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Correspondence

Bayes Risk Error is a Bregman Divergence

Kush R. Varshney

Abstract—In previous work reported in these Transactions, we proposed
a new distortion measure for the quantization of prior probabilities that are
used in the threshold of likelihood ratio test detection: Bayes risk error. In
this correspondence, we show that the Bayes risk error is a member of the
class of Bregman divergences and discuss the implications of this fact.

Index Terms—Bayesian hypothesis testing, Bregman divergence, quanti-
zation, signal detection.

I. INTRODUCTION

Bayesian hypothesis testing for signal detection relies on precise
knowledge of the prior probabilities of the hypotheses in setting thresh-
olds of likelihood ratio tests [1]. Moreover, the detector requires such
prior probabilities for the entire universe of objects it might observe.
However, it may be that the detector can only use a finite number of
prior probabilities due to memory and processing limitations, and must
thus quantize the infinite set of prior probabilities across the universe
to a finite set of representative priors [2]. Quantization or clustering to
a finite set also guards against overfitting when prior probabilities are
estimated from a small number of noisy observations per object [3]. In
[2], motivated by these concerns we propose and substantiate a quan-
tizer for probabilities with a novel distortion criterion, Bayes risk error,
which directly incorporates detection performance measured by Bayes
risk.

In reexamining the Bayes risk error distortion function herein, we
come to the realization that it belongs to the class of Bregman diver-
gences [4], a class that includes squared Euclidean and Mahalanobis
distances, Kullback–Leibler divergence, generalized I-divergence, and
Itakura–Saito divergence [5], [6]. This connection enriches the class of
Bregman divergences. Importantly, it will allow us to link the theory de-
veloped for Bregman divergences to Bayes risk error, which may lead
to new directions for research, and also allow us to feed advances that
have been made in the context of Bayes risk error to general Bregman
divergences.

The remainder of this correspondence is organized as follows.
In Section II, we review the Bayes risk error distortion function. In
Section III, we show that it is a Bregman divergence. In Section IV,
we discuss implications of this realization. Finally, in Section V, we
conclude.

II. BAYES RISK ERROR DISTORTION

In the signal detection problem, we have a noisy observation � � �
of an underlying hypothesis� � ���� ��� that is distributed according
to the likelihood functions �� ������ � ��� and �� ������ � ���.
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Fig. 1. Example ��� � (solid curve) and ��� � �� (dashed line).

The prior probabilities of the hypotheses are �� � ���� � ��� and
�� � ���� � ��� � � � ��. The detection rule 	���� is a mapping
from � to ���� ���. There are two types of errors that the detection
rule may produce; it may output �� when the true hypothesis is �� (a
type I error with probability ��� � ���	��� � � ���� � ���) or it may
output �� when the true hypothesis is �� (a type II error with proba-
bility ���� � ���	��� � � ���� � ���). In the Bayesian hypothesis
test, non-negative costs are associated with the two errors: ��� for type
I errors and ��� for type II errors [1].

The detection rule is designed to minimize the total cost-weighted
probability of error. This weighted combination of the two error prob-
abilities is known as the Bayes risk. The detection rule that minimizes
Bayes risk is the following likelihood ratio test:
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where the parameter 	 in the threshold on the right side of (1) equals
�� for optimality. The two error probabilities are a function of 	 and
consequently of �� for the optimal detection rule. The Bayes risk of the
optimal detection rule written as a function of �� is
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This Bayes risk function (2) is strictly concave in the interval (0,1)
[7], [8].

As discussed in Section I, it may be that the precise prior probability
is not employed in setting the threshold of the likelihood ratio test, i.e.,
	 �� �� in (1). In that suboptimal case, the Bayes risk is
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��
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The function 
���� 	� is linear and tangent to 
���� at 	 [1], [7], [8].
Example 
���� and 
���� 	� are shown in Fig. 1.

In [2], we define a new distortion criterion for quantizing prior prob-
abilities as the difference between the mismatched Bayes risk function
(3) and the optimal Bayes risk function (2), naming it the Bayes risk
error:

����� 	� � 
���� 	�� 
����� (4)
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with �� � ��� �� and � � ��� ��. We show that the Bayes risk error
is non-negative and only equal to zero when �� � �, that it is strictly
convex in ��, and that it is quasi-convex in � for deterministic likeli-
hood ratio tests [2]. In the next section, we revisit the Bayes risk error
and show that it is a Bregman divergence.

