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Generalization Error of Linear Discriminant Analysis in
Spatially-Correlated Sensor Networks

Kush R. Varshney

Abstract—Generalization error, the probability of error of a detection
rule learned from training samples on new unseen samples, is a fun-
damental quantity to be characterized. However, characterizations of
generalization error in the statistical learning theory literature are often
loose and practically unusable for optimizing detection systems. In this
work, focusing on learning linear discriminant analysis detection rules
from spatially-correlated sensor measurements, a tight generalization
error approximation is developed that can be used to optimize the param-
eters of a sensor network detection system. As such, the approximation
is used to optimize network settings. The approximation is also used to
derive a detection error exponent and select an optimal subset of deployed
sensor nodes. A Gauss–Markov random field is used to model correlation
and weak laws of large numbers in geometric probability are employed in
the analysis.

Index Terms—Distributed sensors, generalization error, geometric prob-
ability, linear discriminant analysis, signal detection.

I. INTRODUCTION

Collections of spatially-distributed sensor nodes are now being
used widely in environmental monitoring and surveillance. With the
increasing penetration of smartphones loaded with a multitude of
sensors, many new sensor network application domains are poised to
emerge. In these domains, one of the key signal processing tasks is
detection or classification. Sensor measurements in natural settings
tend to exhibit spatial correlation [1]–[6], but more often than not, the
design and analysis of detection rules in sensor networks is studied
under the assumption of statistically independent measurements
(conditioned on the hypothesis) [7]–[10]. Also, the focus of sensor
network detection investigations is mostly on the case when the
likelihood functions of the measurements are known. However, this
a priori knowledge is often not available in real-world situations. In
contrast, in this paper, the statistical learning framework of supervised
classification is considered, in which training samples are provided
rather than the likelihood functions, and sensor measurements are
assumed spatially-correlated [11].

Two different errors may be examined in supervised classification:
the training or empirical error and the generalization error. The training
error, the fraction of misclassifications by the learned detection rule
on the provided training samples, is of much less relevance than the
generalization error, the probability of incorrect classification by the
detection rule on a new sample drawn from the same distribution as
the training samples. The training error is straightforward to report, but
characterizing the generalization error of a learned detection rule is not;
doing so is a main thrust in statistical learning theory.

Bounds on generalization error within the paradigm of empirical
processes, e.g., based on Vapnik–Chervonenkis dimension [12] and
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Rademacher complexity [13], [14], are loose on real-world data and are
not intended to directly serve as criteria for optimization [15, Sec. 1].
However, a less known paradigm for characterizing generalization
error—specifically for linear discriminant analysis [16], [17] and
closely-related plug-in supervised classification methods—described
in [18] yields expressions that are not loose and can potentially be
used as optimization criteria. In this paper, the generalization error
approximations of [18] are expanded to the sensor network context
and shown to be useful in optimizing sensor network attributes such as
the number of sensors, number of training samples, and sensor spatial
distribution. Linear discriminant analysis is limited as a classification
algorithm because it relies on strong data distribution assumptions,
but has been generalized into a powerful, competitive approach using
nonlinear kernels [19], [20]. Although the analysis pursued in this
correspondence does not take nonlinear kernels into account, such
analysis may be undertaken using results on kernel Mahalanobis
distances [21].

Like the model in [22], the spatially-correlated sensor system is mod-
eled as a Gauss–Markov random field with nearest neighbor depen-
dency among randomly placed sensors. Correlation between sensor
nodes decays as a function of distance in a manner prescribed by spa-
tial and geostatistics, e.g., according to the Matérn correlation func-
tion [1]–[3]. Gaussian random fields have historically been and cur-
rently are the predominant probability models for spatial phenomena
[1]; Gauss–Markov random fields are becoming more and more pop-
ular within spatial and geostatistics [6], and are being used in sensor
network analysis as well [22]–[24]. The asymptotic analysis of ran-
domly placed points in growing bounded regions of the plane devel-
oped in [25] is employed for simplification purposes.

Common wisdom dictates that when monitoring a field, detection
performance improves with more deployed sensors. Furthermore, it is
only because of material costs that one limits the number of sensors
[26]. However in this work, it is shown that increasing the number of
sensors beyond a certain amount results in the degradation of detection
performance when the detection rule is learned from a finite training set
within the supervised classification context, independent of any power,
communication, or network considerations.1 This degradation behavior
is a manifestation of the fundamental phenomenon of overfitting [28].

