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FOOD STEGANOGRAPHY WITH OLFACTORY WHITE
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ABSTRACT

Can one hide an averse food in a flavorful food so that the averse
food is not perceptible? Here we take a statistical signal process-
ing approach to show how to optimally design a food additive (ei-
ther using pure flavor compounds or natural ingredients) to act as a
steganographic key for this food steganography problem. We use a
synthesis-based model of olfaction that has emerged in the psychol-
ogy literature and the percept known as olfactory white acts as an
intermediate signal in our approach. The problem decomposes into
predictive analytics and prescriptive analytics components. In the
predictive component, we learn a mapping from the space of physic-
ochemical descriptors of flavor compounds to the space of percep-
tual odor descriptors through multivariate regression with nuclear
norm regularization. In the prescriptive component, we find optimal
mixtures of compounds or foods to make the averse food impercep-
tible in the flavorful food by posing and solving an inverse problem
with non-negativity constraints. We demonstrate the proposed ap-
proach on real-world physicochemical and olfactory perception data
for compounds in food.

Index Terms— olfactory signal processing, steganography

1. INTRODUCTION

Properties of human perception have frequently been used to design
image processing and audio processing systems that have people as
end users of light and vibration signals. However, signal process-
ing for olfactory signals is in an incipient stage; one reason is the
difficulty in compactly specifying the fundamental inputs to the hu-
man perceptual system. Whereas vibration and light signals inter-
acting with the ears and eyes are compactly parameterized by am-
plitude, phase, and frequency, olfactory signals interacting with the
nose manifest as collections of chemical compound molecules drawn
from a very large set. Although the possible inputs are nearly count-
ably infinite, evidence suggests that the space of olfactory perception
is fairly low-dimensional [1,2] due to the nature of cortical signal
processing [3].

Moreover, there has been a recent finding that a white olfac-
tory percept exists in human perception with a similar connotation as
white light and white audio signals [4]. A white odor is one that has
equal amplitude across all olfactory perception dimensions, similar
to white light having equal amplitude across all frequencies. While
there are many promising directions to pursue in olfactory signal
processing, in this paper we focus on steganography, the very old
concept of imperceptibly hiding a signal into a cover medium [5-7].
More specifically, we develop a methodology for hiding one food
into another food. (Human flavor perception involves a variety of
external sensory stimuli and internal states, but the smell of foods is
the key contributor [8]. Thus, we only consider the olfactory proper-
ties of the chemical compounds in food.)
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Fig. 1. Depiction of food steganography in the perceptual domain,
where macaroni & cheese is delectable, cauliflower is averse, and
the white powder is the additive.

There are many possible goals in steganography; here, the goal
is not for the receiver to decipher a hidden message, but only to make
imperceptible a food to which the receiver is averse (and which may
have good nutritional properties). Many children, as well as adults,
are picky eaters to whom junk food is more attractive than healthy
food. This instinct was useful for hunter-gatherers that depended
heavily on their senses to decide what to eat: in nature, foods that
are sweet are almost always safe to eat and are nutritious. Foods that
smell odd are potentially toxic or spoiled and less safe. In the modern
environment, this same instinct often serves to make people obese
and chronically ill. Therefore, if we can hide a nutritious averse
food in a delectable food, we can aid people in eating healthier. The
steganographic percepts are depicted in Fig. 1.

The proposed food steganography method shares characteristics
with spread spectrum image steganography [9]. A food additive
(steganographic key) combines with the averse food (hidden signal),
and the delectable food (cover medium) such that the combination
is perceived as only the delectable food’s flavor; the olfactory white
signal is used as a mathematical intermediary. The food additive
may be composed of some weighted mixture of pure compounds or
some weighted mixture of food ingredients from a dictionary. We
may also want to regularize the problem by including a sparsity or
other cost-related penalty on the food additive.

