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ABSTRACT

A study of generalization error in signal detection by multiple
spatially-distributed and -correlated sensors is provided when the
detection rule is learned from a finite number of training samples
via the classical linear discriminant analysis formulation. Spatial
correlation among sensors is modeled by a Gauss–Markov random
field defined on a nearest neighbor graph according to inter-sensor
spatial distance, where sensors are placed randomly on a growing
bounded region of the plane. A fairly simple approximate expres-
sion for generalization error is derived involving few parameters. It
is shown that generalization error is minimized not when there are
an infinite number of sensors, but a number of sensors equal to half
the number of samples in the training set. The minimum general-
ization error is related to a single parameter of the sensor spatial
location distribution, derived based on weak laws of large numbers
in geometric probability. The finite number of training samples acts
like a budgeting variable, similar to a total communication power
constraint.

Index Terms— signal detection, distributed sensors, linear dis-
criminant analysis, generalization error, geometric probability

1. INTRODUCTION

We have embarked on an age in which inexpensive sensors are ev-
erywhere and in everything, producing data that enables a smarter
planet. Signal detection is one important use of the measurements
produced by collections of spatially-distributed sensors. Sensor
measurements in natural settings tend to exhibit correlation [1, 2],
but often, the design and analysis of detection rules has focused on
the case of statistically independent measurements (conditioned on
the hypothesis). Much of the focus has also been on the case when
the likelihood functions of the measurements are known a priori,
but this is seldom true in practice. In this paper, the focus is on the
supervised learning of detection rules for spatially-correlated sensor
measurements, in particular via linear discriminant analysis.

Common wisdom dictates that when monitoring a field, the
more sensors, the better the detection performance; and it is only
because of material costs that one limits the number of sensors.
However, this work considers supervised binary classification with
a finite training set and shows that increasing the number of sen-
sors beyond a certain amount results in the degradation of detection
performance, independent of any power, communication, or net-
work considerations. This behavior is the manifestation of the
fundamental phenomenon of overfitting. In some sense, power or
communication budgets are replaced by a budget on the cardinality
of the labeled training set in the learning setting.

The analysis in [3] of detection using spatially-correlated sensor
measurements corrupted by noise during communication to a fusion
center shows that for stochastic signals subject to transmission power

constraints, a finite rather than infinite sensor density in space is op-
timal. Although the analysis herein is for a constant sensor density,
the conclusion is similar in the sense that with degraded and con-
strained information (here due to a finite training set), it is better to
use a small-dimensional measurement vector rather than an infinite-
dimensional one.

While the majority of prior work on detection with multiple sen-
sors deals with known likelihood functions, there has also been work
on the supervised learning of detection rules, such as [4, 5]. These
works address questions of what can be done when communication-
limited sensors have a labeled training set. Here an even more funda-
mental question is addressed: even without limitation on communi-
cation, what is the generalization behavior of detection rules learned
from spatially-correlated sensor measurements.

A method for supervised classification with dimensionality re-
duction and information fusion in tree-structured sensor networks is
developed in [6]. In that work, it is also apparent that for a fixed
number of training samples, adding more sensors or dimensions of
measurements beyond a certain point results in a degradation of de-
tection performance.

In the remainder of the paper, the detection rule learning
paradigm considered is the classic plug-in formulation of linear
discriminant analysis. Generalization error is analyzed based on
expressions given in [7]. The spatially-correlated sensor system is
modeled as a Gauss–Markov random field with nearest neighbor
dependency among randomly placed sensors, quite similar to the
model employed in [8]. Like in [8], the asymptotic analysis of [9] is
employed for simplification purposes.

2. SYSTEMMODEL

Consider the system model with p sensors randomly deployed on the
plane. The location of sensor i, denoted vi ∈ R

2, is drawn according
to the distribution fv(v) which is supported on a square with area p.
Each sensor measures a scalar random variable xi, i = 1, . . . , p. The
overall measurement x ∈ R

p is related to two hypotheses y ∈ {0, 1}
by the Gaussian likelihood functions f

x|y (x|y = 0) ∼ N (μ0,Σ0)
and f

x|y (x|y = 1) ∼ N (μ1,Σ1). The particulars of the covariance
matrices Σ0 and Σ1 come from the spatial locations of the sensors;
correlation decays as a function of distance between sensors. The
task is to determine the hypothesis based on the measurement vector.