The analysis in [26] of detection using spatially-correlated sensor
measurements corrupted by noise during communication to a fusion
center shows that for stochastic signals subject to transmission power
constraints, a finite rather than infinite sensor density in space is op-
timal. The conclusion herein is similar in the sense that with degraded
and constrained information (here due to a finite training set), it is
better to use a small-dimensional measurement vector rather than an
infinite-dimensional one.

While the majority of prior work on detection with multiple sen-
sors deals with known likelihood functions, there has also been work
on the supervised learning of detection rules, such as [29]–[32]. These
works address questions of what can be done when communication-
limited sensors have a labeled training set. Here an even more fun-
damental question is addressed: even without limitation on communi-
cation, what is the generalization behavior of detection rules learned
from spatially-correlated sensor measurements. A method for super-
vised classification with dimensionality reduction and information fu-
sion in tree-structured sensor networks is developed in [33]. In that
work, it is also apparent that for a fixed number of training samples,
adding more sensors or dimensions of measurements beyond a certain
point results in a degradation of detection performance.

1In the same vein as [27], the term sensor network is used here because it is
common, but the term sensor ensemble is more appropriate.
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Works such as [27] model collections of sensor measurements as
deterministic compressible signals rather than stochastically through
Gauss–Markov random fields. Although such models do include spa-
tially-independent stochastic measurement noise akin to the nugget ef-
fect discussed in Section II-A and signal compressibility does introduce
a form of correlation between sensors, they are not the same as the
model considered herein. Also, the task considered in such work is es-
timation rather than supervised classification. Despite these and other
differences making conclusions difficult to compare, it can be noted
that the optimal (misclassification) error scaling behavior we find is ex-
ponential in the number of sensors (cf. Section IV-D), whereas optimal
(mean squared error) error scaling is only polynomial in that work [27,
eq. 20]. Note however, that in that error scaling, a sublinear number of
measurements is needed per sensor [27, eq. 19], whereas the relation-
ship is linear in what is found herein.

The correspondence is organized as follows. Section II presents the
Gauss–Markov random field sensor system model and the linear dis-
criminant analysis detection rule. Section III finds approximate expres-
sions for the detection generalization error. Section IV presents several
sensor network optimization scenarios in which the derived generaliza-
tion error expressions may be applied. Section V concludes.

II. SENSOR AND DETECTION RULE MODELS

This section describes the specific setup for which generalization
error is characterized. The Gauss–Markov random field model of mea-
surements from randomly placed sensors that is used in the remainder
of the paper is given. The linear discriminant analysis detection rule
that is learned from training samples is also given.

A. Sensors

Consider the system with � sensor nodes randomly deployed on the
plane. Specifically, they are deployed within a square of area �. Thus
as the number of sensors grows, the deployment area also grows but
the spatial density of sensors remains the same. The location of sensor
�, denoted �� � �, is drawn according to the distribution �����. This
distribution is supported on the same square with area �.

Each sensor measures a scalar random variable ��� � � �� � � � � �.
The overall measurement � � � is governed by the two hypotheses
� � ��� �� through the Gaussian likelihood functions ���� ���� �
�� � � ����������� and ���� ���� � �� � � �����������. The vari-
ables ��� � � �� � � � � � conditioned on the hypothesis clearly form
a Gaussian random field, but moreover form a Gauss–Markov random
field through the structure of the covariance matrices.

Modeling similar physical processes under the two hypotheses, we
take ���� to equal ���� with the particulars of the covariance matrix
coming from the spatial locations of the sensors.2 We assume that
correlation decays as a function of distance between sensors. The
covariance structure contains Markov relationships according to the
Euclidean nearest neighbor graph of the sensors. The nearest neighbor
of sensor � is the sensor � �� � for which the Euclidean distance
	������� is minimized. The (undirected) nearest neighbor graph
contains an edge between sensor � and sensor �:

• if sensor � is the nearest neighbor of sensor � or
• if sensor � is the nearest neighbor of sensor �.

The set of edges in the nearest neighbor graph is denoted � .
It is most convenient to specify the �� entries of the common covari-

ance matrix, denoted ���, in three parts. First, the diagonal elements of

2As another case, we could consider ��� � � �, where � is a positive con-
stant, to model independent noise in the absence of a target.

��� are all equal to the constant 
�. Second, the elements of ��� corre-
sponding to edges in the nearest neighbor graph are as follows:

������� � 

�
��	��������� ��� �� � � (1)

where ��	� � �
���� �� is a monotonically decreasing function that
encodes correlation decay with distance. This decay function is known
as the semivariogram [1]–[3]. Often in geostatistics and elsewhere,
����� � 
 � � and ��	� � �
���� 
� due to the nugget effect [1]–[3].

