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ABSTRACT
Computational creativity, the generation of new, unimagined ideas or artifacts by a

machine that are deemed creative by people, can be applied in the culinary domain to
create novel and flavorful dishes. In fact, we have done so successfully using a combina-
torial algorithm for recipe generation combined with statistical models for recipe ranking
and selection. However, the algorithm of creation in our prior work may be difficult for
people to interpret, understand, and ultimately adopt because the process differs from
the process of human creativity theorized in the psychology and neuroscience literatures.
In this paper, to address this issue, we discuss how human creativity, including in the
food arena, may be built on associations and how an algorithm also built on associations
can be more relatable to people so they can interact with the tool more easily. We pro-
pose a computational creativity approach that extends the data mining technique of asso-
ciation rule mining to generate new food recipes. We illustrate this associative algorithm
on real-world culinary data.

Keywords: association mining, computational creativity, food.

Computational creativity is the use of computers to generate and select ideas or arti-
facts that would be regarded as creative if produced by people alone. This area of study
has a long history with workers motivated by disparate goals. Some researchers are after
scientific understanding of the mind, whereas others have the technological goal of pro-
ducing useful tools; some practitioners may try to illuminate the psychological processes
underlying creativity, whereas others try to produce esthetically interesting results
(Boden, 2015). Herein, we take the position of engineering researchers interested in pro-
ducing tools that are useful and easy to use by people. We do not take the position of
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scientific researchers or of practitioners of either kind. We are therefore concerned with
the psychological plausibility of the algorithm only to the extent it enables people to
interact easily with it.

Boden (2004) had put forth four questions that computational creativity may try to
answer: (1) Can computational ideas help us understand human creativity? (2) Can
computers do things that at least appear to be creative? (3) Can a computer appear to
recognize creativity? (4) Can computers themselves ever really be creative (as opposed to
merely producing apparently creative performance whose originality is wholly due to the
human programmer)? To be clear, this paper is neither concerned with the psychological
question (1), nor with the deep question (4). It is simply concerned with the engineering
question (2) and a little bit with (3) insofar as it informs (2).

As such, we adopt the social constructivist definition of creativity that has been well-
developed in studying human creativity (Sawyer, 2012): Creativity is the generation of an
idea or artifact that is judged to be novel and also to be appropriate, useful, or valuable by
a suitably knowledgeable social group. This definition can be operationalized and tested
using the consensual assessment technique (CAT; Amabile, 1982), where the creativity of
an idea or artifact is rated by several experts in the creative domain, and the measured cre-
ativity is the average rating of these judges. The CAT displays strong inter-rater reliability
(Baer, 1993; Kaufman, Baer, & Cole, 2009; Kaufman, Lee, Baer, & Lee, 2007).

Within the broader field of artificial intelligence (AI), an initial stated goal was to make
machines that are creative,1 but this fell out of the main focus. Recently, tests for creativity
similar to CAT have been proposed to augment or replace the Turing test in assessing
machines’ ability to exhibit intelligent behavior equivalent to that of a human (Bringsjord,
Bello, & Ferrucci, 2001; Riedl, 2015). Computational creativity is again becoming a central
topic in AI (Buchanan, 2001; Cardoso, Veale, & Wiggins, 2009; Colton, L�opez de
M�antaras, & Stock, 2009; Colton & Wiggins, 2012; Sundararajan, 2014).

Creativity is often described as having divergent thinking to generate ideas and con-
vergent thinking to select the best ones. Association is a generative process typical in
human creativity (Finke, Ward, & Smith, 1992) and how human memory retrieval is pri-
marily thought to function. Classical studies of human creative breakthroughs have
found that insights typically result from associations with closely related material, rather
than extremely remote associations (Gough, 1976; Perkins, 1983). Further studies point
to the value of remote (but not extremely remote) associations (Benedek, K€onen, &
Neubauer, 2012; Benedek & Neubauer, 2013). Our algorithm will have associative
strength as a tunable parameter, cf. Acar and Runco (2014) for discussion of close,
remote, and extremely remote associations.

