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Abstract – The fusion of multimodal sensor informa-

tion often requires learning decision rules from sam-

ples of high-dimensional data. Each data dimension

may only be weakly informative for the detection prob-

lem of interest. Also, it is not known a priori which

components combine to form a lower-dimensional fea-

ture space that is most informative. To learn both

the combination of dimensions and the decision rule

specified in the reduced-dimensional space together, we

jointly optimize the linear dimensionality reduction and

margin-based supervised classification problems, repre-

senting dimensionality reduction by matrices on the

Stiefel manifold. We describe how the learning proce-

dure and resulting decision rule can be implemented in

parallel, serial, and tree-structured fusion networks.

Keywords: supervised classification, linear dimen-
sionality reduction, information fusion, Stiefel mani-
fold, sensor network

1 Introduction
The journalist Malcolm Gladwell has written that “in
good decision making, frugality matters.” “Even the
most complicated of relationships ... have an identifi-
able underlying pattern.” “In picking up these sorts of
patterns, less is more. Overloading the decision makers
with information ... makes picking up that signature
harder, not easier” [1]. The calculation of sufficient
statistics, such as the likelihood ratio for binary de-
tection and classification, is a way to losslessly reduce
the dimensionality of high-dimensional sensor measure-
ments before applying a decision rule defined in the
reduced-dimensional space. Doing so, however, requires
full knowledge of the probability distribution generat-
ing the measurements, which is often not available.

Situations in which the probability distribution is un-
known, but samples from it are available, call for super-

vised learning [2]. For the most part, supervised learn-
ing methods produce decision rules defined in the full
high-dimensional measurement space rather than in a

reduced-dimensional space. In this paper, we develop
a method for jointly learning the reduced-dimensional
space and the decision rule defined in that reduced-
dimensional space from samples. We focus on linear

dimensionality reduction because of its simplicity and
efficiency [3].

Motivated by applications such as wireless sensor net-
works, distributed decision making and information fu-
sion have received much attention in recent times [4, 5].
Stemming from resource constraints, the distinguishing
attribute of these applications is the limited transmis-
sion and computation capacity of sensors. The ma-
jority of work in distributed decision making has fo-
cused on the situation when probability distributions
are known, but there has been some work on learning
for distributed settings as well [6, 7, 8]. Constrained re-
sources provide one motivation to be frugal in decision
making, but a distinct fundamental reason to control
complexity when learning from finite data is the struc-
tural risk minimization principle [9]. The model class
from which the decision rule is selected should be re-
stricted in order to improve generalization and avoid
overfitting.

Most popular methods of linear dimensionality re-
duction, including principal component analysis (PCA)
and independent component analysis, find linear trans-
formations and can thus be posed as optimization prob-
lems on the Stiefel or Grassmann manifold with differ-
ent objectives [3]. The Stiefel manifold is the set of all
linear subspaces with basis specified, and the Grassman
manifold is the set of all linear subspaces with the basis
left unspecified. In many applications of interest, the
objectives of the popular methods do not align with the
ultimate task that the data is to be used for, and con-
sequently are suboptimal with respect to the objective
of interest. The problem of interest to us is statistical
classification or detection. We propose an optimiza-
tion problem on the Stiefel manifold whose objective is
that of margin-based classification [10, 11], and develop
an iterative coordinate descent algorithm for its solu-
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tion. Several classification methods are margin-based,
e.g. logistic regression, support vector machine (SVM),
and the level set classifier of [12].

We show how the linear dimensionality reduction of
heterogeneous data may be distributed in parallel, se-
rial, or general tree-structured fusion networks with
a fusion center via individual Stiefel manifold matri-
ces at each sensor. We implement the coordinate de-
scent learning algorithm in the fusion network through
a message-passing approach. Dimensionality reduction
aids the generalization of classifiers, especially in the
presence of uninformative data dimensions, and reduces
the amount of communication in the network.