III. INTERPRETATION AS BREGMAN DIVERGENCE

Bregman divergences are functions of two arguments that map to
the non-negative real numbers. They are defined based on strictly
convex real-valued loss functions ���� defined over a convex set. The
Bregman divergence is

������ � ����� ����� ��� �������� (5)

where ��� �� is the inner product and ����� is the gradient of � evalu-
ated at � [4], [5]. With scalar arguments, the Bregman divergence sim-
plifies to

���� �� � ����� ����� ��� �������� (6)

Let the loss function be the negative Bayes risk function, i.e.,���� �
�	���. As such, due to the concavity of the Bayes risk function, ����
is strictly convex and differentiable over a convex set, the interval (0,1).
The Bregman divergence generated by the Bayes risk function is

����� �� � �	���� � 	��� � ��� � ��	 ����� (7)

We now show that this divergence is the Bayes risk error. As stated in
Section II, the mismatched Bayes risk is a linear function that is tangent
to 	���� at �. Therefore, its slope is the derivative of 	���� evaluated
at �, i.e., 	 ����. Based on the point-slope formula of lines,

	���� �� � 	��� � ��� � ��	 ����� (8)

Substituting this form into (4), we see that (7) and (4) are indeed equiv-
alent functions, and that Bayes risk error is the Bregman divergence
generated by the negative Bayes risk function.

IV. DISCUSSION

In this section, we discuss some implications of the acknowledge-
ment that Bayes risk error is a Bregman divergence.

A. Properties

Several properties of the Bayes risk error are proven in [2] that follow
from the fact that it is a Bregman divergence; these properties could
thus have been stated directly without the proofs given in [2], although
the given proofs are of independent interest as alternatives. By being a
Bregman divergence, it follows that the Bayes risk error is non-negative
and only equal to zero when its two arguments are equal, and that it is
convex in its first argument.

Banerjee et al. show that the centroid condition of Bregman diver-
gences does not depend on the specific Bregman divergence that is
used; all Bregman divergences have the same centroid condition: the
expectation of the variable being quantized within the quantization cell
is the unique minimizer [5], [6]. That is, within a fixed quantization cell
�� , the optimal representation point is
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��
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We found the mean Bayes risk error centroid condition for a spe-
cific additive Gaussian noise example [2, eq. (25)], but did not simplify
the expression completely to the expectation. We also did not give this
simply stated centroid condition generally for Bayes risk error, which
follows from it being a Bregman divergence. As the centroid is the
mean value of the distribution of prior probabilities within the quan-

tization cell, it is not a function of the Bayes costs or the signal mea-
surement model; they only affect the nearest neighbor condition.

Additionally, the Lloyd–Max algorithm is guaranteed to find a local
optimum for Bregman divergences [6], which we proved for Bayes risk
error based on [9]. The Bayes risk error inherits other properties of
Bregman divergences that were not stated in [2]. For example, it is
a linear operator and satisfies a generalized Pythagorean theorem [6].
The centroid condition given in [2] is for the right-sided centroid, but
following [10], left-sided and symmetrized centroid conditions can be
stated using the Legendre transform, although their interpretation from
the Bayesian hypothesis testing perspective is unclear. (The Legendre
transform of �	��� is

���� � ��	 ������ � 	 �	 ������ (10)

where 	 ��� is the inverse function of the derivative of 	 .)

B. Bregman Information

Banerjee et al. define the concept of Bregman information for empir-
ical or discrete distributions in [6], which corresponds to the mean Bayes
risk error of the optimal representation point (when there is a single
quantization level and we are working with an empirical distribution).
The Bregman information is sample variance for squared Euclidean
distance and is mutual information for Kullback–Leibler divergence, in
both cases indicating a level of uncertainty. The Bregman information
for Bayes risk error can be interpreted similarly; it represents the uncer-
tainty of the decision rule with respect to an unknown prior. As such,
mean Bayes risk error is the appropriate quantification of distortion
for a rate-distortion characterization; it is an information radius [11].