When a computationally creative computer operates as a colleague or partner to peo-
ple, such that the creative act is accomplished through integrated human-computer coop-
eration rather than autonomously (Lubart, 2005), there is often value in having the
computer act more like a person. Motivated by such a mixed-initiative approach to
human-computer interaction for creativity where human and computer enter into a cre-
ation conversation where each contributes ideas (Smith, Whitehead, & Mateas, 2011),
herein we investigate using generative algorithms for creativity based on association.

1 As noted in the proposal for the Dartmouth Summer School of 1956 which initiated the study of artificial intel-
ligence (McCarthy, Minsky, Rochester, & Shannon, 2006).

2

Associative Algorithms for Creativity



Within the domain of culinary creativity, the associative generative algorithm we
develop greedily pursues strong associations to build up a culinary artifact composed of
parts: an ingredient list comprising ingredients. The goal is to create completely new arti-
facts that have never been imagined, rather than just proposing minor modifications of
existing products (Shahbaz, Srinivas, Harding, & Turner, 2006). The types of associations
among culinary ingredients when constructing association networks to traverse include:
co-occurrence in recipes, grown in same season, similar function, similar topic, or similar
chemical composition. Association mining is further used to find interesting patterns in
the relationships between ingredients (Agrawal & Srikant, 1994).

New recipe creation proceeds as follows. Perform structural decomposition of a repos-
itory of extant artifacts to find the right level of granularity of components. Start with a
seed for inspiration and design objectives, such as novelty, flavor, balance, or cost. Build
up the ingredient list by iteratively adding components that are interestingly associated
to already-included components and also optimize the design objective. Consider adding
novel artifacts into the repository of extant artifacts.

We have recently developed and deployed a data-driven computational creativity sys-
tem for culinary recipes that has been judged creative along dimensions of recipe novelty
and flavor, measured using both impact on professional chefs and with the CAT (Varsh-
ney et al., 2013a). As detailed elsewhere (Pinel & Varshney, 2014; Pinel, Varshney, & Bhat-
tacharjya, 2015; Pinel, Varshney, & Tounsi, 2013; Varshney, Pinel, Varshney,
Sch€orgendorfer, & Chee, 2013b; Varshney et al., 2013a) and reviewed herein, our system
design encapsulates the divergent thinking to conceive of ideas and the convergent think-
ing to select the best ones into distinct computational models. The selective component
involves predictive analytics using chemical, psychophysical, attentional, and culinary
principles, whereas the generative component uses a combinatorial stochastic sampling
approach drawing on an inspiration set of extant culinary recipes. In contrast to the pro-
posed associative algorithm, this previous system is not as relatable to people.

Note that the predictive model within the selective component does, in a sense, allow
the overall system to perceive the flavors of the proposed dish. It computes flavor pleas-
antness and flavor pairing synergy (Varshney et al., 2013a).

To validate the new associative algorithm for generating recipe ideas, we replace the
combinatorial generative algorithm in the larger system architecture, create culinary
recipes, and examine these outputs.

The remainder of the paper is organized as follows. First we review some of the litera-
ture on the associative nature of human creativity, which serves as inspiration for the
algorithmic development to follow. Included in this review is a discussion of associative
memories, which shows the central role of stored data in creativity. Then, after giving
background on the data mining technique of association rule mining, we propose a data-
driven approach to create new culinary recipes based on association rules. We show
example empirical results created by the proposed associative generative algorithm.
Finally, we summarize and conclude.

ASSOCIATION IN HUMAN CREATIVITY
Association is the connection between two or more concepts. Mednick (1962) defined

the creative process as “the forming of associative elements into new combinations which
either meet specified requirements or are in some way useful.” Mednick has further
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described ways in which fruitful associations may form in the mind through contiguous
evocation via serendipity, similarity, or mediation. Associative elements may be evoked
serendipitously by the contiguous appearance of requisite stimuli in the environment,
usually accidentally. Associative elements may be evoked in contiguity as a result of
the similarity of associative elements or stimuli eliciting these associative elements.
Finally, associative elements may be evoked in contiguity through the mediation of
common elements.