Prior work has also considered the problem of linear
dimensionality reduction for classification. In [13, 3],
the classifier is a nearest neighbor classifier and the
objective function includes validation data; optimiza-
tion is through Markov chain Monte Carlo-type sim-
ulated annealing. In [14], a linear regression, rather
than classification, objective and a regression parame-
ter/Stiefel manifold coordinate descent algorithm anal-
ogous to ours is developed. Kernel dimensionality re-
duction is derived in [15], which builds on the idea
that the low-dimensional features should be such that
the conditional probability of the class labels given the
high-dimensional data equals the conditional probabil-
ity of the class labels given the low-dimensional fea-
tures. Maximum margin discriminant analysis is a
method for dimensionality reduction based on the SVM
that finds the low-dimensional features one by one in-
stead of all at once, and also does not simultaneously
give a classifier [16]. The method that we propose has
an explicit margin-based classification objective, finds
all low-dimensional features in a joint manner, and gives
both the dimensionality reduction mapping and the
classifier as output. The prior work has not considered
information fusion networks; however, the framework
we develop may be applicable to these other methods
as well.

The paper is organized as follows. In Section 2, we re-
view the definition of and optimization methods on the
Stiefel manifold from the perspective of linear dimen-
sionality reduction. The section also describes margin-
based classification. Section 3 combines the ideas of
optimization on the Stiefel manifold and margin-based
classification to give a joint linear dimensionality reduc-
tion and classification objective as well as an iterative
algorithm. Section 4 shows how the basic method of
Section 3 extends to fusion networks, and Section 5
concludes.

2 Preliminaries

2.1 The Stiefel Manifold

Linear dimensionality reduction from D dimensions to
d ≤ D dimensions can be represented by a matrix
A ∈ R

D×d. With a data vector x ∈ R
D, ATx is in

d dimensions. A is constrained to have orthonormal
columns, i.e. ATA = I, so that there is no redundancy
in representation and so that the scaling of the dimen-
sions has no effect. This constrained set,

VD,d = {A ∈ R
D×d, d ≤ D|AT A = I},

is known as the Stiefel manifold.
Generally speaking, an optimization problem on the

Stiefel manifold is solved to find the dimensionality re-
duction matrix:

min E(A) s.t. A ∈ VD,d, (1)

where E is a scalar-valued function. Some special
functions, including that for PCA, can be minimized
through eigendecomposition. For differentiable func-
tions, several iterative minimization algorithms exist
[17, 18, 19].

We give the expression for gradient descent along
geodesics of the Stiefel manifold [17]. Specifically, let
EA denote the D × d matrix with elements ∂E

∂aij
. The

gradient is:
G = EA − AET

A
A. (2)

Starting at an initial A(0), a step of length τ in the
direction −G to A(τ) is:

A(τ) = A(0)M(τ) + QN(τ), (3)

where QR is the QR decomposition of (AATG − G),
and

[

M(τ)
N(τ)

]

= exp

{

τ

[

−ATG −RT

R 0

]}[

I

0

]

.

The step size τ may be optimized by a line search.

2.2 Margin-Based Classification

In margin-based classification, we are given training
data {(x1, y1), . . . , (xN , yN)}, with data vectors xn ∈
R

D and class labels yn ∈ {−1, +1}, and would like to
learn a classifier ŷ(·) = sign(ϕ(·)) : R

D → {−1, +1}.
The decision function ϕ is chosen to minimize the en-
ergy functional:

E(ϕ) =

N
∑

n=1

L(ynϕ(xn)) + λJ(ϕ), (4)

where L is a margin-based loss function [10, 11], for
example the logistic loss function:

Llogistic(z) = log
(

1 + e−z
)

or the hinge loss function:

Lhinge(z) = max{0, 1 − z},

and the additional term J is used for regularization.
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In the kernel SVM, L is the hinge loss, the decision
functions ϕ are in a reproducing kernel Hilbert space,
the regularization term is the squared norm in that
space, and optimization may be carried out through
quadratic programming techniques [2]. In the level set
classifier of [12], any margin-based loss function may be
used, the decision functions are in the space of signed
distance functions, the regularization term is the sur-
face area of the zero level set of ϕ, and optimization is
carried out through curve evolution.

3 Linear Dimensionality Reduc-

tion for Classification
We formulate joint linear dimensionality reduction and
classification by extending the energy functional (4) to
also include a D × d matrix A:

E(ϕ,A) =

N
∑

n=1

L(ynϕ(AT xn)) + λJ(ϕ), (5)

with the constraint A ∈ VD,d. The decision function
ϕ is defined in the reduced d-dimensional space. An
option for performing the minimization amenable to
distributed implementation is coordinate descent, al-
ternating minimizations with fixed A and with fixed
ϕ. With A fixed, the minimization may be performed
exactly in the same manner as to minimize (4), as dis-
cussed in Section 2.2.

