the two cases of the absolute value correspond
to the intervals (bk−1, a

†] for case 1 and (a†, bk] for case 2, where
a† satisfies:

(bk−1 − bk)J ′(a†)− J(bk−1) + J(bk) = 0. (11)

In the first case, (10) simplifies to:

(bk − a)J ′(a) + J(a)− J(bk)

with derivative with respect to a:

(bk − a)J ′′(a),

which is less than zero because (bk − a) > 0 and J ′′(a) < 0 due to
Bayes risk concavity. Thus the minimization objective is monotoni-
cally decreasing in the first case.

In the second case, (10) simplifies to:

(bk−1 − a)J ′(a) + J(a)− J(bk−1),

which has derivative with respect to a:

(bk−1 − a)J ′′(a),

which is greater than zero because (bk−1 − a) < 0 and J ′′(a) <
0. In the second case, the minimization objective is monotonically
increasing.

Since (10) is decreasing over (bk−1, a
†] and increasing over

(a†, bk], it is minimized at a†. Therefore ak = a†. The represen-
tation point satisfies (11). This is equivalently a slope matching
condition:

J ′(ak) =
J(bk)− J(bk−1)

bk − bk−1
. (12)

At the optimal representation point ak, the slope of the Bayes risk
function equals the slope of the line connecting the Bayes risk func-
tion evaluated at the endpoints of the intervalQk.

3.2. Nearest Neighbor Condition

In the nearest neighbor condition, we would like to find the inter-
val boundary bk given the representation points ak and ak+1. As
discussed in Sec. 3.1, the maximum Bayes risk error within an in-
terval occurs at the interval boundary. Therefore, we would like to
minimize the Bayes risk error at the interval boundary.

Specifically, bk should be chosen to minimize the maximum of
d(bk, ak) and d(bk, ak+1). At a given potential boundary point b,
the J(b) term is the same in both d(b, ak) and d(b, ak+1), so only
J(b, ak) and J(b, ak+1) need be considered. Due to the geometry of
the problem, bk should be the abscissa of the point at which the lines
J(p0, ak) and J(p0, ak+1) intersect. Working with the definitions
of J(p0, ak) and J(p0, ak+1), we find the point of intersection to
be:

bk =
c01
(
pII
E(ak+1)− pII

E(ak)
)

c01 (pII
E(ak+1)− pII

E(ak))− c10 (pI
E(ak+1)− pI

E(ak))
.

(13)
The nearest neighbor condition for minimax Bayes risk error

quantization is the same as that for minimum mean Bayes risk error
quantization [3, 4].
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Fig. 2. (a) Minimum mean and (b) minimax Bayes risk error quan-
tizers for µ = 1, σ2 = 1, c10 = 1, c01 = 1.

4. EXAMPLES

As an example, we consider the following signal and measurement
model:

Y = sm +W, m ∈ {0, 1}, (14)
where s0 = 0 and s1 = µ, and W is a zero-mean, Gaussian random
variable with variance σ2. The parameters µ and σ2 are known,
deterministic quantities. The error probabilities for this signal model
are:

pI
E(p0) = Q

(
µ
2σ

+ σ
µ
ln
(

c10p0
c01(1−p0)

))
, and

pII
E(p0) = Q

(
µ
2σ
− σ

µ
ln
(

c10p0
c01(1−p0)

))
,

where Q(α) = 1√
2π

∫∞
α
e−x

2/2dx.
We use the Lloyd–Max algorithm to design quantizers for the

proposed criterion using the centroid and nearest neighbor condi-
tions derived in Sec. 3. We show such quantizers for K = 4 and
different ratios of the Bayes costs c10 and c01 along with different
ratios of µ and σ2. We also compare these quantizers with those
designed to minimize mean Bayes risk error.

Fig. 2 shows quantizers for equal Bayes costs and equal mean
and standard deviation. In the plots, the black curve is J(p0) and the
cyan line is J(p0, q4(p0)), with their difference being d(p0, q4(p0)).
The circle markers are the representation points and the vertical lines
indicate the interval boundaries of the different prior probability lev-
els. The minimax levels and representation points are more clus-
tered in the middle of the probability simplex and around the peak
of J(p0) than the minimum mean levels and representation points.
This is more apparent in the quantizers for the noisier measurement
model with µ = 1 and σ2 = 2 shown in Fig. 3, and the quantizers
for unequal Bayes costs c10 = 10 and c01 = 1 shown in Fig. 4.

The scaling behavior of the minimax Bayes risk error as a func-
tion of K is shown in Fig. 5 on both linear and logarithmic scales.
The convergence from the edge case of minimax hypothesis testing
to the other edge case of Bayesian hypothesis testing is linear on the
plot with logarithmic axes (with approximately the same slope for
different Bayes cost and noise settings). This indicates that the min-
imax distortion converges proportional to K−β , where β is a posi-
tive constant. This minimax error scaling can also be viewed as the
asymptotic behavior of the minimum covering radius with respect to
Bayes risk error distortion.