To understand human creativity in the culinary domain, we interviewed chef James
Briscione, Director of Culinary Development at the Institute of Culinary Education,
about how he designs new recipes. He noted, “I always start with one ingredient, I have
to identify that main item first and, you know, what are we going to build. You want to
start with the really good looking zucchini that was at the market that day, you want to
start with these cool little mushrooms you’ve never seen before. You want to start with
that ingredient, begin pulling in all the flavors.” He went on to describe the way he pro-
ceeds with other flavors: “For me it’s memory, it’s all on this taste memory, you don’t
have to be a chef: anyone with a lot of experience and who focuses on those kinds of
things—you start to build out that memory and you start accessing and grabbing from
these things that you’ve seen or tasted or smelled before and start putting them into little
pairs and it’s one of those things that evolves.” Finally noting that “This ingredient grabs
that one, and that ingredient grabs another one that you wouldn’t necessarily have
thought of with the first one but you start building this chain and that’s where the really
interesting things start to happen.”

Evidently Briscione’s introspective view of culinary recipe construction follows exactly
the associative paradigm described classically, with associations built largely on memory
and information retrieval through similarity and mediation.

Associative thought processes require links, which we can label with the relationships
they express. Although not strictly necessary, such labeling of links has been found quite
useful in classical experiments for simulating human memory with an associative model
(Anderson, 1972; Quillian, 1968; Schwarcz, Burger, & Simmons, 1970). For culinary cre-
ativity, associative relationships among ingredients could be due to common usage in
regional cuisines, shared flavor compounds, agricultural similarities in terms of harvest-
ing season, or even linguistic similarity in names. This is depicted in Figure 1. In later
sections, we will develop implementations of these associations and resultant associative
creativity with algorithmic precision.

ASSOCIATIVE MEMORY

As chef Briscione notes, association is all about memory. In fact, neuroscientists have
long described various brain regions involved in memory as working associatively.
A notable example is the piriform cortex, which is involved in olfactory sensing and
memory (Wilson & Sullivan, 2011), and therefore flavor perception (Shepherd, 2012).
A characteristic of odor memory in humans is the unique ability of odors to vividly trig-
ger evocation of emotional experiences. This is perhaps because of the direct connection
between the piriform cortex and the limbic system (amygdala and hippocampus)
involved in emotion and general memory. Unlike other sensory modalities that are medi-
ated through several cortical layers, there is also a direct connection to the orbitofrontal
cortex involved in decision-making (Mouly & Sullivan, 2010).
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Broadly, our memory content retrieval is done by stimulating with external or internal
inputs: one piece of information gives rise to related information that was stored earlier.
So we see a strong similarity between Mednick’s description of associative creativity and
associative recall.

Moving to modern neuroscience, recent work argues that the distributed, content-
addressable architecture of human memory is critically important for creativity. Without
a distributed character, there would be no overlap between items that share microfeatures
and so no way of forging associations between them. Without content-addressing, associ-
ations would not be meaningful. Representations sharing features are encoded in overlap-
ping distributions of neurons, so activation can spread from one to another (Gabora &
Ranjan, 2013). In fact, certain neuroactive drugs can increase or decrease the associative
range of conceptual thinking (Boden, 2013).

Associative memories are used in a variety of information retrieval settings (Chen,
1995) and in computing applications including memory caches for processing units
(Chisvin & Duckworth, 1989), relational databases (Lin, Smith, & Smith, 1976), among
many others. Typical connectionist structures of associative memories include Hopfield
neural networks (Hopfield, 1982), Kohonen maps (Kohonen, 1988), Boltzmann machines
(Ackley, Hinton, & Sejnowski, 1985), and constructions based on sparse graph codes
(Karbasi, Salavati, Shokrollahi, & Varshney, 2014); connectionist approaches have been
described for creativity systems. Herein, however, we use symbolic algorithms for associa-
tion. As far as we know, specific associative recall techniques (whether connectionist or
symbolic) have not previously been deployed as part of culinary computational creativity
systems.

FIGURE 1. Items connected to other items for many possible different reasons via many
possible relationships.
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A COMPUTATIONAL CREATIVITY SYSTEM ARCHITECTURE
In this section, we review a general, modular system architecture for data-driven com-

putational creativity that has been described previously (Pinel et al., 2015; Varshney
et al., 2013a) and has structural similarity to other culinary computationally creative
systems (Morris, Burton, Bodily, & Ventura, 2012). Note that this is different from cer-
tain optimization-based approaches to computational creativity which do not separate
the generative and the selective parts of the system into separate modules, cf. Shao,
Murali, and Sheopuri (2014). Modularity promotes flexibility in the design of cognitive
tools.