The probability density fx,y (x, y) governing the sensor mea-
surements for a particular sensor location realization is not given
to the system a priori. Only a set of n i.i.d. training samples
{(x1, y1), . . . , (xn, yn)} drawn from the distribution are given. If
the distribution were given, then the likelihood ratio test detection
rule based on it would minimize error. However, since it is not given,
a detection rule must be learned from the training set.

The detection rule studied here is the linear discriminant analysis
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rule, a simple, classical, often-used technique. The detection rule is:

ŷ(x) = step(θT
x+ θ0), (1)

where θ =
(
Σ̂0 + Σ̂1

)−1

(μ̂1 − μ̂0), θ0 = − 1
2
θT (μ̂0 + μ̂1),

and μ̂0, μ̂1, Σ̂0, and Σ̂1 are the conditional sample means and co-
variances of the n training samples. Once the detection rule ŷ(·) :
R

p → {0, 1} is learned, it is applied to new unseen and unlabeled
measurements x.

Three assumptions on fx,y (x, y) are made for simplicity of ex-
position. Let the prior probabilities of the hypotheses be equal,
i.e. Pr[y = 0] = Pr[y = 1] = 1/2. Let μ0 = 0 (vector of all
zeroes) and let μ1 = 1 (vector of all ones). Let Σ0 = Σ1; note
that the assumptions are not known by the deployed system. The co-
variance structure is based on the Euclidean nearest neighbor graph
of the sensors. The (undirected) nearest neighbor graph contains an
edge between sensor i and sensor j if sensor i is the nearest neighbor
of sensor j or if sensor j is the nearest neighbor of sensor i. The set
of edges in the nearest neighbor graph is denoted E .

It is most convenient to specify the p2 entries of the covariance
matrix in three parts. First, the diagonal elements of Σ1 are all equal
to the constant σ2. Second, the elements of Σ1 corresponding to
edges in the nearest neighbor graph are:

{Σ1}ij = σ2g(d(vi,vj)), (i, j) ∈ E , (2)

where g(·) : R+ → (0, 1) is a monotonically decreasing function
that encodes the correlation decay with distance. The inverse covari-
ance or information matrix, denoted J1 = Σ

−1
1 , is used to spec-

ify the remaining elements. The off-diagonal elements of J1 corre-
sponding to sensor pairs (i, j) that do not have an edge in the nearest
neighbor graph are zero, i.e.

{J1}ij = 0, i �= j, (i, j) �∈ E . (3)

3. GENERALIZATION ERROR

As the linear discriminant analysis detection rule is learned from
training samples but applied to new test samples, the performance
metric of interest is the generalization error Pr[ŷ(x) �= y ], which
is always greater than or equal to the Bayes optimal detection error
achieved by the optimal likelihood ratio test detection rule. General-
ization error for the sensor system model of Sec. 2 is first studied for
a given realization of sensor locations and then as an average across
realizations.

3.1. Linear Discriminant Analysis Error Approximation

Despite extensive study by many researchers, an exact closed form
expression for the generalization error of linear discriminant analysis
has not yet been found, but several highly accurate approximations
exist [7]. One of the best ones when the true likelihood functions are
Gaussian and the true prior probabilities are equal, applicable for a
wide range of p and n values, is the following [7]:

Pr[ŷ(x) �= y ] ≈ Φ

(
−
δ

2

[(
1 +

4p

nδ2

)
n

n− p

]−1/2
)
, (4)

where Φ(·) is the Gaussian cumulative distribution function and

δ2 = (μ1 − μ0)
T

(
J0 + J1

2

)
(μ1 − μ0) (5)
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Fig. 1. Exact (blue line with marker dots) and approximate (black
line) squared Mahalanobis distance as a function of the number of
sensors. The two lines are nearly indistinguishable.

is a squared Mahalanobis distance.
With the assumptions μ0 = 0, μ1 = 1, and Σ0 = Σ1, the

squared Mahalanobis distance simplifies to:

δ2 =

p∑
i=1

p∑
j=1

{J1}ij . (6)

Off-diagonal entries of the information matrix with (i, j) ∈ E take
the value [8]:

{J1}ij =
1

σ2
·

−g(d(vi,vj))

1− g(d(vi,vj))2
. (7)