Third, the inverse covariance matrix or information matrix, denoted
� � �����, is used to specify the remaining elements. The off-diagonal
elements of � corresponding to sensor pairs ��� �� that do not have an
edge in the nearest neighbor graph are zero, i.e.,

����� � �� � �� �� ��� �� �� � � (2)

These conditions fully specify all �� elements of ��� [22].

B. Detection Rule

The detection or binary classification task is to determine the hypoth-
esis � based on the measurement vector � using a detection rule or clas-
sifier function 	��	� � �
���� ��. If the distribution ���� ��� �� were
given, then the likelihood ratio test detection rule based on it would
minimize error [34]. However, this density is not given a priori. Only
a set of � i.i.d. training samples ����� ���� � � � � ���� ���� drawn from
the distribution are given. A detection rule must be learned from the
training set.

The detection rule studied here is the linear discriminant analysis
rule—a simple, classical, often-used technique—given by [17]

	���� � 
��
���
� � �� (3)

where

� � 	���� � 	����

��

�	���� 
 	�����

� � 

�

�
�

� �	���� � 	�����

and 	����, 	����, 	����, and 	���� are the conditional sample means and covari-
ances of the � training samples. The linear discriminant analysis rule
follows from the likelihood ratio test for optimal signal detection be-
tween Gaussian signals with the same covariance and different means.
Once the detection rule 	��	� is learned, it is applied to new unseen and
unlabeled measurements �.

III. GENERALIZATION ERROR APPROXIMATION

As the linear discriminant analysis detection rule is learned from
training samples but applied to new test samples, the performance
metric of interest is the generalization error ���	���� �� � �, which
is always greater than or equal to the Bayes optimal detection error
achieved by the optimal likelihood ratio test detection rule [28].
Generalization error for the sensor system model of Section II is
first studied for a given realization of sensor locations and then as an
average across realizations.

A. Linear Discriminant Analysis Generalization Error

Despite extensive study by many researchers, an exact closed form
expression for the generalization error of linear discriminant analysis
has not yet been found, but several highly accurate approximations
exist [18]. One of the best ones when the true likelihood functions are
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Gaussian and the true prior probabilities are equal, applicable for a wide
range of � and � values, is the following [18]:

�������� �� � � � 	 �
�



� �


�

���
�

�� �

�

(4)

where 	��� is the standard Gaussian cumulative distribution function
and

�
� � ����� � �����

�
������ � ����� (5)

is a squared Mahalanobis distance [35]. The � � ��
��

term is due to
mean vector estimation and the �

���
term is due to covariance matrix

estimation. The difference between the left and right sides of (4) con-
verges to zero as � and � simultaneously go to infinity at a rate such
that their ratio converges to a positive constant [18].

The expression when the true prior probabilities are unequal,
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� ��
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(6)

where �� � ���� � ��, �� � ���� � ��, �� is the number of class
0 training samples and �� is the number of class 1 training samples, is
similar but ungainly and can be used in a similar way to (4) for detection
scenarios that call for �� �� ��. For simplicity in the remainder of the
correspondence, let �� � �� �

�
�

. Also for simplicity, let ���� � � (the
length � vector of all zeroes) and let ���� � � (the length � vector of all
ones).

The high quality of (4) is empirically verified in [36]. The analytical
mean squared error between the approximation and the true generaliza-
tion error has not yet been found. In fact, an analytical expression for
the case of known covariance matrix has only very recently been found
[37], with the authors writing, “As has generally been historically the
case, the results for known covariance matrix have been obtained prior
to those for unknown covariance matrix, the latter typically being sig-
nificantly more difficult.”

Theorem 1: The squared Mahalanobis distance for the
Gauss–Markov random field described in Section II-A is

�
� �

�

��
�




��
�������

	�
��������

� � 	�
��������
� (7)

Proof: Considering ���� � �, ���� � �, the squared Mahalanobis
distance simplifies to

�
� �

�

���

�

���

����� � (8)

Off-diagonal entries of the information matrix with �
� �� � � take the
value [22]

����� �
�

��
�

�	�
��������

�� 	�
���������
� (9)

Therefore the sum of the off-diagonal elements is
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Diagonal entries of the information matrix take the value [22]
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Consequently, the sum of the diagonal elements is
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The expression (7) is obtained by combining (10) and (12).
This squared Mahalanobis distance is an exact expression. It is only

when it is substituted into (4) that there is approximation.