With ϕ fixed, the general problem of minimizing a
function E(A) subject to A lying on the Stiefel man-
ifold is encountered, as discussed in Section 2.1. The
function E(A) =

∑N
n=1 L(ynϕ(AT xn)) is differentiable

with respect to A for differentiable loss functions. The
first derivative is:

EA =

N
∑

n=1

yn L′(ynϕ(AT xn))

× xn

[

ϕ1(A
Txn) · · · ϕd(A

T xn)
]

. (6)

Note that xn is a D × 1 vector and that
[

ϕ1(A
T xn) · · · ϕd(A

Txn)
]

is a 1 × d vector, where
ϕi(·) is the partial derivative of the decision function
with respect to dimension i. For the logistic loss func-
tion:

L′

logistic(z) = −
e−z

1 + e−z

and for the hinge loss function:

L′

hinge(z) = − step(1 − z).

The gradient descent along Stiefel manifold geodesics
then involves applying equations (2) and (3) with the
matrix derivative (6).

We now present an illustrative example showing the
operation of the classification–linear dimensionality re-
duction coordinate descent for training from a synthetic

x1

x
2

(AT x)1

(A
T
x
) 2

(a) (b)

(AT x)1

(A
T
x
) 2

(AT x)1

(A
T
x
) 2

(c) (d)

(AT x)1
(A

T
x
) 2
(AT x)1

(A
T
x
) 2

(e) (f)

Figure 1: Illustrative example. Magenta × markers
indicate label −1. Black + markers indicate label +1.
The blue line is the decision boundary. The green line is
the convex hull of the projection of an eight-dimensional
hypercube to two dimensions by A. (a) The first two
input data dimensions. (b) Initial dimensionality reduc-
tion matrix and first decision boundary. (c)–(e) Inter-
mediate iterations. (f) Final dimensionality reduction
and decision boundary.

dataset. The dataset contains N = 1000 input data
samples, of which 502 have label yn = −1 and 498 have
label yn = +1. The input dimensionality is D = 8.
The first two dimensions of the data, x1 and x2, are
informative for classification and the remaining six are
completely uninformative. In particular, an ellipse in
the x1–x2 plane separates the two classes as shown in
Fig. 1(a). The values in the other six dimensions are
independent samples from an identical Gaussian distri-
bution without regard for class label. Linear dimen-
sionality reduction to d = 2 dimensions is sought.

The matrix A is randomly initialized and the level set
classifier of [12] with the logistic loss function is used.
At convergence, the optimization procedure ought to
give an A matrix with all zeroes in the bottom six
rows and an elliptical decision boundary. In order to
visualize the A matrix, we show the convex hull of the
projection of a D-dimensional hypercube by A onto
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Table 1: Initial and Final A in Illustrative Example

Initial Final
2

6

6

6

6

6

6

6

6

6

6

4

0.0274 −0.4639

0.4275 0.2572

0.4848 0.1231

−0.0644 0.4170

0.0138 0.3373

0.5523 0.2793

0.1333 0.0283

0.5043 −0.5805

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

4

0.3546 −0.9314

0.9343 0.3556

0.0158 −0.0002

−0.0003 −0.0219

0.0157 −0.0609

−0.0192 0.0186

0.0194 −0.0365

−0.0104 −0.0066

3

7

7

7

7

7

7

7

7

7

7

5

d = 2 dimensions. In general, this convex hull is a
point-symmetric polygon with 2D sides; if A is aligned
to one or more of the D dimensions, then the polygon
has fewer sides. (The silhouette of a cube is a hexagon
in general, but is a square when viewed straight on.)
Fig. 1(b) shows the decision boundary resulting from
the first optimization for ϕ with the random initializa-
tion for A, before the first gradient descent step on the
Stiefel manifold. Fig. 1(c)–(e) show intermediate iter-
ations and Fig. 1(f) shows the final learned classifier
and linear dimensionality reduction matrix. As the co-
ordinate descent progresses, the convex hull of the hy-
percube projection becomes more like a square, i.e. A

aligns with the x1–x2 plane, and the decision boundary
becomes more like an ellipse.

The initial A matrix and the final A matrix are given
in Table 1. Conforming to the expected behavior, the
final decision boundary is almost an ellipse and the fi-
nal A has very little energy in the bottom six rows.
(The curved piece of the decision boundary in the top
right corner of the domain is an artifact of level set
classification and does not affect classification perfor-
mance.) The classification is invariant to rotations and
reflections in the x1–x2 plane, which is why we do not
expect the identity matrix in the top two rows of the
final A. As this example indicates, the procedure is
capable of making large changes to A.