Therefore the sum of the off-diagonal elements is:

p∑
i=1

∑
j �=i

{J1}ij =
2

σ2

∑
(i,j)∈E

−g(d(vi,vj))

1− g(d(vi,vj))2
. (8)

The diagonal entries of the information matrix take the value [8]:

{J1}ii =
1

σ2

⎛
⎝1 +

∑
{j|(i,j)∈E}

g(d(vi,vj))
2

1− g(d(vi,vj))2

⎞
⎠ . (9)

Consequently, the sum of the diagonal elements is:

p∑
i=1

{J1}ii =
p

σ2
+

2

σ2

∑
(i,j)∈E

g(d(vi,vj))
2

1− g(d(vi,vj))2
. (10)

Combining (8) and (10),

δ2 =
p

σ2
−

2

σ2

∑
(i,j)∈E

g(d(vi,vj))

1 + g(d(vi,vj))
. (11)

3.2. Mahalanobis Distance Approximation

It may be noticed that in (11), the Mahalanobis distance depends on
the Euclidean distances d(vi,vj) which in turn depend on the par-
ticular realization of the random deployment of sensor locations. For
analysis purposes, it is useful to characterize the average behavior of
δ across realizations of {v1, . . . ,vp}. Formulas obtained in [9] are
used in developing this characterization.

Average behavior of functionals of the nearest neighbor graph
can be described using average behavior of homogenous Poisson
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Fig. 2. Test error (red line with marker dots) and generalization error
approximation (black line) as a function of the number of sensors for
(a) n = 100, (b) n = 200, and (c) n = 1000.

point processes [9]. One specific result is that as p grows,

1

p

∑
(i,j)∈E

φ(d(vi,vj)) →

1

2

∫
E

⎡
⎣ ∑

(0,a)∈F

φ

(
d(0,wa)√

fv(v)

)⎤⎦ fv(v)dv, (12)

where φ(·) is an arbitrary function, wk are spatial locations drawn
according to the Poisson point process with unit rate over a unit
square centered at the origin, and F is the set of edges of the nearest
neighbor graph constructed from the origin point 0 and those points
wk.

Consequently,
δ2 ≈

p

σ2
(1− ζ) , (13)

where

ζ =

∫
E

⎡
⎣ ∑

(0,a)∈F

φ

(
d(0,wa)√

fv(v)

)⎤⎦ fv(v)dv, (14)

and φ(·) = g(·)/(1 + g(·)). It may be noted that the squared Maha-
lanobis distance is approximately a linear function of the number of
sensors p. The approximation is in fact quite tight. Sec. 4 provides
plots of quantities derived in this section as a function of p for a few
examples, illustrating the quality of the approximations and illustrat-
ing the fact that more sensors is not necessarily better from an error
rate perspective.

3.3. Optimal Number of Sensors

The optimal value of the number of sensors p may be found based
on the Mahalanobis distance approximation (13), and the generaliza-
tion error approximation (4). Combining approximations, an overall
approximation for the generalization error is:

Pr[ŷ(x) �= y ] ≈

Φ

(
−

√
p(1− ζ)

4σ2

[(
1 +

4σ2

n(1− ζ)

)
n

n− p

]−1/2
)
. (15)

The number of sensors that minimizes this generalization error
approximation is p∗ = n/2, irrespective of σ2 and ζ. This optimal
value is found by differentiating (15) with respect to p, setting it
equal to zero, and solving for p. Of course, this achieved minimum
approximate generalization error does depend on σ2 and ζ:

Pr[ŷ(x) �= y ]∗ = Φ

(
−
1

4

√
n2(1− ζ)2

nσ2(1− ζ) + 4σ4

)
. (16)

The expression (16) unsurprisingly reveals that the minimum
generalization error is a monotonically increasing function of σ2

bounded in the range zero to one half, and a monotonically decreas-
ing function of n, the number of training samples. Furthermore,
the minimum approximate generalization error is a monotonically
increasing function of ζ ∈ [0, 1/2], implying that the sensor place-
ment distribution fv(v) should be chosen to minimize ζ in order to
achieve the best system performance.