A block diagram for the computational creativity system architecture is given in
Figure 2, with three main algorithmic components: a generator, a selector, and an exter-
nalizer, which interact to produce a culinary recipe. These components are fed by a data-
base of domain knowledge and a way to organize this knowledge. It is important to note
that in the system architecture, the externalizer and the selector do not directly interact,
but only do so through the idea generator.

The domain knowledge database represents information collected on the culinary field,
including information on styles, tastes, constituents, combinations, evolution, regionality,
culture, and methods of preparation. It also includes a repository of existing recipes that
have been deemed creative by human audiences. These raw data are resolved and orga-
nized, to serve as a knowledge source that the generator, selector, and externalizer com-
ponents draw from. Information from related, but distinct fields to the culinary domain
are also kept in the database. Much data engineering and natural language processing is
required for creating and using this knowledge store.

New ideas for ingredient lists are produced by the generator. These potential design
ideas are evaluated for creativity and ranked/chosen by the selector. Ingredient propor-
tions and recipe steps for the methods are determined by the externalizer. All three com-
ponents take input from the categorized database: the generator to draw inspiration for
new ideas, the externalizer to learn from extant methods of preparation, and the selector

FIGURE 2. Block diagram of computational creativity system that produces a culinary
recipe.
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to evaluate a design idea for creativity against the repository of existing artifacts as well
as against properties of ingredient constituents and combinations.

A creative computer is limited if it cannot evaluate proposed recipes for creativity.
Boden (1998) emphasizes the importance of evaluation in creativity, and says this is
perhaps more difficult than generating new ideas. The selector component models
human perception, taste, and culture using data analytics, drawing in data from the
chemistry of food and its sensory perception, cf. Lawless and Heymann (2010); Dunkel
et al. (2014). It examines generated ideas along two main dimensions: novelty and qual-
ity. These metrics are defined on the basis of datasets within the culinary domain, infor-
mation related to culinary science, and experimental data from hedonic psychophysics.
Intriguingly, perceived novelty, familiarity, and complexity all affect flavor perception
itself (Giacalone, Duerlund, Bøegh-Petersen, Bredie, & Bom Frøst, 2014). Note that there
is limited training data available for complete recipes (which lie in a high-dimensional
space). Hence, unlike many other data analytics problems and systems, our data-driven
approach to computational creativity is not based on traditional supervised learning. We
decompose recipes into ingredients and have assessment methods for these parts and for
their recombination rules. Novelty can be assessed via information-theoretic or other
similar quantifications of innovation within the context of all other existing ideas or
artifacts in the domain of interest. One implementation of this component is detailed
elsewhere (Varshney et al., 2013a).

The final component, the externalizer, determines steps and ingredient proportions
needed to take the ingredient list to a complete recipe. The recipe steps provide con-
straints on what designs are possible and they can be optimized for efficient production,
for example, using techniques from planning and operations research. Ingredient propor-
tions may be determined by matching the nutritional and ingredient type distributions
of similar extant recipes. One implementation of this component is detailed elsewhere
(Pinel et al., 2015).

The generator is the lead component in the system architecture, and data-driven
algorithms within it are the focus of this paper. In the next section, we start to build up
algorithmic techniques for data-driven association mining.

ASSOCIATION RULES THROUGH DATA MINING
In this section, we briefly review a simple yet powerful data mining tool, association

rule mining, covering its basic concepts, solutions, as well as the related applications. As
a popular and well-investigated method, association rule mining aims at discovering
meaningful relations between variables in large databases. The earliest idea for association
analysis roots back to 1960s, when a method called GUHA was developed for the general
purpose of data mining (H�ajek, Havel, & Chytil, 1966). However, this technique was
popularized more recently by Agrawal, Imielinski, and Swami (1993). A popular example
of association rule mining comes from market basket analysis in retail. By analyzing
transaction records, one aims to identify correlations and associations between different
products that shoppers tend to buy together. Stores can use such knowledge for promo-
tions, shelf placement, catalog design, store layout, customer segmentation, etc.