4 Information Fusion Networks
Several important decision making applications contain
distributed multimodal sensors with limited data trans-
mission capacity. A classification paradigm that intelli-
gently reduces the dimensionality of measurements lo-
cally at sensors before transmitting them to a decision
maker or fusion center is critical in these settings. Mak-
ing use of our formulation of joint linear dimensionality
reduction and classification for this task, first with a
single remote sensor, the dimensionality reduction ma-
trix A resides at the sensor and the decision function ϕ
resides at the fusion center, as illustrated in Fig. 2(a).
The sensor transmits AT x ∈ R

d rather than the full
measurements x ∈ R

D, thus saving on transmission
costs.

ϕ

6
ATx

A

6

x

ϕ

������*

AT
1 x1

A1

6

x1







�
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2 x2

A2

6

x2
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HHHHHHY
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xM
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6

x1

�̃x2
A2

6

x2

�̃x3
· · · �̃xM

AM

6

xM

(c)

Figure 2: Fusion networks with (a) single sensor, (b)
parallel sensors, and (c) serial sensors.

Our joint linear dimensionality reduction and clas-
sification formulation supports distributed implemen-
tation not only in the operational phase, but also in
training. The coordinate descent procedure described
in the previous section can be naturally implemented in
distributed settings with communication costs related
to d rather than D. Additionally, the optimization for
ϕ (the application of a margin-based classification algo-
rithm), which is much more computationally intensive
than the optimization for A, takes place at the fusion
center. We make the assumption, as in [6, 7, 8], that
the class labels yn of the training set are available at
the fusion center. The transmission-constrained sen-
sor only needs to send AT xn to the fusion center for
it to be able to optimize for ϕ. For the sensor to be
able to take a gradient step along a Stiefel manifold
geodesic to update A, the fusion center needs to send
yn L′(ynϕ(AT xn)) and

[

ϕ1(A
T xn) · · · ϕd(A

Txn)
]

.

4.1 Multisensor Fusion

The dimensionality reduction/classification framework
extends to the more interesting multisensor informa-
tion fusion network case. With M sensors, the training
data consists of the class labels yn and the data vectors
xm,n ∈ R

Dm measured at sensor m for m = 1, . . . , M .
Each sensor has its own dimensionality reduction ma-
trix on the Stiefel manifold Am. We consider parallel,
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serial, and general tree-structured fusion networks.
In the parallel network, illustrated in Fig. 2(b),

sensor m has matrix Am ∈ VDm,dm
and transmits

AT
mxm,n to the fusion center. The decision function

ϕ : R

P

M
m=1

dm → R is applied to a stacked vector con-
sisting of the reduced-dimensional data from each sen-
sor. The margin-based classification objective for the
parallel fusion network is:

E(ϕ,A1, . . . ,AM ) =

N
∑

n=1

L






ynϕ













AT
1 x1,n

...
AT

MxM,n


















+ λJ(ϕ). (7)

The optimization of E(ϕ) at the fusion center for fixed
Am is a straightforward application of a margin-based
classification algorithm. Sensor m only needs to send
message AT

mxm,n to the fusion center.
For the Stiefel manifold portion of the coordinate de-

scent, we find the partial derivative of the objective
function with respect to Am:

EAm
=

N
∑

n=1

yn L′






ynϕ













AT
1 x1,n

...
AT

MxM,n


















xm,n

×






ϕi













AT
1 x1,n

...
AT

MxM,n












· · · ϕj













AT
1 x1,n

...
AT

MxM,n


















,

(8)

where i =
∑m−1

µ=1 dµ + 1 and j =
∑m

µ=1 dµ. Similar to
the single sensor network, for sensor m to perform its
gradient update of Am, the fusion center needs to send
it a message containing the L′ term and the subvector
of the decision function gradient given in (8).

In a serial network, with sensors labeled such that
sensor 1 is the child of the fusion center and sensor
m + 1 is the child of sensor m for m = 1, . . . , M −
1, we look at the case where the parent sensor fuses
its own measured data with the dimensionality-reduced
information received from the child sensor. Thus we
have dimensionality reduction matrices

Am =

[

Am,self

Am,child

]

∈ VDm+dm+1,dm

for m = 1, . . . , M − 1 with Am,self ∈ R
Dm×dm and

Am,child ∈ R
dm+1×dm , and AM ∈ VDM ,dM

. (The last
sensor has no child.) Let x̃M,n = AT

MxM,n and

x̃m,n = AT
m

[

xm,n

x̃m+1,n

]

(9)

for m = 1, . . . , M − 1. Sensor m transmits x̃m,n to
its parent, culminating in transmission of x̃1,n to the
fusion center. This network is illustrated in Fig. 2(c).