Difficulty lies in working with the olfactory perception space.
Human experiments have been conducted in which subjects de-
scribe the smell of pure chemical compounds in words, e.g. tolu-
aldehyde smelling ‘fragrant,’ ‘aromatic,” ‘almond’ and ‘sweet,” and
valeric acid smelling ‘rancid,” ‘sweaty,” ‘putrid,” ‘fecal’ and ‘sick-
ening’ [10], resulting in a perceptual space whose dimensions are
these odor descriptors. By averaging odor descriptor judgements
over several subjects, each compound can be placed as a point in
this real-valued perceptual space. Unfortunately, such experiments
have only been conducted on a small subset of flavor compounds
found in foods. Recent work, however, demonstrates the possi-
bility of predicting perceptual similarity of flavor compounds by
their physicochemical structure [11], allowing us to estimate the
perception of uncharacterized compounds and mixtures.

The components of the proposed food steganography method
are summarized as follows. First, from a small subset of compounds
for which experimentally-determined odor descriptors exist, we use
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odor descriptor data and physicochemical data to estimate a mapping
from a compound’s structural properties to its perceptual properties;
as it is believed that olfactory perception is fairly low-dimensional,
we use nuclear norm regularization to keep the rank of the estimated
mapping operator small [12]. Using data on the concentrations of
flavor compounds in foods, we take a weighted combination of the
physicochemical vectors of the constituent compounds of a food to
determine its perceptual representation, using the learned mapping.
Next, we solve a regularized inverse problem with a non-negativity
constraint to find compounds or foods and their coefficients required
to synthesize an additive that produces olfactory white when com-
bined with an averse food of interest.

2. MAPPING FROM PHYSICOCHEMICAL TO
PERCEPTUAL SPACE

The guiding principle of psychophysics is that the physical proper-
ties of a stimulus determine its percept. This is also true for olfac-
tory signals: there is some general nonlinear mapping A(-) from the
physicochemical attributes of a compound x to its perceptual odor
description y, y = A(x). In this section we develop a way to learn
the mapping from molecular structure of flavor compounds to their
percept. The goal is to estimate the perceptual representation of com-
pounds for which no experimental ground truth on perception exists,
but for which physicochemical properties are readily available.

When learning the structure-odor mapping, we restrict attention
to multivariate linear mappings since studies of human olfaction sug-
gest the validity of a linear approximation [13]. Further, we apply a
nuclear norm regularization as part of learning, since studies suggest
human olfaction is low-dimensional [1,2, 13, 14] due to the nature
of neural circuitry that performs olfactory signal processing in the
brain [3]. We treat this learning problem as one of supervised multi-
variate linear regression [12].

We are given a set of training samples {(Xx1,y1), ..., (Xn,¥n)}
where the x; € R* are physicochemical features of compounds and
the y; € R! are the perceptual vectors in the odor descriptor space.
We learn a matrix A* € R"* that maps unseen compounds from
the chemical to the perceptual space. For the purpose of generaliza-
tion, we regularize the problem using the nuclear norm. In particular,
if we concatenate all the training samples into matrices X € R*¥*"
and Y € R™™, the problem to solve is:

A" :argmgn\|YfAX|\F+/\|\A||* )
where || - || is the Frobenius norm, || - ||« is the nuclear norm, and
A trades data fidelity for sparsity of the singular values of A*. This
problem is convex and can be solved by interior point methods and
a variant of Nesterov’s smooth method [12].

Going forward we use A* as the learned linear structure-odor

mapping A(+).
3. DETERMINING THE STEGANOGRAPHIC KEY

The mapping was learned from data on individual compounds, but
how should we treat mixtures of compounds as present in food ingre-
dients? (There are typically tens to hundreds of different chemical
compounds contributing to flavor per food ingredient.) The human
brain processing mechanism in olfaction is thought to be synthetic
rather than analytical, and so smells of compounds are not combined
through a weighting scheme in the perceptual domain but rather the
combined compound mixture’s physicochemical representations are
mapped to a percept. We make a simplifying linearity assumption
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that the percept is A (Z;n:l w; Xj). The weights w; are determined

by the perceived intensities of the individual compounds in addition
to their concentrations. The nonlinear psychophysical law that maps
concentration to intensity is modulated by factors such as the com-
pound’s water solubility [15].