Given a series of transactions T where each transaction includes a set of products, the
objective of association analysis is to generate rules like x ⇒ y, which suggests a strong
relationship exists between the sale of x and y as the shoppers who buy x also buy y.
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Here, both x and y can represent a collection of products, namely an itemset. There
are two important quantities related to an association rule. We first use support to mea-
sure the frequency of an itemset, which is equivalent to the fraction of transactions that
contains a specific itemset. For instance, the support for an itemset x can be computed

as: sðxÞ ¼ rðxÞ
jTj , where the function r (�) counts the frequency of an itemset. Similarly, we

can derive the support for a union set x ∪ y as sðx [ yÞ ¼ rðx[yÞ
jTj . Accordingly, the

confidence of the rule x ⇒ y is computed as:

a ¼ sðx [ yÞ
sðxÞ ¼ rðx [ yÞ

rðxÞ
Note that support measures the occurring frequency of a rule and confidence describes

the strength of the association.
Depending on the setting, there are several variants of association rule mining, includ-

ing binary, continuous, and fuzzy association rules (Tan, Steinbach, & Kumar, 2006). The
mining process for the association rules could be very computationally costly. Given
N transactions with a total of unique products, the number of possible association rules is
O (M2M � 1) and the corresponding computational complexity O (NM2M) if using
exhaustive search.2 However, there are some efficient algorithms developed recently to
cope with data with many transactions. The Apriori algorithm is a well-known solution
for mining association rules (Agrawal & Srikant, 1994). It iterates between two key steps:
estimating the support using a breadth-first search strategy and then continuing explo-
ration using the downward closure property of support. Other popular algorithms include
a lattice-theoretic approach called Equivalence Class Transformation (Zaki, 2000) and the
pattern-matching approach called frequent pattern-growth (Witten & Frank, 2005). Due
to the empirical efficiency and success, association rule mining has been employed in a
wide range of applications, ranging from marketing research (Agrawal et al., 1993) to
bioinformatics (Creighton & Hanash, 2003; Oyama, Kitano, Satou, & Ito, 2002) to web

FIGURE 3. Schematic diagram of an associative algorithm for computational creativity
idea generation.

2 The so-called big O notation for computational complexity indicates how the algorithm processing time changes
as a function of the size of the input asymptotically. The presence of exponential terms such as 2M implies that
an algorithm is not efficient.
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analytics (Pei, Han, Mortazavi-Asl, & Zhu, 2000). In the next section we use association
rule mining in the generative portion of the computational creativity system.

ASSOCIATIVE GENERATIVE ALGORITHM
In this section, we develop an algorithm to create novel recipes having components

associated with one another by optimizing a design objective. It proceeds as follows
(Figure 3 shows the operation of the algorithm as a block diagram).

The first step is to decompose recipes structurally into the appropriate level of modu-
larity of components. So far we have talked about ingredients as this right level, but per-
haps larger components such as complete sauces, spice mixtures, or other ingredient
groups would make sense. This choice involves a tradeoff between flexibility and coher-
ence, and can be inspired by the nature of the existing recipes in a “Product Repository”
that is present in the knowledge database. This choice also involves determining the rela-
tionships by which components may possibly be associated.

The second step uses the association mining technique described above to find inter-
esting patterns in the relationships between components, such as co-occurrence. For
other kinds of relationships, we can use certain data sources directly. For example, to
apply associations through the principle of seasonality, we can use data from growing
guides that are produced by various state agriculture departments. As a typical example,
for Central Illinois, Table 1 shows crops that are grown in the same season (The Land
Connection (Illinois Department of Agriculture), 2015). Likewise shared flavor com-
pounds among ingredients can be determined from appropriate databases (Burdock,

TABLE 1. Groupings of Crops That Share Seasonality in Central Illinois

Grouping Crops

Earliest Spring
Perennials

Chives; Sorrel; Wild dandelions, Nettles; Rhubarb; Asparagus

Early Spring Greens Spinach; Lettuce; Arugula; Cold-weather herbs (dill and cilantro);
Pea Shoots; Peas (regular, snow, sugar snap); Kohlrabi;
Broccoli; Chard; Spring Radishes, Spring turnips; Baby onions,
Beets, Carrots

Summer’s Fruits
(and more)