4. SIMULATIONS

Simulation examples are presented in this section showing test er-
ror, as well as values of the approximate Mahalanobis distance and
approximate generalization error derived in Sec. 3. The particular
correlation decay function, also known as the semivariogram, that
is considered is g(d) = 1

2
exp(− d

2
); such exponential models of

correlation decay in spatial signals often appear in geostatistics.
The sensor location distribution fv(v) with support over the

square with area p that is considered is an appropriately scaled and
shifted version of the beta distribution independent and identically
distributed in both components of v. Both parameters of the beta
distribution are taken to be equal to β. When β = 1, the sensors
are placed uniformly over the square; they are concentrated in the
middle of the square for β > 1 and concentrated at the edges of the
square for β < 1.

4.1. Mahalanobis Distance Approximation

The squared Mahalanobis distance approximation (13) is first com-
pared to the true value (11). The exact squared Mahalanobis distance
with σ2 = 1 is calculated for 100 realizations of v with the uniform
distribution, i.e. β = 1, for different numbers of sensors. In Fig. 1,
the blue curve with marker dots is the average of the realizations as
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Fig. 3. Poisson point process expectation ζ as a function of the beta
distribution parameter β for sensor spatial location distribution.

a function of p. The figure also includes a plot of the approximation
to squared Mahalanobis distance using Poisson point processes as a
black line. Even for small p, the approximation is so good that the
blue curve and the black line are nearly indistinguishable.

Whereas finding the exact squared Mahalanobis distance in-
volves constructing the p×p information matrix for each realization
of v and each p, the approximation only involves finding ζ once, and
it is applicable for all p, even as p approaches infinity.

4.2. Test Error and Generalization Error Approximation

Having empirically shown the high quality of the Mahalanobis dis-
tance approximation for all p (which converges in the limit as p goes
to infinity), the generalization error approximation (15) for spatially-
correlated sensors is now examined. Specifically examined is the test
error of linear discriminant analysis as a function of p averaged over
twenty realizations of {v1, . . . ,vp}, ten realizations of the training
set {(x1, y1), . . . , (xn, yn)} per sensor location realization, and 105

test samples per training set. This average test error is compared to
the generalization error approximation, including the Mahalanobis
distance approximation.

The red line with marker dots in Fig. 2(a) is the test error for
n = 100; the black line shows the generalization error approxima-
tion. The first thing to notice is that as expected, error is minimized
when p = 50 = n/2 both for the test error and the approximate
generalization error expression. Detection performance suffers if too
many sensors are thrown down. The second thing to notice is that
the approximation is quite good for all p. Therefore, the approximate
generalization error expression, which is simple to compute and has
a nice analytic form, may be used in further analysis of the sensor
system. Fig. 2(b) and Fig. 2(c) show error with larger numbers of
samples in the training set: n = 200 and n = 1000. The excel-
lent agreement gets even better for larger n. The n = 1000 case
represents an instance in which it is computationally intractable to
obtain the tiny error probabilities of the detection rule in a reason-
able amount of time through test samples; the approximation is valid
in this regime and may be used readily.

4.3. Different Sensor Placement Distributions

The simulations thus far have focused on the uniform distribution for
v. Now consider different distributions and consequently different
values of ζ. Fig. 3 shows the value of the Poisson point process ex-
pectation ζ as a function of β. The uniform distribution with β = 1
minimizes this expectation. As discussed in Sec. 3.3, small ζ implies
small generalization error. Therefore, among this family of distribu-
tions, the uniform distribution optimizes detection performance. The

overall guideline is then that when using linear discriminant analysis
detection given a budget n on the number of training samples, n/2
sensors placed uniformly should be used.

5. CONCLUSION

It is a fundamental truth that if nothing else, time is a limited re-
source, and limits a system to finite sets of training samples. It is
shown in this work that when learning a linear discriminant analysis
detection rule for spatially-correlated sensor measurements with lo-
cal Gauss–Markov dependency and constant-density random sensor
placement, it is optimal to use precisely half the number of sensors
as training sample instances. This result that a finite rather than in-
finite number of sensors is optimal follows from the phenomenon of
overfitting. Less is more.

In developing this result, generalization error has been approx-
imated using an expression by Raudys that involves Mahalanobis
distance. Mahalanobis distance has been exactly stated for Gauss–
Markov sensor measurements, and has also been approximated us-
ing weak laws of large numbers. The approximations are found to
be quite tight in comparison with empirically computed true values
in all regimes of the number of sensors. It has been seen that within
the particular family of sensor placement distributions considered in
Sec. 4, the uniform distribution minimizes a Poisson point process
expectation parameter and thus consequently minimizes generaliza-
tion error.
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