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Abstract—Instilling trust in high-stakes applications of ma-
chine learning is becoming essential. Trust may be decomposed
into four dimensions: basic accuracy, reliability, human interac-
tion, and aligned purpose. The first two of these also constitute
the properties of safe machine learning systems. The second
dimension, reliability, is mainly concerned with being robust
to epistemic uncertainty and model mismatch. It arises in the
machine learning paradigms of distribution shift, data poisoning
attacks, and algorithmic fairness. All of these problems can be
abstractly modeled using the theory of mismatched hypothesis
testing from statistical signal processing. By doing so, we can take
advantage of performance characterizations in that literature to
better understand the various machine learning issues.

Index Terms—signal detection theory, data poisoning, adver-
sarial robustness, distribution shift, fairness

I. INTRODUCTION

Despite artificial intelligence’s promise to reshape different
sectors, there has not yet been wide adoption of the technology
except in certain pockets such as electronic commerce and
media. Like other general purpose technologies, there are
many short-term costs to the changes required in infrastructure,
organizations, and human capital [1]. In particular, it is difficult
for many businesses to collect and curate data from disparate
sources. Importantly, there is a lack of trust in artificial intel-
ligence and machine learning in critical enterprise workflows.
For example, a study of business decision makers released in
2018 found that only 21% of them have a high level of trust
in different types of analytics; the number is likely smaller
for machine learning, which is a part of analytics in business
parlance [2]. Trust is particularly important in high-stakes
decision making applications such as health care, criminal
justice, lending, and employment.

But what is trust and how should we model trustworthy
machine learning? In the remainder of this paper, we will
define trust and trustworthiness both in general and in the
context of machine learning, relate it to safety in machine
learning, and discuss how to model it using the theory of
mismatched detection.

II. TRUST

The concept of trust is defined and studied in many different
fields including philosophy, psychology, sociology, economics,
and organizational management. Trust is the relationship be-
tween a trustor and a trustee: the trustor trusts the trustee. A

definition of trust from organizational management is partic-
ularly appealing and relevant for defining trust in machine
learning because machine learning systems in high-stakes
applications are typically used within organizational settings.
Trust is defined in [3] to be:

The willingness of a party to be vulnerable to the
actions of another party based on the expectation that
the other will perform a particular action important
to the trustor, irrespective of the ability to monitor
or control that other party.

This definition can be put into practice as a foundation for
desiderata of machine learning systems.

Embedded within this definition is the idea that the trustee
has certain properties that make it trustworthy, i.e. the qualities
by which the trustor can expect the trustee to perform the
important action. Being trustworthy does not automatically
imply that the trustee is trusted. The trustor must consciously
make a decision to be vulnerable to the trustee based on its
trustworthiness and other factors. It is possible for a system
to not be trusted no matter how worthy of trust it is.

In much of the literature on the topic, both the trustor and
the trustee are people. For our purposes, however, an end-
user or other person is the trustor and the machine learning
system is the trustee. Although the specifics may differ, there
are not many differences between a trustworthy person and a
trustworthy machine learning system.

Building upon the above definition of trust and trustwor-
thiness, one can list many different attributes of a trustwor-
thy person: availability, competence, consistency, discreetness,
fairness, integrity, loyalty, openness, promise fulfilment, and
receptivity to name a few [4]. Similarly, one can list several
attributes of a trustworthy information system, such as: cor-
rectness, privacy, reliability, safety, security, and survivability
[5]. The 2019 International Conference on Machine Learning
listed the following topics under trustworthy machine learn-
ing: adversarial examples, causality, fairness, interpretability,
privacy-preserving statistics and machine learning, and robust
statistics and machine learning. The European Commission’s
High Level Expert Group on Artificial Intelligence listed the
following attributes in 2019: lawful, ethical, and robust (both
technically and socially).