5. CONCLUSION

The minimax hypothesis testing detection rule is employed for ro-
bustness to uncertainty in the prior probabilities, but can give poor
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Fig. 3. (a) Minimum mean and (b) minimax Bayes risk error quan-
tizers for µ = 1, σ2 = 2, c10 = 1, c01 = 1.
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Fig. 4. (a) Minimum mean and (b) minimax Bayes risk error quan-
tizers for µ = 1, σ2 = 1, c10 = 10, c01 = 1.

detection performance in terms of Bayes risk. The Bayesian hypoth-
esis testing detection rule gives the best possible detection perfor-
mance in terms of Bayes risk, but makes use of completely certain
prior probabilities. It is not difficult to imagine scenarios in which
there is uncertainty in the priors, but this uncertainty is not complete.
It is for these scenarios that we have developed multilevel minimax
hypothesis testing. As can be seen in Fig. 5, even K = 2 or K = 3
levels provide a significant gain in performance.

Our formulation of multilevel minimax hypothesis testing is an
interesting variation of quantization to minimize Bayes risk error, a
problem we studied in the expected distortion case in [3, 4]. For ex-
pected distortion, a probability distribution over the prior probabili-
ties is needed, i.e. a distribution over the population of events whose
detection we are considering. This probability distribution over prior
probabilities may be as difficult to obtain as the prior probability of
a single event of interest in real-world settings; examination of the
minimax criterion, which does not require this distribution of priors,
is therefore of importance.

In [3, 4], we examined the implications of quantized prior hy-
pothesis testing through the lens of human decision making, specif-
ically looking at members of different racial populations whose ac-
tions were to be judged, e.g. was a foul or crime committed. In
that work, we assume that the different racial groups have the same
prior probability distributions of committing fouls or crimes so that
the model is fair across racial groups. With the minimax criterion,
no assumption on racial population prior probability distributions is
required, and thus has fairness as an intrinsic quality.

The minimax criterion is one way to provide robustness, but seg-
ment method hypothesis testing, proposed as an alternative to mini-
max hypothesis testing in [14], is another way. In future work, mul-
tilevel segment method hypothesis testing could be developed.
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Fig. 5. Minimax Bayes risk error for µ = 1, σ2 = 1, c10 = 1,
c01 = 1 (blue line), µ = 1, σ2 = 2, c10 = 1, c01 = 1 (green line),
and µ = 1, σ2 = 1, c10 = 10, c01 = 1 (red line), on (a) linear and
(b) logarithmic scales.

6. REFERENCES

[1] H. L. Van Trees, Detection, Estimation, and Modulation The-
ory. New York: Wiley, 1968.

[2] A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression. Boston: Kluwer Academic Publishers, 1992.

[3] K. R. Varshney and L. R. Varshney, “Minimum mean Bayes
risk error quantization of prior probabilities,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., Las Vegas, Nevada,
Apr. 2008, pp. 3445–3448.

[4] ——, “Quantization of prior probabilities for hypothesis test-
ing,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4553–
4562, Oct. 2008.

[5] S. Graf and H. Luschgy, Foundations of Quantization for Prob-
ability Distributions. Berlin: Springer-Verlag, 2000.

[6] N. Sarshar and X. Wu, “Minimax multiresolution scalar quanti-
zation,” in Proc. Data Compression Conf., Snowbird, UT, Mar.
2004, pp. 52–61.

[7] Y. A. Reznik, “An algorithm for quantization of discrete prob-
ability distributions,” in Proc. Data Compression Conf., Snow-
bird, UT, Mar. 2011.

[8] A. N. Kolmogorov and V. M. Tihomirov, “ε-entropy and ε-
capacity of sets in functional spaces,” Am. Math. Soc. Trans-
lations Series 2, vol. 17, pp. 277–364, 1961.

[9] M. Wolfenson and T. L. Fine, “Bayes-like decision making
with upper and lower probabilities,” J. Am. Stat. Assoc., vol. 77,
no. 377, pp. 80–88, Mar. 1982.

[10] C. Hildreth, “Bayesian statisticians and remote clients,”
Econometrica, vol. 31, no. 3, pp. 422–438, Jul. 1963.

[11] J. O. Berger, “The robust Bayesian viewpoint,” Purdue Univ.,
Tech. Rep. 82-9, Apr. 1982.

[12] L. R. Pericchi and P. Walley, “Robust Bayesian credible inter-
vals and prior ignorance,” Int. Stat. Rev., vol. 59, no. 1, pp.
1–23, Apr. 1991.

[13] R. A. Wijsman, “Continuity of the Bayes risk,” Ann. Math.
Statist., vol. 41, no. 3, pp. 1083–1085, Jun. 1970.

[14] B. H. Krogh and H. V. Poor, “The segment method as an al-
ternative to minimax in hypothesis testing,” Inform. Sciences,
vol. 27, no. 1, pp. 9–37, Jun. 1982.

112