B. Mahalanobis Distance

The Mahalanobis distances depend on the Euclidean distances

������� which in turn depend on the particular realization of the
random deployment of sensor locations. For analysis purposes, it is
useful to characterize the average behavior of � across realizations
of ���� � � � ����. Such characterization falls within the scope of
stochastic geometry and random geometric graphs; space limitations
prevent us from providing more background details on these topics,
but the survey paper [38] may be consulted for a nice introduction.
For the purposes of this correspondence, we will describe the average
behavior of functionals of the nearest neighbor graph using average
behavior of homogenous Poisson point processes [25].

Theorem 2: The squared Mahalanobis distance (7) can be approxi-
mated as

�
� �

�

��
��� �� (13)

where

� � �
�������

�

������

�����
�����
� (14)

and

���� �
	���

� � 	���
� (15)

Proof: For a given function ����, as � grows,

�

�
�������

��
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�



�
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�

������

�����
�����
�

(16)

where �	 are spatial locations drawn according to the Poisson point
process with unit rate over a unit square centered at the origin, and 

is the set of edges of the nearest neighbor graph constructed from the
origin point � and those points �	 [25, Theorem 2.2].

Substituting the right side of (16) for the left side of (16) in (7) yields
the result.
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Fig. 1. Squared Mahalanobis distance as a function of the number of sensors
with ���� � ��� ��������� and � � �. The dashed line is the exact value
for (a) one uniform sensor location realization and (b) average over 20 realiza-
tions. The solid line is the approximation based on a Poisson point process.

It may be noted that the squared Mahalanobis distance is ap-
proximately a linear function of the number of sensors �. The
approximation is in fact quite tight. As an empirical verification, the
squared Mahalanobis distance approximation (13) is compared to
the true value (7). The particular semivariogram that is considered
is: ���� � ��� ���������; such exponential models of correlation
decay are used to model agricultural, epidemiological, and many other
spatial signals, and are a special case of Matérn correlation decay [2],
[3]. With this ����, ���� is a variant of the logistic function.

The exact squared Mahalanobis distance is calculated with the uni-
form distribution for different numbers of sensors. In Fig. 1(a), the
dashed line is the exact value of squared Mahalanobis distance as a
function of � for one realization of �. The figure also includes the
approximation to squared Mahalanobis distance using Poisson point
processes as a solid line. In Fig. 1(b), the dashed line represents the
average squared Mahalanobis distance over twenty realizations of the
sensor placement distribution. The approximation passes through the
single realization values. Averaged over twenty realizations, even for
small �, the approximation is so good that the dashed and solid line are
nearly indistinguishable.

Whereas finding the exact squared Mahalanobis distance involves
constructing the � � � information matrix for each realization of �
and each �, the approximation only involves finding � once,3 and it is
applicable for all �, even as � approaches infinity.

IV. OPTIMIZATION FOR GENERALIZATION ERROR

Combining the approximations of Sections III-A and III-B, the
overall approximation for the generalization error is

	
������ �� � 
 � � �
���� ��

�	�
��

�	�


��� ��





� �

�

�

(17)

This approximation to the generalization error of linear discriminant
analysis from spatially-distributed sensors with Gauss–Markov nearest
neighbor dependency is used in this section to optimize the parameters
and settings of sensor networks.

A. Optimal Number of Sensors for Fixed Number of Training Samples

In certain sensor deployment scenarios, it is known beforehand how
much time and resources are available for training. (The assumption of
i.i.d. training samples requires some time to elapse between training

3It is not possible to analytically determine �; it must be estimated in a Monte
Carlo fashion. However, this need only be done once for a distribution � ���
and semivariogram ����. The estimation may be done quite rapidly because it
does not depend on � and the number of edges incident on � in the nearest
neighbor graph from the Poisson point process is usually only one or two.