The margin-based classification objective for the se-
rial network is:

E(ϕ,A1, . . . ,AM ) =
N

∑

n=1

L (ynϕ (x̃1,n)) + λJ(ϕ). (10)

We can optimize for ϕ at the fusion center for fixed
Am after a message-passing sweep of x̃m,n starting
from sensor M . Getting the required gradient in-
formation to the sensors requires a message-passing
sweep in the opposite direction. Introducing notation
ϕ̃

′

1,n =
[

ϕ1 (x̃1,n) · · · ϕd1
(x̃1,n)

]

and

ϕ̃
′

m+1,n = ϕ̃
′

m,nAT
m,child (11)

for m = 1, . . . , M −1, we find the matrix partial deriva-
tives to be:

EAm
=

N
∑

n=1

yn L′ (ynϕ (x̃1,n))

[

xm,n

x̃m+1,n

]

ϕ̃
′

m,n (12)

for m = 1, . . . , M − 1, and

EAM
=

N
∑

n=1

yn L′ (ynϕ (x̃1,n))xM,nϕ̃
′

M,n. (13)

The message sensor m receives from its parent contains
yn L′ (ynϕ (x̃1,n)) and ϕ̃

′

m,n. Calculating the outgo-
ing forward and backward messages from the incom-
ing ones, given in (9) and (11), requires only simple
matrix-vector products.

Based on the parallel and serial fusion networks pre-
sented, it is straightforward to generalize the joint lin-
ear dimensionality reduction and classification to any
tree-structured network.

4.2 Radar System Example

We now present classification results with linear dimen-
sionality reduction in fusion networks on the ionosphere
dataset from the UCI machine learning repository [20].
The dataset contains N = 351 samples of D = 34-
dimensional radar return data collected by a system in
Goose Bay, Labrador. The two classes of returns are
those that show structure in the ionosphere and those
that do not. We report training and test error through
tenfold cross-validation, i.e. we split the dataset into ten
roughly equal pieces, train on nine tenths and test on
one tenth for each of the ten splits, and report the aver-
age error. For the classifier, we use the SVM with radial
basis function kernel and default parameters from the
Matlab bioinformatics toolbox.

First we look at the training and test error in parallel
networks as a function of

∑M
m=1 dm for different num-

bers of sensors M . The thirty-four dimensions are allo-
cated to the sensors as equally as possible in the order
given in the repository, e.g. the first twelve dimensions
to sensor 1, the next eleven dimensions to sensor 2, and
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Figure 3: Tenfold cross-validation training error on
ionosphere dataset for parallel fusion network optimized
using joint linear dimensionality reduction and classifi-
cation coordinate descent.
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Figure 4: Tenfold cross-validation test error on iono-
sphere dataset for parallel fusion network optimized us-
ing joint linear dimensionality reduction and classifica-
tion coordinate descent.

the last eleven dimensions to sensor 3 for M = 3. The
reduced dimension dm is set to be equal for all sensors
and varied to take values from one to the highest value
such that Mdm ≤ D. Fig. 3 shows the training error
and Fig. 4 shows the test error for the ϕ and Am re-
sulting from the coordinate descent optimization. The
legend in Fig. 3 also applies to Fig. 4 through Fig. 8.
For comparison purposes, Fig. 5 shows the test error
for Am not optimized for margin-based classification,
but obtained from PCA.

The first thing to notice in the plots is that the train-
ing error decreases monotonically with

∑

dm, whereas
the test error first decreases, but then increases. This
effect is a manifestation of the structural risk minimiza-
tion principle: increasing complexity eventually leads to
overfitting and increasing test error even though train-
ing error continues to decrease. The second thing to
notice is that there is a negligible difference in the clas-
sification performance for different numbers of sensors.
Not much is lost in a parallel arrangement when do-
ing the dimensionality reduction at individual sensors.
The third thing to notice is that the minimum test per-
formance with the Stiefel manifold optimization is less
than that using PCA matrices, so clearly the optimiza-
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Figure 5: Tenfold cross-validation test error on iono-
sphere dataset for parallel fusion network with linear
dimensionality reduction by PCA.
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Figure 6: Tenfold cross-validation training error on
ionosphere dataset for serial fusion network optimized
using joint linear dimensionality reduction and classifi-
cation coordinate descent.

tion with classification objective is providing a bene-
fit. The minimum test error also occurs for a smaller
value of

∑

dm with the classification-optimized Am, so
the optimization yields better performance with less re-
source usage in testing.