Let X9 be the physicochemical representation of the cover
medium’s compounds and w9 be the weights of the cover medium’s
compounds. Likewise let us introduce X ™ and w™ for the hidden
data. Let X be a dictionary of possible compounds or compound
mixtures from which we can construct the steganographic key (food
additive) along with its weight vector w(") which is the subject of
design. With this notation, the perceptual hiding we want to perform
is to choose w/) to satisfy:

A (X(f)w(f) + X (9) 5 (9) + X(h)w(h)) ~ A (X(Q)W(Q)) e

For general nonlinear structure-odor maps A(-) we would need to
appeal to the concept of olfactory white, the perceptual “zero-point,”
to make progress towards this objective. With a linear mapping,
however, the objective simplifies to:

Ax(f)w(f) ~ —AX(h>W<h). 3)

To find an additive that satisfies the objective, we solve the fol-
lowing optimization problem:
(Wm)

min [AXDw ) 4 AXPw® |2 4 A7 @

w(f)

s.t.wth) >0

where J(-) could be one of a number of possible regularization terms
meant to promote secondary objectives such as monetary frugality,
sparsity, or nutrition.

4. EXAMPLE

To demonstrate our approach to food steganography, in this section
we design food additives to act as steganographic keys for cooked
broccoli, where the cover medium may be cheese or mango juice.

The first step is to learn the structure-odor mapping matrix A, as
given in Section 2. The percept matrix Y € R'6*!43 that is used
is from the Atlas of Odor Character Profiles [10], which has char-
acterized 143 compounds such as citral, coumarin, and hexyl cin-
namic aldehyde in terms of 146 odor descriptions like crushed grass,
soapy, and burnt rubber using pooled data from a panel of hundreds
of flavor/fragrance experts. We obtained physicochemical data for
these same compounds to build the matrix X € R'8*!43 ysing Pub-
Chem,' performing matching and joining using Chemical Abstracts
Service (CAS) Registry numbers. The 18 physicochemical descrip-
tors include: topological polar surface area (TPSA), hydrogen bond
acceptor count, partition coefficient prediction (XLogP), molecular
weight, complexity, atom chiral count, rotatable bond count, and
heavy atom count. Note that several of these physicochemical at-
tributes of compounds have been indicated to determine the hedonic
percept called pleasantness [13, 16, 17]. Solving (1) with this data
and A = 1, the rank of the learned mapping is 16.

With A in hand, the next step is to characterize the averse food,
broccoli, both physicochemically and perceptually. First we deter-
mine the 21 flavor compounds in cooked broccoli, given in Table 1,
from the Volatile Compounds in Food (VCF) database.’

1http://pubchem.ncbi.nlm.nih.gov
’http://www.vcf-online.nl
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Fig. 2. Perceptual projection of the mixture of compounds contained in broccoli.
Conc. Compound Name
0.0065 | benzaldehyde
0.0324 | 1-octanol Conc. | Compound
0.0162 | 4-methylacetophenone 104520 | methane
0.0811 | phenylacetaldehyde (=benzeneacetaldehyde) 5.6617 | 2,5-hexanedione (=acetonylacetone)
0.2596 | nonanal (=pelargonaldehyde) 4.6890 | cyclotetracosane
0.0162 | limonene 3.1862 | cubenene
0.0973 | phenethyl isothiocyanate 1.7275 | 1,1’-dioxybis(1-decanol)
0.0162 | (E,E)-2,4-decadienal 0.6456 | 2,4-diphenylpyrrole
0.0649 | dimethyl trisulfide (=2,3,4-trithiapentane, methyltrithiomethane) 0.5931 | propanamide
0.0162 2—penty.lfu.ran 0.5685 | cyclooctatetraene
0.0162 | 2,3,5-trithiahexane 0.5044 | heptatriacontene (unkn.str.)
0.0162 | (E,Z)-24-heptadienal 0.3386 | p-1,5-menthadien-7-ol
0.0973 | (EE)-2.4-heptadienal 0.3376 | 2-cthyl-5-pentanoylthiophene
0.4867 | 4-(methylthio)butyl isothiocyanate 0.1209 | ethylpyrrole (unkn.sir.)
0.0162 | 2-hexenal i _ 0.1106 | docosahexaenoic acid (unkn.str.)
0.6489 | 5-(methylthio)pentanenitrile 0.0224 | 10-methyl-2-undecenal
0.0162 | dimethyl disulfide (=methyldithiomethane) 0.0055 | a-maaliene
0.4867 | 3-phenylpropanenitrile (=phenethyl cyanide, benzenepropanenitrile) 0.0041 | 2-(2-methylbutanoyl)furan
0.0227 | 1,2-dimethoxybenzene (=veratrole)
0.0649 | (Z)-3-hexen-1-ol (=leaf alcohol)
0.0162 | benzothiazole