Fig. 2. Generalization error approximation with ���� � ������������.
(a) As a function of the number of sensors for � � �		, � � �, and uniform
distribution. (b) As a function of the sensor spatial location beta distribution pa-
rameter 	 for � � �		, � � 
	, and � � �. (c) As a function of the number
of samples for � � �		, � � �, and uniform distribution. (d) As a function
of � for � � �		, � � �		, and uniform distribution. (e) Contours of equal
generalization error as a function of � and � for � � �		 and uniform distri-
bution. The shading is labeled by the base ten logarithm of generalization error.
(f) As a function of the number of sensors for � � , � � �, and uniform
distribution. The Chernoff bound is marked as a dashed line.

sample acquisitions to allow temporal correlation that occurs in real-
world signals to sufficiently decay.) In these scenarios, the number of
training samples 
 may be viewed as a fixed parameter. The question
then is to determine the optimal value of the number of sensors � for
fixed 
. By differentiating (17) with respect to �, setting equal to zero,
and solving for �, we find that the number of sensors that minimizes
the generalization error approximation is � � �

�
, irrespective of 	� and

� . Examining Fig. 2(a), it can be confirmed that test error is minimized
when � � �

�
.

B. Optimal Sensor Placement Distribution

Another sensor deployment scenario is when the number of training
samples is fixed beforehand and the number of sensors is set opti-
mally; the question is how to place the sensors in space. Examining
the error expression (17), it can be noted that the approximate gener-
alization error is a monotonically increasing function of the Poisson
point process expectation � � �� �

�
, implying that the sensor place-

ment distribution 
���� should be chosen to minimize � in order to
achieve the best system performance.

A specific example of such a question is whether the sensors should
be clustered in the center of the deployment region, uniformly dis-
tributed, or clustered at the edges? Taking the sensor location distri-
bution 
���� to be an appropriately scaled and shifted version of the
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beta distribution independent and identically distributed in both com-
ponents of� with both parameters of the beta distribution equal to �,
the sensors are placed uniformly over the square when � � �, they
are concentrated in the middle of the square when � � �, and concen-
trated at the edges of the square when � � �. Thus we can use this
distribution to gain insight into the placement distribution question.
Based on Monte Carlo estimation, we see that � is minimized when
� � � and is larger for � � � and for � � �, consequently reflected in
Fig. 2(b), a plot of the generalization error approximation as a function
of �. Therefore, among the family of i.i.d. beta distributions, the uni-
form distribution optimizes detection performance. This guideline may
apply to choices among other similar sensor placement distributions.

C. Constrained Optimization and Tradeoffs for Fixed
Number of Sensors

Another scenario involves a fixed number of sensors, but the possi-
bility of choosing the number of training samples. The expression (17)
unsurprisingly reveals that the generalization error is a monotonically
decreasing function of �, the number of training samples. Thus ide-
ally, without resource constraints, an infinite number of training sam-
ples ought to be gathered to approach the Bayes optimal error; however,
sensor networks are resource-constrained. Also, slight suboptimality in
accuracy is often tolerable.

The question that can be asked in this scenario is: to achieve a par-
ticular generalization error probability, how much training is required?
Fig. 2(c) plots the generalization error approximation as a function of
the number of samples for a fixed number of sensors. Such a plot can
be used to determine the number of samples to be acquired in a training
phase after deployment of the sensor network.

Similarly, expression (17) shows that generalization error is a mono-
tonically increasing function of ��. Better (and costlier) sensor nodes
usually induce a smaller magnitude of measurement noise. Thus the
sensor network designer may have the ability to set �� to a certain de-
gree. The question in this scenario is similar to that for selecting the
number of training samples with a fixed number of sensors. Plots such
as that of Fig. 2(d) may be used.

With a fixed number of sensors, it is also possible to examine gener-
alization error on the �–�� plane. A given generalization error require-
ment defines an isoerror contour in the �–�� plane; the various oper-
ating points on this contour represent the tradeoff between the quality of
the measurements and the amount of time available for training. Such
isoerror contours are shown in Fig. 2(e).

D. Error Exponent for a Fixed Ratio of Sensors and Training Samples

An interesting characterization of the sensor network is to look at
generalization error for a fixed ratio of � � �

�
, as those two variables

grow. A plot of this generalization error is shown in Fig. 2(f). With the
fixed ratio and large � and �, the generalization error simplifies to

�������� �� 	 	 � 
 � �� �

���

�
� 
 (18)

The Chernoff bound/approximation for the Gaussian cumulative dis-
tribution function,
���� ��� 
���������, may be applied to (18)
to obtain

�������� �� 	 	 � �

�

�� ��� �

����
� 
 (19)

This function is also plotted in Fig. 2(f) and has the same slope as (17).
The detection error exponent ���

���
can be compared to error exponents

of detection with known likelihood functions (rather than supervised
classification from training data) (cf. [39] and [40]). Note that error

exponents are often derived when it is not possible to state error ex-
pressions for small �, but that is not the case here.