Strawberries; Raspberries; Currants, Gooseberries; Blueberries;
Aronia berries; Kale; Beans (green, yellow, purple, edamame);
Potatoes; Cabbage; Cucumber; Eggplant; Basil; Tomatoes;
Tomatillos, Ground cherries; Peppers (sweet, hot); Full-size
beets, Carrots; Okra; Spaghetti squash; Melons

Autumn’s Roots
and Shoots

Bok Choi, other chois; Radicchio, Endive, Escarole; Greens
(turnip, mustard); Acorn, Red Kuri, Hubbard, Delicata, other
squashes; Pumpkins; Leeks, Scallions; Brussels sprouts

Winter Storage
Crops

Sweet potatoes; Parsnips, Turnips, Rutabagas, Potatoes, Beets;
Celery root, Parsley roots, Carrots, Winter Radishes; Daikon,
Burdock, Salsify; Butternut Squash, Acorn squash, all sorts;
Popcorn, Wheat berries, Dry beans; Corn meal, Flour, Oatmeal
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2009). Figure 4 shows an example of a food ingredient, turmeric, and several other ingre-
dients with which it has associations of various kinds.

To demonstrate association rule mining so as to learn co-occurrence relationships, we
apply the Apriori algorithm to a large corpus of culinary recipes. A subset of association
rules extracted from recipe data is shown in Figure 5.

The next step is new recipe creation. We start with a seed for inspiration and design
objectives, such as novelty, quality, balance, or cost. The recipe is built up iteratively by
adding components that are interestingly associated to already included components and
also optimize the design. Iteratively adding components to the product is performed by
traversing interesting associations while fulfilling a design objective. At the end, will have
a complete recipe composed of several components. Feedback and evaluation steps may
later add newly designed recipes to the Product Repository for future runs of the algo-
rithm. Continuing with the turmeric-seeded example, in Figure 6, we can see how the
iterative construction of the idea proceeds.

The complete flow of the iterative algorithm is depicted in Figure 7, using a visual
schema taken from the SPSS Modeler software package.

By running the algorithm we have developed herein, we can generate ingredient list
ideas that may be novel and flavorful, that is, creative. Three examples, with seeds of
pumpkin pie spice, turmeric, and tomato, respectively are shown in Table 2.

FIGURE 4. Decompose food into ingredients and consider relationships like
co-occurrence in recipes, shared flavor compounds, being from same region
of world, and being grown in same season of year.
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FIGURE 5. Subset of learned co-occurrence associations from association mining.

11

Journal of Creative Behavior



FIGURE 6. Iterative traversal of associations by optimizing a design objective, so as to
build up a complete recipe. The first step is (a), and the second step is (b).
The algorithm proceeds similarly for further steps.
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CONCLUSION
In the psychology literature, combinational creativity is said to involve generating

unfamiliar combinations of familiar ideas (Boden, 2013). However, associative pathways
are not all there is to combinational creativity; there is also the issue of relevance. Novel
combinations we value, and thus regard as creative, invariably involve relevance, even if
not immediately apparent (Boden, 2013).

Taking this view to design a computational creativity algorithm whose process people
can relate to and collaborate with, we have proposed an algorithm that finds associations
using data mining to generate combinations, but importantly also optimizes for relevance
on top of the mined associations. We have illustrated its workings in the culinary
domain, in which ingredients are natural components that can have various associations,
including co-occurrence of flavor compounds, co-occurrence in existing recipes, similar-
ity in color, similarity in growing season, and similarity in growing region. This approach
to computational creativity, which parallels human creativity, is the first in our knowl-
edge to utilize association rule mining.

FIGURE 7. System flow diagram.

TABLE 2. Examples of Ingredient Lists Generated by Our Associative Algorithm

Seed Ordered List of Ingredients Generated

Pumpkin pie
spice

Pumpkin pie spice, pumpkin, salt, cinnamon, egg, flour, granulated
sugar, butter, baking soda, baking powder, milk

Turmeric Turmeric, cumin, ginger, onion, salt, garlic, pepper, water, tomato, oil,
cilantro, olive oil, parsley, soy sauce, black pepper, butter, carrot, rice

Tomato Tomato, green bell pepper, garlic, onion, salt, olive oil, pepper, water,
black pepper, parsley, rice, red bell pepper
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