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Abstract—For safety reasons, the interpretability of models is
important in consequential applications of supervised classifica-
tion in which predictions are used to support human decision
makers. In this paper, we extend cardinal shape composition, a
new method developed in the image processing and computer vi-
sion literature for image segmentation, to general machine learn-
ing problems. Our transformation results in a computationally-
tractable ℓ1-regularized hinge loss optimization over a shape
dictionary. This approach yields human-interpretable models
with an appropriate choice of atomic shapes in the dictionary
used to compose decision boundaries.

I. INTRODUCTION

Predictions from models induced by machine learning al-
gorithms are increasingly being used to support decisions by
people in domains of consequence, e.g. medical treatment,
prison parole, loan approval, and job promotion [1]. In such
applications, it is critical to control the probability of expected
harms and the possibility of unexpected harms. This amounts
to introducing safety into the decision-making system by
minimizing both risk and epistemic uncertainty. One key
approach for minimizing epistemic uncertainty in machine
learning, utilizing the safety strategy known as inherently safe
design [2], is insisting on models that are comprehensible,
transparent, explainable, and interpretable to humans [3].

In contrast to the learning of black-box models such as
large ensembles, deep neural networks, and complicated kernel
machines, interpretable machine learning is focused on formats
such as rule sets, scorecards and decision trees that can be
comprehended by people [4], [5]. The goal of risk mini-
mization still holds in learning the models, and thus training
should be done with as accurate generalization as possible;
it is through the constrained model format that epistemic
uncertainty minimization is achieved.

Interpretable machine learning has many facets [6]: one can
consider global interpretability in which the entire model is
transparent, instance-level interpretability in which explana-
tions can be derived for individual test samples, or visual-
izations that let the user understand a model by interacting
with it. One can consider directly learning interpretable models
from training data or post hoc interpretations of learned
complicated models. Directly-learned global interpretability is
most consistent with inducing inherently safe design and is
what we focus on in this work. Our focus is also on rules and
rule sets or lists for the supervised classification problem.

Many of the older methods in the artificial intelligence
literature are interpretable [7]–[9]. The older interpretable
model learning algorithms are generally greedy or heuristic
in nature and usually have inferior predictive performance to
newer uninterpretable approaches. However, recent work is
revisiting the problem of interpretable learning and achieving
predictive performance approaching that of uninterpretable
methods. Some approaches involve Bayesian statistics [10]–
[14], others involve mixed integer programming [15]–[18], and
others build upon sparse signal representation and compressed
sensing [19]–[23].

In this paper, we propose a method for interpretable su-
pervised machine learning that takes a new method for image
segmentation and other related image processing and computer
vision tasks, and reimagines it as a way to learn a classifier
for general (non-image) data. This new image segmentation
method, convex cardinal shape composition [24], [25], is a
convex optimization and sparse signal representation perspec-
tive on the rich tradition of active contours and level set
methods for image segmentation [26]–[28]. Starting from a
large dictionary of possible atomic shapes (constructed using
prior knowledge), the method composes a larger shape from a
sparse subset of dictionary elements through union, intersec-
tion, and set difference operations implemented using linear
combinations of characteristic functions of the shapes and
the Heaviside function. The naturally nonconvex segmentation
problem in the formulation is convexified using hinge loss-
like expressions and regularized by an ℓ1 constraint on the
coefficient vector of the dictionary elements.

Our transfer of the image processing problem to the general
supervised machine learning problem is accomplished by
altering the main energy functional of the objective from
indicating segmentation quality to being the average loss on
the provided training data set. In particular, taking advantage
of the hinge loss convexification already present in the convex
cardinal shape composition method, the training loss is the
hinge loss. We can achieve interpretable models—our main
interest in this work—with an appropriate choice of shape dic-
tionary. We can learn Boolean rules, a set of small hypercubes
(similar in form to [17]), and other interpretable model forms.
With other choices of shape dictionaries, we can recover the
uninterpretable ℓ1-regularized kernel support vector machine
(SVM) [29]. Thus our proposed method is a generalization of
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the SVM that can yield both interpretable and uninterpretable
models and anything on the continuum in-between, depending
on the choice of shape dictionary. In all cases, the learning is
a convex optimization problem.