C. � -ary Hypothesis Test

The signal detection problem considered in [2] and to this point in
this correspondence is the binary Bayesian hypothesis test. It is men-
tioned in [2] that � -ary hypothesis testing for �   can also be con-
sidered for quantization. However this extension has not been pursued
heretofore because proofs in [2], especially for unique minimization,
rely on properties of receiver operating characteristics; the operating
characteristic is not straightforwardly defined for �   hypotheses.
With the recognition that Bayes risk error is a Bregman divergence gen-
erated by the negative Bayes risk function, no such proofs are neces-
sary. All that is required is to present a strictly convex function defined
over a convex domain, and all relevant properties and conditions for
quantization follow.

With � hypotheses, we have � prior probabilities ��  �, � �
�� � � � �� � � such that

�
�� � �. Let us write the collection of

priors as the vector �. We also have an � �� matrix of costs ��� .
The detection rule in the � -ary case uses ratios of priors and costs
analogously to the likelihood ratio test (1). The domain over which we
are working is the simplex, which is convex. The Bayes risk function

	��� �

���

���

���

���

����� �� ������� � ��	� � �� (11)

is strictly concave [7], [8], and thus we can define an � -ary Bayes risk
error

������ � �	��� � 	��� � ��� ����	��� (12)

with all of the attendant properties of Bregman divergences mentioned
above, and others such as the fact that partitions induced by Bregman
divergences have linear separators [6].

Going even further, one may consider Bayesian estimation rather
than � -ary Bayesian detection and define a functional Bregman
divergence [12] as the distortion for quantization of regression prior
functions.
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D. Sipping From the Fountain

A primary motivation for considering the quantization of prior
probabilities is as a model for decision making by humans. Also,
high-rate quantization analysis of Bayes risk error in [2] follows
that of perceptual distortion measures [13]; the potential connection
between Bregman divergences and perceptual distortion measures is
also pointed out in [5]. Thus, to further explore and model human
information processing, study of Bregman divergences seems like a
promising avenue.

Known results and theories regarding Bregman divergences can
be specialized to human decision making and perception. Examples
include connections to exponential family distributions [6], boosting
[14], and information geometry [15]. (The exponential family distri-
bution corresponding to Bayes risk error is

�� ��� � ��� ������ �� � ����� � (13)

with parameter �.) Wide-ranging connections among Bregman diver-
gences, Ali–Silvey divergences, regret bounds, signal detection theory,
and other topics in statistical learning and decision theories may be
found in [16]. Considering the human aspect may lead to new directions
of research that apply generally to Bregman divergences as well.

E. Paying It Forward

Work on quantization that builds upon [2] within the Bayes risk
context may be expanded to include the entire class of Bregman di-
vergences. For example, it seems possible to take the theory of team-
theoretic quantization of prior probabilities for distributed detection
by agents [17] and apply it to general team-theoretic quantization by
agents to optimize a Bregman divergence-related objective. Similarly,
it seems possible to transfer ideas of intermediate levels of minimax
robustness for Bayes risk error [18] to general Bregman divergences.
The concept of “price of segregation” developed in [19] and [20] might
be applicable in non-Bayesian hypothesis testing scenarios. It may or
may not be possible to generalize game-theoretic quantization of prior
probabilities for distributed Bayesian hypothesis testing [21] because
game-theoretic considerations arise in that context due to differences
in Bayes costs ��� , which have no direct analogue in other Bregman
divergences.

V. CONCLUSION

In this correspondence, we have seen that Bayes risk error, a dis-
tortion criterion introduced for the quantization of prior probabilities
in Bayesian hypothesis testing, is a Bregman divergence. Due to this
nicety, several properties of the Bayes risk error can be stated imme-
diately, new research directions exploring the role of general Bregman
divergences in human information processing can be initiated, and ex-
isting analyses involving Bayes risk error can be generalized. As a di-
vergence, Bayes risk error can be used to quantify the closeness of prior
probability vectors not only for quantization, but in other informational
contexts involving the signal detection task as well.

REFERENCES

[1] H. L. Van Trees, Detection, Estimation, and Modulation Theory. New
York: Wiley, 1968.