Such long and disparate lists give us some sense of what
people deem to be trustworthy characteristics, but are difficult
to use as anything but a rough guide. However, we can



TABLE I
ATTRIBUTES OF TRUSTWORTHY PEOPLE AND ARTIFICIAL INTELLIGENCE

Source Attribute 1 Attribute 2 Attribute 3 Attribute 4
[6] competent reliable open concerned
[7] credibility reliability intimacy low self-

orientation
[8] competent use fair

means to
achieve its
goals

take responsibil-
ity for all its im-
pact

motivated to
serve others’
interests as
well as its
own

[9] ability integrity predictability benevolence
[10] technical

compe-
tence

reliability understandability personal
attachment

distill these attributes into a set of separable sub-domains that
provide an organizing framework for trustworthiness. Several
pieces of work converge onto a nearly identical set of four such
separable attributes; a selected listing is provided in Table I
[6]–[10]. The first three rows of the table are attributes of trust-
worthy people. The last two rows are attributes of trustworthy
artificial intelligence. Importantly, through separability, it is
implied that each of the qualities is conceptually different and
we can examine each of them in isolation of each other.

In considering the four attributes of trustworthiness from
Table I in the machine learning context, we take Attribute 1 to
be basic performance such as accuracy, Attribute 2 to include
reliability, safety, security and fairness, Attribute 3 to consist
of various aspects of human interaction with the machine
learning system and its openness (including interpretability),
and Attribute 4 to be the alignment of the machine learning
system’s purpose with a society’s wants.

We use the following working definition of trustworthy
machine learning in the remainder of the paper. A trustworthy
machine learning system is one that has sufficient:

1) basic performance,
2) reliability,
3) human interaction, and
4) aligned purpose.

III. SAFETY AND MODEL MISMATCH

As we look at the first two elements of the definition of
trustworthy machine learning, we see that they recapitulate the
definition of safety in machine learning that we proposed in
earlier work [11], [12]: minimizing both risk and epistemic
uncertainty, i.e. the probability of expected harms and the
possibility of unexpected harms. Risk minimization is the
central tenet of statistical machine learning and yields basic
performance.

Uncertainty is the state of current knowledge in which
something is not known. There are at least two types of
uncertainty: aleatoric uncertainty and epistemic uncertainty
[13], [14]. Aleatoric uncertainty, also known as statistical
uncertainty, is inherent randomness or stochasticity in an out-
come that cannot be further reduced. Etymologically derived

from dice games, aleatoric uncertainty is used to represent
phenomena such as vigorously flipped coins and vigorously
rolled dice, thermal noise, and quantum mechanical effects.

Epistemic uncertainty, also known as systematic uncertainty,
refers to knowledge that is not known in practice, but could be
known in principle. The acquisition of this knowledge would
reduce the epistemic uncertainty. As an example of epistemic
uncertainty, [13] presents a person who does not know whether
kichwa is head or tail in Kiswahili. This uncertainty can be
reduced by observing coins being tossed in Nairobi.

Epistemic uncertainty is not part of the typical formulation
of training machine learning models. The most common in-
stance of epistemic uncertainty to arise in machine learning is
a mismatch between the data distribution of the given training
set and an unknown ideal distribution or true distribution that
will be encountered at the time of inference by the model. The
training and test data are not identically distributed with the
desired distribution.

Mismatch can take several forms, such as distribution shift,
data poisoning, and algorithmic fairness. In a distribution shift
setting, we train on a dataset drawn from the past but would
have liked to have trained on a dataset from the present. In a
data poisoning adversarial attack (including label modification,
data injection, and data modification), we train on a corrupted
dataset but would have liked to have trained on a dataset
that has not been attacked. Similarly, in case of algorithmic
fairness, we are given a training dataset that includes unwanted
biases that yield systematic disadvantages to certain groups
and individuals (defined by protected attributes such as race
and gender), but we would like to train on a dataset that
represents a fair and just world in which those biases are not
present.

Methods for achieving out-of-distribution generalization to
deal with the brittleness of machine learning models in new
contexts arising from spurious correlations [15], [16], for de-
fending against data poisoning attacks [17], [18], and for mit-
igating unwanted bias [19], [20] are active areas of research,
but typically dealt with separately. We contend that all of
these problems share enough similarity that it is useful to view
them abstractly through a single lens in order to gain intuition
about them. There are several different possible approaches
for such abstract modeling, including causal modeling. In the
remainder of the paper, we focus on mismatched hypothesis
testing from the statistical signal processing and information
theory literature as the modeling approach.