We have successfully followed the general practice of
converting an image segmentation problem into a supervised
classification problem before [30], [31].

II. CONVEX CARDINAL SHAPE COMPOSITION

In the image segmentation problem solved by convex car-
dinal shape composition, we have an image I(x) defined on
a domain Ω ⊂ Rd with pixel locations x ∈ Ω. Our goal is
to partition Ω into the foreground region Σ (not necessarily
simply connected) and background region Ω \ Σ in a way
that minimizes some functional based on I(x) and some
regularization term.

Let Πfg(x) and Πbg(x) be known and fixed functions that
characterize how well I(x) matches the appearance of the fore-
ground and background, respectively. Then an unregularized
image segmentation problem is:

min
Σ

∫
Σ

Πfg(x)dx+

∫
Ω\Σ

Πbg(x)dx. (1)

Now specific to the convex cardinal shape composition for-
mulation, we have a dictionary of shapes D = {S1, . . . ,Sm},
where each Si ⊂ Ω. A shape Si has characteristic function
χSi(x) defined as:

χSi(x) =

{
1, x ∈ Si

0, x /∈ Si.
(2)

A larger shape can be composed by a linear combination of
shapes from the dictionary as:

Lα(x) =

m∑
i=1

αiχSi(x), (3)

where αi are coefficients. Letting H(·) be the Heaviside unit
step function that takes value one for non-negative inputs and
value zero for negative inputs, H(Lα(x)) is the characteristic
function of the composed shape. Through this representation,
the composed shape can involve any union and set difference
operation among the dictionary atoms. Moreover, the segmen-
tation problem formulation may be written as:

min
α

∫
Ω

(Πfg(x)−Πbg(x))H(Lα(x))dx. (4)

The problem (4), however, is not convex. As shown in [24],
it may be convexified as:

min
α

∫
Ω

(Πfg(x)−Πbg(x))+ max(0, Lα(x))dx

−
∫
Ω

(Πbg(x)−Πfg(x))+ min(1, Lα(x))dx, (5)

where the (·)+ operator returns zero if its argument is negative
and the argument itself if it is non-negative. The expressions
inside the integrals have the form of hinge functions.

The final convex cardinal shape composition formulation
further imposes an ℓ1 constraint on α for sparsity:

min
∥α∥1≤τ

∫
Ω

(Πfg(x)−Πbg(x))+ max(0, Lα(x))dx

−
∫
Ω

(Πbg(x)−Πfg(x))+ min(1, Lα(x))dx, (6)

The problem can be efficiently optimized using either linear
programming or the alternating direction method of multipliers
[25].

III. SUPERVISED CLASSIFICATION PROBLEM

In this section, we adapt (6) to the supervised binary
classification problem. In this machine learning problem, we
have features x ∈ Ω ⊂ Rd and labels y ∈ {−1,+1}. We are
given training samples {(x1, y1), . . . , (xn, yn)} from which to
learn a classifier ŷ : Ω → {−1,+1}. A classifier is also a
partitioning of the domain Ω into Σ and Ω \ Σ.

The classifier can also be defined based on a decision
function φ(x) that takes negative values in Σ and positive
values in Ω \ Σ. Then ŷ(x) = 2H(φ(x))− 1. The zero level
set of φ(x) is the decision boundary separating the two classes.
Margin, or distance away from the decision boundary signed
such that incorrect classifications take negative values and
correct classifications take positive values, can be represented
as yjφ(xj) due to the fact that the class labels are in the set
{−1,+1} and multiplication of these values is positive when
the same sign and negative when different signs.