Table 1. Olfactory compounds in cooked broccoli with their con-
centrations.

Due to data availability considerations, we take the concen-
tration values alone as the weights w; and normalize to unit ¢
norm, obtaining the physicochemical representation of the mixture
XM w™ If we project the mixture into perceptual space using A™,
the result is shown in Fig. 2. The most prominent odor descriptors
are sickening, garlic/onion, and sharp/pungent/acid.

Now we solve the inverse problem (4) to find food additives re-
quired to be the steganographic key for broccoli with two different
dictionaries X¥). One dictionary is 5736 pure compounds whereas
the other dictionary is 297 food products in VCF. We only include
food products with at least 15% of their listed compounds having
both a match in PubChem and having a concentration value listed. If
arange of concentrations is listed in VCF we use the midpoint of the
range; if the value is listed as ‘trace,” we use the value 10~ parts per
million. All food ingredient concentrations are normalized to have
unit > norms. The result based on the pure compound dictionary is
shown in Table 2 and the result based on the food ingredient dictio-
nary is shown in Table 3. Angelica seeds which have a very unique
pleasant smell unlike anything else, are the main component of the
food product-based additive.

We can also view the food ingredients-based additive in physic-
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Table 2. Additive mixture composed of pure compounds for food
steganography with cooked broccoli as the hidden data.

Conc. Food Product Name
13.2999 | ANGELICA SEED OIL
7.5619 | CUMIN SEED (Cuminum cyminum L.)
7.5328 | MUSSEL
4.3985 | BARLEY (unprocessed)
2.8275 | LOBSTER
2.7808 | BLACKBERRY BRANDY
2.5717 | ROSE WINE
2.3048 | OTHER VITIS SPECIES
1.4727 | TURNIP
1.3033 | LAMB and MUTTON FAT (heated)
0.8432 | INDIAN DILL ROOT (Anethum sowa Roxb.)
0.6520 | LOGANBERRY (Rubus ursinus var. loganobaccus)
0.4794 | ELDERBERRY FRUIT
0.1626 | PEANUT (raw)
0.0989 | MICROCITRUS SPECIES OIL
0.0285 | PRAWN

Table 3. Additive mixture composed of food ingredients for food
steganography with cooked broccoli as the hidden data.
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(a)

(b)

Fig. 3. First two principal components of the (a) physicochemical
space and (b) perceptual space of the food ingredients dictionary.
Broccoli is enclosed by a blue square and the components of the
additive mixture are enclosed by red circles.

ochemical and perceptual spaces; Fig. 3 depicts the spaces through
principal components projections. The additive and broccoli to-
gether provide a good span of the spaces, which is a property of
flavor whiteness. Broccoli plus its specific additive appears to be
white.

5. CONCLUSION

Human food aversion and food intake behavior can have significant
consequence for health, well-being, and happiness. Hence if there is
a way to hide one food inside another, it can be quite powerful.

In this paper, we have cast such food hiding as a problem of
steganography and developed olfactory signal processing techniques
to design optimal additives to enable this process. Carrying out the
design procedure required putting together data on the flavor com-
position of ingredients (from gas chromatography—mass spectrome-
try), the molecular properties of flavor compounds (from chemoin-
formatics), and the human perception of flavors (from hedonic psy-
chophysics) with algorithmic techniques for function learning and
inverse problem solution.

Moreover this paper demonstrates that with emerging under-
standing of the neural and chemical basis for human olfaction, it is
possible to extend statistical signal processing methodology to this
new multimedia domain.
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