[2] K. R. Varshney and L. R. Varshney, “Quantization of prior probabilities
for hypothesis testing,” IEEE Trans. Signal Process., vol. 56, no. 10, pp.
4553–4562, Oct. 2008.

[3] K. R. Varshney, “Frugal hypothesis testing and classification,” Ph.D.
thesis, Mass. Inst. Technol., Cambridge, MA, 2010.

[4] L. M. Bregman, “The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex
programming,” USSR Comp. Math. Math. Phys., vol. 7, no. 3, pp.
200–217, 1967.

[5] A. Banerjee, X. Guo, and H. Wang, “On the optimality of conditional
expectation as a Bregman predictor,” IEEE Trans. Inf. Theory, vol. 51,
no. 7, pp. 2664–2669, Jul. 2005.

[6] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with
Bregman divergences,” J. Mach. Learn. Res., vol. 6, pp. 1705–1749,
Oct. 2005.

[7] R. A. Wijsman, “Continuity of the Bayes risk,” Ann. Math. Statist., vol.
41, no. 3, pp. 1083–1085, Jun. 1970.

[8] M. H. DeGroot, Optimal Statistical Decisions. Hoboken, NJ: Wiley-
Interscience, 2004.

[9] A. V. Trushkin, “Sufficient conditions for uniqueness of a locally op-
timal quantizer for a class of convex error weighting functions,” IEEE
Trans. Inf. Theory, vol. IT-28, no. 2, pp. 187–198, Mar. 1982.

[10] F. Nielsen and R. Nock, “Sided and symmetrized Bregman centroids,”
IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2882–2904, Jun. 2009.

[11] R. Sibson, “Information radius,” Probab. Theory Rel., vol. 14, no. 2,
pp. 149–160, Jun. 1969.

[12] B. A. Frigyik, S. Srivastava, and M. R. Gupta, “Functional Bregman
divergence and Bayesian estimation of distributions,” IEEE Trans. Inf.
Theory, vol. 54, no. 11, pp. 5130–5139, Nov. 2008.

[13] J. Li, N. Chaddha, and R. M. Gray, “Asymptotic performance of vector
quantizers with a perceptual distortion measure,” IEEE Trans. Inf.
Theory, vol. 45, no. 4, pp. 1082–1091, May 1999.

[14] M. Collins, R. E. Schapire, and Y. Singer, “Logistic regression, Ad-
aboost and Bregman distances,” Mach. Learn., vol. 48, no. 1–3, pp.
253–285, Jul. 2002.

[15] N. Murata, T. Takenouchi, T. Kanamori, and S. Eguchi, “Information
geometry of U-boost and Bregman divergence,” Neural Comput., vol.
16, no. 5, pp. 1437–1481, Jul. 2004.

[16] M. D. Reid and R. C. Williamson, “Information, divergence and risk
for binary experiments,” J. Mach. Learn. Res., vol. 12, pp. 731–817,
Mar. 2011.

[17] J. B. Rhim, L. R. Varshney, and V. K. Goyal, “Collaboration in dis-
tributed hypothesis testing with quantized prior probabilities,” in Proc.
Data Compression Conf., Snowbird, UT, Mar. 2011, pp. 303–312.

[18] K. R. Varshney and L. R. Varshney, “Multilevel minimax hypothesis
testing,” in Proc. IEEE Stat. Signal Process. Workshop, Nice, France,
Jun. 2011, pp. 109–112.

[19] L. R. Varshney, “Unreliable and resource-constrained decoding,” Ph.D.
thesis, Mass. Inst. Technol., Cambridge, MA, 2010.

[20] L. R. Varshney, J. B. Rhim, K. R. Varshney, and V. K. Goyal, “Cate-
gorical decision making by people, committees, and crowds,” in Proc.
Inf. Theory Appl. Workshop, La Jolla, CA, Feb. 2011.

[21] J. B. Rhim, L. R. Varshney, and V. K. Goyal, “Conflict in distributed
hypothesis testing with quantized prior probabilities,” in Proc. Data
Compression Conf., Snowbird, UT, Mar. 2011, pp. 313–322.