We also look at the training and test error in serial
networks as a function of

∑

dm for different numbers
of sensors. The measurement dimensions are allocated
to the sensors in the same way as for the parallel sensor
results. Here also, the reduced dimension dm is set to
be equal for all sensors and varied to take values from
one to the highest value such that Mdm ≤ D. Fig. 6
and Fig. 7 show the training and test error, respectively,
for margin-based classification-optimized Am. Fig. 8
shows the test classification error for PCA matrices.

As for the parallel network, the serial network ex-
hibits overfitting, especially with one, two, and three
sensors. The overfitting regime has not been reached
for the larger numbers of sensors. Unlike the parallel
network, there are significant differences in both train-
ing and test error with the number of sensors. The
error plots are lower and to the left for decreasing val-
ues of M . In the serial network, the decision function
is defined in d1 dimensions rather than in

∑

dm dimen-
sions in the parallel network, and also the information
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Figure 7: Tenfold cross-validation test error on iono-
sphere dataset for serial fusion network optimized using
joint linear dimensionality reduction and classification
coordinate descent.
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Figure 8: Tenfold cross-validation test error on iono-
sphere dataset for serial fusion network with linear di-
mensionality reduction by PCA.

is fused as it passes to the fusion center. For the same
amount of data transmitted by sensors, less effective in-
formation is communicated in the serial network than
in the parallel network and more so as the number of
sensors increases. As with the parallel network, the
comparison of the coordinate descent-optimized net-
work and the PCA matrix network test performances
indicate that the matrix optimization yields better clas-
sification performance and moreover does so with less
communication.

4.3 Model Selection

A question one may ask is how to choose the reduced
dimension from the training data alone, without access
to the test data. Any popular model selection method,
including those based on cross-validation, bootstrap-
ping, and information criteria, can be used. As an ex-
ample, let us look at an Akaike-like information cri-
terion [21] for the fusion network with single sensor.
The number of free parameters in a matrix in VD,d is
k = Dd − d(d + 1)/2 and the information criterion we
consider is:

2k + N ln(training error).
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Figure 9: Akaike-like information criterion on iono-
sphere dataset as a function of the dimensionality of
the reduced space for the fusion network with single
sensor.

The value of this information criterion as a function of
d is plotted in Fig. 9 for the ionosphere dataset. We see
that the lowest information criterion value occurs for
an intermediate value of d close to the value yielding
minimum test error.

This type of model selection considers only overfit-
ting effects; in sensor networks, resource constraints
also need to be taken into account. The parallel net-
work is preferred from the perspective of classification
performance per amount of data transmitted. However,
in a physically realized wireless sensor network, for ex-
ample, the parallel network requires much long distance
communication from sensors to the fusion center and in-
curs more resource cost per amount of data transmitted
due to path attenuation. Thus selecting the topology
of the fusion network along with the dm is complicated
for general tree-structured fusion networks.

5 Conclusion
In this paper, we have described a formulation for lin-
ear dimensionality reduction driven by the objective of
margin-based classification. This involves alternation
between two minimizations: one to update a classifier
decision function and the other to update a matrix on
the Stiefel manifold. Dimensionality reduction is im-
portant for two distinct reasons: reducing the amount
of resources consumed, and avoiding overfitting.

We have described how our proposed optimization
scheme can be distributed in a network containing a
remote sensor, with the classifier decision function up-
dated at the fusion center and the dimensionality re-
duction matrix updated at the sensor. Additionally, we
have extended the formulation to parallel, serial, and
tree-structured fusion networks. The joint dimension-
ality reduction and classification has superior classifica-
tion performance to that of a dimensionality reduction
method not matched to the classification task, PCA, as
would be expected. However, also, the best classifica-
tion performance occurs for smaller reduced dimension
with the joint optimization.
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The formulation we have presented opens many in-
teresting questions regarding model selection, network
topology selection, and sensor management. It would
also be interesting to investigate semi-supervised learn-
ing in this context, and explore possible connections to
feedforward neural networks and training by the back-
propagation algorithm.
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