E. Sensor Subset Selection

A scenario that would arise in the operation, rather than the design or
deployment of a sensor network, is to choose a subset of 
 sensors to be
active while the remaining ���
� sensors are inactive. Measurements
from active sensors are used as input to the linear discriminant analysis;
the active subset should minimize generalization error.

The nearest neighbor graph used to define Markov dependency is
acyclic and has a tree or forest structure. A Gauss–Markov random field
defined on nodes and edges that are a subforest of a larger forest-struc-
tured Gauss–Markov random field maintain the statistical relationships
of the larger forest. Selecting a subset of variables (sensor nodes) ought
not change covariance relationships in the probabilistic model; there-
fore for tractability, the specific problem that is considered is to find
a cardinality 
 subtree or subforest (with 
 predetermined) of the full
cardinality � nearest neighbor tree or forest, denoting the edge set of a
subtree with 
 nodes as �� and the subtree itself as �� .

The squared Mahalanobis distance of subtree or subforest �� is:

��� �



��
� �

��
�������

�����������
 (20)

Remembering that all parameters including 
 are fixed, the optimiza-
tion problem is

������
�


 ���
�

� �
�


����

�

�� 


�


 (21)

Since 
 is a monotonically increasing function, its argument is mono-
tonically decreasing in �� (for � � 
, which is required for the gen-
eralization error approximation to be valid), and Mahalanobis distance
is non-negative, the optimization problem (21) is equivalent to

������
�

���� (22)

and

������
�

�������

�����������
 (23)

The optimization problem (23) is the problem of minimizing the total
weight of edges in a graph. A dynamic programming algorithm pre-
sented in [41] solves the optimization problem of finding a subtree
within a tree to minimize the sum of the edge weights.

As an easy-to-understand illustration of this scenario, consider a uni-
form deployment of � � � sensor nodes with a budget for � � �
training samples, with ���� � ��� 
�������� and �� � �. The sen-
sors are randomly located at ���
������
�����, ��
������ �
�����,
and ���
�������
����� with edges between the first and third sensor
and between the second and third sensor. Fixing 
 � � � �, there is
only one choice, the full tree, with edge weight sum 0.446, squared Ma-
halanobis distance 2.11, and generalization error 0.357. There are two

 � � subtrees, the one with nodes 1 and 3, and the one with nodes 2
and 3. The edge weight of the first subtree is 0.233, and it has squared
Mahalanobis distance 1.53 and generalization error 0.356. The edge
weight of the second subtree is 0.213, and it has squared Mahalanobis
distance 1.57 and generalization error 0.353. For 
 � �, the second
subtree minimizes the edge weight and consequently also minimizes
generalization error.

The optimal subtree is the one that has the sensor nodes farther apart,
which is due to more correlation decay between farther nodes. In this
example it turns out that even though � � � sensors are deployed,
only 
 � � sensors, the sensors 2 and 3, should be activated for the
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best classification accuracy. (Using � � � sensor node would result
in 0.362 generalization error.) In deployments of power-limited sensor
nodes, taking advantage of this effect may yield significant extensions
of monitoring lifetime.

V. CONCLUSION

It is a fundamental truth that if nothing else, time is a limited
resource, and limits a system to finite sets of training samples. It is
shown in this work that when learning a linear discriminant analysis
detection rule for spatially-correlated sensor measurements with
local Gauss–Markov dependency and constant-density random sensor
placement, it is optimal to use precisely half the number of sensors
as training sample instances. This result that a finite rather than
infinite number of sensors is optimal follows from the phenomenon of
overfitting. Less is more.

In developing this result, generalization error has been approximated
using an expression by Raudys that involves Mahalanobis distance.
Mahalanobis distance has been exactly stated for Gauss–Markov
sensor measurements, and has also been approximated using weak
laws of large numbers. It should be noted that much of the analysis
goes through unchanged for other types of Gauss–Markov dependency
besides nearest neighbor dependency.

Besides optimizing the number of sensors for a fixed number of
training samples, it has been seen that within a family of sensor place-
ment beta distributions, the uniform distribution minimizes a Poisson
point process expectation parameter and thus consequently minimizes
generalization error.4

The overall guideline is then that when using linear discriminant
analysis detection given a budget � on the number of training samples,
�

�
sensors placed uniformly should be used. On the other hand, if the

number of sensors is fixed, it is seen that as many training samples as
possible should be used. However, in some sense, power or communi-
cation budgets often considered in sensor network studies are replaced
by a budget on the cardinality of the labeled training set in the learning
setting. A detection error exponent for growing numbers of sensors and
training samples in fixed ratio has also been derived. In considering the
problem of selecting a subset of sensor nodes to activate, it has also
been seen that less could be more.