IV. MISMATCHED HYPOTHESIS TESTING

Hypothesis testing is the common framework for posing the
signal detection task in signal processing and information the-
ory. The standard supervised classification problem in machine
learning is a version of hypothesis testing when we have access
to a finite number of samples as a dataset rather than full access
to the probability distributions governing the hypotheses. If
we take the limit as the number of samples goes to infinity,
also known as the population setting of machine learning, we
can analyze supervised classification as hypothesis testing. For



simplicity, let us consider binary classification and hypothesis
testing.

Let the features or observations be X and the labels or
hypotheses be Y ∈ {0, 1}. The overall joint distribution pX,Y

is broken down into the prior probabilities of the hypotheses
π0 = Pr(Y = 0) and π1 = Pr(Y = 1), and likelihood
functions p0(x) = pX|Y (x | Y = 0) and p1(x) = pX|Y (x |
Y = 1). The Bayes-optimal detection rule to predict ŷ from
x is the likelihood ratio test:

p1(x)

p0(x)

>

<

ŷ(x)=1

ŷ(x)=0

π0
π1
. (1)

In mismatched hypothesis testing [21]–[23], we do not have
access to the ideal distribution pX,Y , but only get to see some
other distribution p̃X,Y and must perform a likelihood ratio
test on p̃1(x)/p̃0(x). As discussed before, p̃X,Y can refer to
a past distribution that has shifted, a poisoned distribution,
or a distribution containing unwanted biases against protected
groups. In all of these cases, the ideal distribution pX,Y is not
known in practice and this mismatch thus constitutes epistemic
uncertainty.

The performance of the optimal likelihood ratio test is
characterized using the Chernoff information C(p0, p1): the
maximum error exponent of the Bayesian error probability
[24]. The work of [25] proposes and defines a generalized
Chernoff information C(p0 → p̃0, p1 → p̃1) as the maximum
error exponent of the Bayesian error probability of the mis-
matched likelihood ratio test.

Chernoff information-based characterizations can be used
to provide insights on various aspects of trustworthy machine
learning. For example, the work of [26] uses this mismatched
hypothesis testing framework in the space of algorithmic
fairness to precisely show when there is and when there is not a
tradeoff between fairness and accuracy. The prevailing wisdom
is that there is always such a tradeoff, but that wisdom is
predicated on measuring the probability of error with respect to
p̃X,Y . When the probability of error is measured with respect
to pX,Y , the trade-off disappears. Similarly, although it has
not been done, one can use generalized Chernoff information
to characterize fundamental limits in out-of-distribution gen-
eralization and adversarial robustness.

The third element of trust: human interaction, can be
related to explainable and interpretable machine learning. If
the interaction between a machine learning model and a human
is modeled as a two-node distributed detection system where
the human is a fusion center, then Chernoff information-based
analysis shows that increased explainability (more information
passing from machine learning to human) yields increased
overall system accuracy [27]. This result contradicts a different
prevailing wisdom: that there is a tradeoff between explain-
ability and accuracy. One can imagine combining the analyses
for standard detection, mismatched detection, and distributed
detection to come up with an overall unified characterization
for the first three elements of trustworthy machine learning.

V. CONCLUSION

Trustworthy machine learning is starting to become an
important topic of study. In this paper, we have defined the
elements of trust and highlighted the fact that several important
issues in making machine learning trustworthy and safe can be
traced to reliability and robustness when the training data is not
identically distributed to an unknown desired distribution. This
mismatch yields epistemic uncertainty that must be minimized.

We have discussed how the machine learning paradigms of
being robust to unknown distribution shift, defending against
data poisoning attacks, and mitigating unwanted biases for
fairness, are all examples of mismatch and can be abstractly
characterized using the theory of mismatched detection and
generalized Chernoff information. Pulling together such char-
acterizations along with similar characterizations of other
elements of trust, such as explainability, may yield an abstract
unified theory of trust that will allow us to better understand
which elements are in conflict and which ones can be si-
multaneously satisfied. Understanding these relationships will
also help system designers take input from policymakers and
other stakeholders in setting parameters for machine learning
systems that respect the values they desire.

This paper is a call to action that does not introduce any
new technical results. It sets forth a future technical research
agenda that is grounded in defining trust for machine learning
from the synthesis of existing literature in different fields such
as organizational management and capturing different con-
siderations of machine learning performance that go beyond
predictive accuracy in a single abstract framework.
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