A common approach for learning ŷ (in primal form) is to
minimize an empirical margin-based loss of the training data:

1

n

n∑
j=1

ℓ (yjφj(xj)) , (7)

with an additional constraint for regularization. Common
margin-based loss functions ℓ(·) include logistic loss, expo-
nential loss, and hinge loss:

ℓhinge (yφ(x)) ,
max (0, 1− yφ(x)) = (1− yφ(x))+ = 1−min (1, yφ(x)) .

(8)

In contrast to the image segmentation problem in which
we are dealing with the continuous field I(x), we only have
the point samples {x1, . . . , xn} in the supervised learning
problem. Also, due to the structure of the margin-based loss
function, we do not require separate functions to indicate
goodness of fit in the Σ and Ω \ Σ regions: one is enough.
Utilizing the Dirac delta function and making appropriate
choices including letting φ(x) = Lα(x), we may specialize
(6) to obtain:

min
∥α∥1≤τ

∫
Ω

n∑
j=1

(1− yLα(x))+ δ(x− xj)dx

= min
∥α∥1≤τ

1

n

n∑
j=1

(1− yjLα(xj))+ . (9)
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This formulation has the same convexification using hinge
functions; we can solve this problem using the convex cardinal
shape composition optimization machinery.

IV. CHOICE OF SHAPE DICTIONARY

The development in Section III formulates the supervised
classification machine learning problem, but glosses over
the choice of shape dictionary D. Recall that Lα(x) =∑m

i=1 αiχSi(x). Our goal in this work is interpretability, and
thus the shapes, which are atoms to compose the decision
boundary, should be easily comprehensible.

Interpretable models, including rules, tend to have simple
axis-aligned splits as decision boundaries composed with
simple Boolean expressions. Boolean OR-rules can be recov-
ered in our proposed model by choosing the shapes Si as
axis-aligned half-spaces and imposing an extra non-negativity
constraint on the elements of α. Without that non-negativity
constraint, more interesting but still also interpretable decision
rules can be obtained.

Another type of atomic shape that may be considered is
small hypercubes. Especially relevant for imbalanced data and
learning so-called box drawing models [17], a sparse composi-
tion of hypercubes allows for interpretability by highlighting
pockets of a particular class label in an easy-to-understand
axis-aligned way. Axis-aligned slabs that extend infinitely
in some dimensions are also a possible interpretable shape
dictionary.

Other choices for D will make the resulting classifiers
uninterpretable. As such an example, consider complicated
kernel machines cited as uninterpretable in Section I. Our
proposed formulation is related to kernel machines as follows.
The primal form of the ℓ1-regularized kernel SVM is the
same as (9) if we replace Lα(x) =

∑m
i=1 αiχSi(x) with∑n

j=1 αjyjK(x, xj), where K is a kernel function [29].
Compactly-supported kernels could be considered as shapes
in our proposed formulation [32], but would not, in general,
lead to interpretable compositions.

As such, the proposed methodology for machine learning
based on convex cardinal shape composition presents a way
to tractably learn models anywhere on the continuum be-
tween interpretability and uninterpretability depending on the
choice of shape dictionary. Simple axis-aligned shapes lead
to interpretable models and more complicated shapes lead to
uninterpretable ones.

V. CONCLUSION

In this early research, we have proposed a new methodology
for interpretable machine learning built upon the foundation of
the image segmentation algorithm known as convex cardinal
shape composition. It follows a different paradigm than exist-
ing new developments in interpretable learning such as ones
built upon Bayesian inference, mixed integer programming,
and Boolean compressed sensing. The interpretability of the
model enters through the choice of atoms by which the
decision boundary of the overall model is constructed: axis-
aligned hypercubes, slabs, and half-spaces tend to lead to

interpretable models. The formulation we develop has a close
relationship to the ℓ1-regularized SVM, but differs due to the
shape dictionary. There is much opportunity to further develop
this initial proposal in many directions, both theoretically and
empirically.
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