One may argue that the analysis provided here should be taken cum
grano salis because linear discriminant analysis may provide poor de-
tection performance compared to other classification methods from
the statistical learning literature. Linear discriminant analysis has been
chosen because it leads to simple, analytic characterization of general-
ization error with small approximation error, which is not always the
case with existing generalization error characterizations of other clas-
sification methods [15]. The main thing to take away from the analysis
is not only the specifics, but the general theme that irrespective of com-
munication or power constraints, supervised classification by multiple
sensors is fundamentally affected by a finite training set: too many sen-
sors degrade performance. This general theme or guiding principle is
applicable to all detection rules learned from finite training data.

The performance of linear discriminant analysis may be improved
through regularization or through further constraints. Generalization
error approximations to many such extensions of the basic linear
discriminant analysis are provided in [18], and are also based on
Mahalanobis distance. Therefore, the Mahalanobis distance devel-
opment in this paper applies, and the generalization error may be
similarly analyzed for the extensions. An extension of this work to
generalized kernel discriminant analysis [19]–[21], which does have

4Analytically determining whether the uniform distribution is optimal among
all possible distributions with support on a square would be interesting future
work.

competitive classification performance, may also lead to simple,
analytic characterization.

In future work, it would be interesting to combine the analysis of
this paper with analysis that does consider sensor communication and
power constraints. Such combined analysis may reveal several inter-
esting design principles for sensor networks in which the likelihood
functions are not known a priori but labeled training samples may be
collected.
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[21] B. Haasdonk and E. Pękalska, “Classification with kernel Mahalanobis
distance classifiers,” in Advances in Data Analysis, Data Handling and
Business Intelligence, A. Fink, B. Lausen, W. Seidel, and A. Ultsch,
Eds. Heidelberg, Germany: Springer, 2010, pp. 351–361.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 6, JUNE 2012 3301

[22] A. Anandkumar, L. Tong, and A. Swami, “Detection of Gauss-Markov
random fields with nearest-neighbor dependency,” IEEE Trans. Inf.
Theory, vol. 55, no. 2, pp. 816–827, Feb. 2009.

[23] Y. Sung, H. V. Poor, and H. Yu, “How much information can one get
from a wireless ad hoc sensor network over a correlated random field?,”
IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2827–2847, Jun. 2009.

[24] J. Fang and H. Li, “Distributed estimation of Gauss-Markov random
fields with one-bit quantized data,” IEEE Signal Process. Lett., vol. 17,
no. 5, pp. 449–452, May 2010.

[25] M. D. Penrose and J. E. Yukich, “Weak laws of large numbers in geo-
metric probability,” Ann. Appl. Prob., vol. 13, no. 1, pp. 277–303, Jan.
2003.

[26] J.-F. Chamberland and V. V. Veeravalli, “How dense should a sensor
network be for detection with correlated observations?,” Ann. Appl.
Prob., vol. 52, no. 11, pp. 5099–5106, Nov. 2006.

[27] W. U. Bajwa, J. D. Haupt, A. M. Sayeed, and R. D. Nowak, “Joint
source-channel communication for distributed estimation in sensor net-
works,” IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3629–3653, Oct.
2007.

[28] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer, 1995.

[29] X. Nguyen, M. J. Wainwright, and M. I. Jordan, “Nonparametric de-
centralized detection using kernel methods,” IEEE Trans. Inf. Theory,
vol. 53, no. 11, pp. 4053–4066, Nov. 2005.

[30] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Consistency in models for
distributed learning under communication constraints,” IEEE Trans.
Signal Process., vol. 52, no. 1, pp. 52–63, Jan. 2006.

[31] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Trans. Inf. Theory, vol. 23, no. 4, pp.
56–69, Jul. 2006.

[32] H. Zheng, S. R. Kulkarni, and H. V. Poor, “Attribute-distributed
learning: Models, limits, and algorithms,” IEEE Signal Process. Mag.,
vol. 59, no. 1, pp. 386–398, Jan. 2011.

[33] K. R. Varshney and A. S. Willsky, “Linear dimensionality reduction
for margin-based classification: High-dimensional data and sensor net-
works,” IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2496–2512,
Jun. 2011.

[34] H. L. Van Trees, Detection, Estimation, and Modulation Theory. New
York: Wiley, 1968.

[35] P. C. Mahalanobis, “On the generalized distance in statistics,” P. Nat.
Inst. Sci. India, vol. 2, no. 1, pp. 49–55, Apr. 1936.

[36] F. J. Wyman, D. M. Young, and D. W. Turner, “A comparison of
asymptotic error rate expansions for the sample linear discriminant
function,” Pattern Recogn., vol. 23, no. 7, pp. 775–783, Jul. 1990.

[37] A. Zollanvari, U. M. Braga-Neto, and E. R. Dougherty, “Analytic study
of performance of error estimators for linear discriminant analysis,”
IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4238–4255, Sep. 2011.

[38] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M.
Franceschetti, “Stochastic geometry and random graphs for the
analysis and design of wireless networks,” IEEE J. Sel. Areas
Commun., vol. 27, no. 7, pp. 1029–1046, Sep. 2009.

[39] S. Misra and L. Tong, “Error exponents for Bayesian detection with
randomly spaced sensors,” in Proc. IEEE Workshop Signal Process.
Adv. Wireless Commun., Helsinki, Finland, Jun. 2007.

[40] A. Anandkumar, A. S. Willsky, and L. Tong, “Detection error exponent
for spatially dependent samples in random networks,” in Proc. IEEE
Int. Symp. Inf. Theory, Seoul, Korea, Jun./Jul. 2009, pp. 2882–2886.

[41] C. Blum, “Revisiting dynamic programming for finding optimal sub-
trees in trees,” Eur. J. Oper. Res., vol. 177, no. 1, pp. 102–115, Feb.
2007.

An Enhanced IAF-PNLMS Adaptive Algorithm for Sparse
Impulse Response Identification

Francisco das Chagas de Souza, Rui Seara, and Dennis R. Morgan

Abstract—This correspondence presents an individual-activation-factor
proportionate normalized least-mean-square (IAF-PNLMS) algorithm
that (during the adaptive process) uses a new gain distribution strategy
for updating the filter coefficients. This strategy consists of increasing
the gain assigned to the inactive coefficients as the active ones approach
convergence. For such, whenever a predefined threshold is crossed during
the learning process, a new gain distribution is carried out, rather than
to assign gains proportional to coefficient magnitudes as the IAF-PNLMS
algorithm does. This new version of the IAF-PNLMS algorithm leads to
a better distribution of the adaptation energy over the whole learning
process. As a consequence, for impulse responses exhibiting high sparse-
ness, the proposed algorithm achieves faster convergence, outperforming
the IAF-PNLMS and other well-known PNLMS-type algorithms.

Index Terms—Adaptive filtering, gain redistribution, proportionate nor-
malized least-mean-square (PNLMS) algorithm, sparse impulse response,
system identification, thresholding technique.

I. INTRODUCTION

Sparse impulse responses are encountered in many real-world
applications, such as communications, acoustics, and seismic pro-
cesses [1]–[5]. Such responses are qualitatively classified as sparse
if most of the coefficients take values near zero and only a few have
significant values [1], [6]. For this class of plant impulse responses,
classical adaptive algorithms using the same step-size value for all
filter coefficients, such as the normalized least-mean-square (NLMS)
algorithm, are outperformed by algorithms that exploit the sparse
nature of the impulse response [2], [5], such as proportionate
NLMS (PNLMS) [7]–[9], in which each filter coefficient is updated
proportionally to its magnitude, resulting in higher convergence speed.
However, the standard PNLMS algorithm suffers some performance
degradation as the sparseness decreases [10]; furthermore, its fast ini-
tial convergence is not maintained over the whole adaptation process
[11]–[13]. Improved versions of the PNLMS algorithm, aiming to
deal with impulse responses exhibiting medium sparseness, are the
������� [7], [9] and improved PNLMS (IPNLMS) [10]. Neverthe-
less, these algorithms do not provide the same fast initial convergence
obtained with the PNLMS for impulse responses having high sparse-
ness [14], [15]. A version of the PNLMS algorithm that takes into
account the sparseness variation of the plant is the sparseness-con-
trolled PNLMS (SC-PNLMS) [16]. This algorithm performs well for
both very high sparseness and medium dispersions; however, such
performance is obtained at the expense of higher computational com-
plexity, as compared with the standard PNLMS algorithm. Aiming to
preserve the fast initial convergence over the whole adaptation process,
the �-law PNLMS (MPNLMS) and adaptive MPNLMS (AMPNLMS)
algorithms are, respectively, proposed in [11] and [12] at the expense
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