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Abstract

Health insurance companies prefer to enter new markets

in which individuals likely to enroll in their plans have a

low annual cost. When deciding which new markets to en-

ter, health cost data for the new markets is unavailable to

them, but health cost data for their own enrolled members

is available. To address the problem of assessing risk in

new markets, i.e., estimating the cost of likely enrollees, we

pose a regression problem with demographic data as pre-

dictors combined with a novel three-population covariate

shift. Since this application deals with health data that

is protected by privacy laws, we cannot use the raw data

of the insurance company’s members directly for training

the regression and covariate shift. Therefore, to construct

a full solution, we also develop a novel method to achieve

k-anonymity with the workload-driven quality of data distri-

bution preservation achieved through dithered quantization

and Rosenblatt’s transformation. We illustrate the efficacy

of the solution using real-world, publicly available data.

1 Introduction.

The Patient Protection and Affordable Care Act, known
colloquially as Obamacare, changed the landscape of
health insurance in the United States significantly.
Health insurance companies entered new markets, de-
fined by geography, by age group, and by other prospect
base criteria. When the legislation was being enacted,
the companies had to decide which new markets to enter
using the information at their disposal at the time. In
making the decisions, companies sought to enter mar-
kets containing an abundance of profitable, i.e. low-cost,
individuals likely to enroll in their plans. (Although we
undertook the work presented in this paper motivated
by Obamacare, the desideratum to enter markets with
low-cost individuals is always true, regardless of whether
there has been a significant change in the landscape.)

Healthcare cost and utilization data has been ana-
lyzed for a variety of public health-related and health
economics-related tasks, usually through regression
techniques that attempt to take the lack of normal-
ity and the heteroscedasticity of costs into account
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[8, 6, 26]; health cost and utilization data often follows
a distribution similar to the delta-lognormal distribu-
tion [8, 4]. Ordinary least-squares regression with and
without log-transformed data, two-part models, gener-
alized linear models, and multiplicative regression have
all been used successfully to predict the healthcare costs
of individuals. However, it should be noted that we
have learned through conversations with health insur-
ance companies that, to-date, only crude, inaccurate
models have been applied for assessing market risk; so-
phisticated regression models have not yet been used.

Critically, although insurers have health cost data
for their own members available at decision-making
time, health cost data for individuals in new markets
is not available to them for a variety of reasons. This
situation calls for predictive modeling to estimate health
cost profiles of enrollees in the new markets, which
can be appropriately summarized into risk statistics for
the new markets. In this problem, demographic data
for current markets and new markets is available from
public sources. Therefore, in this work, we develop
a predictive analytics approach in which we estimate
the relationship between demographics and costs in the
current member population and then apply the learned
model to the new market’s demographic data, taking
into account the difference between the demographic
distribution of the current member population and the
demographic distribution of the prospective enrollees in
the new market. This setting is known as covariate shift

in the machine learning literature and has been studied
for the types of regression models used with health cost
data [23, 19].

Specifically for the new market risk assessment
problem, since only a subset of individuals in a market
enroll in a health insurance company’s plans, we have
an additional population to consider beyond simply
the individuals in the old and new markets. Existing
methods dealing with covariate shift can be cateogorized
as two-population methods; in this work, the problem of
interest requires a three-population shift, which has not
appeared in the literature. The first main contribution
of this paper is the development of three-population
shift methods for healthcare market risk assessment.

Health data on individuals in the United States,
even internal use by an insurance company for its plan-
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ning and strategy, is protected by the Health Insurance
Portability and Accountability Act. Privacy of individ-
uals must not be compromised. Several statistical inter-
pretations of the legal language for protecting privacy
exist; the property of k-anonymity is a common inter-
pretation [17]. Under the k-anonymity privacy model,
the data for an individual cannot be distinguished from
at least k − 1 other individuals [25, 22].

Given an initial data set, k-anonymity is often
achieved using generalizations and suppressions [10]. It
is known that multidimensional generalization has supe-
rior performance than single-dimensional generalization
[12], and treating anonymization as a clustering prob-
lem offers more flexibility than using predefined gener-
alization hierarchies [7]. To achieve k-anonymity, we
would like to group the samples or records in the data
by similarity such that the smallest group has at least
k elements. Any such grouping or clustering is equally
good from the privacy perspective; it is the workload for
which the data is to be used that defines the quality of
the grouping [22, 10, 27]. In our case, the workload is
three-population shift-based market risk prediction.

Most existing clustering algorithms such as k-means
clustering take the number of clusters as an input
parameter rather than the minimum number of samples
in each cluster, which is what is needed for k-anonymity.
The k-member clustering problem, which has the k
of k-anonymity as the input parameter rather than
the number of clusters, and its solution with a greedy
algorithm is proposed in [7]. This problem is given the
name probability-constrained quantization by [20] and
a modification of the k-means Lloyd-Max algorithm is
developed for its solution. This problem is also related
to maximum output entropy quantization [18].

In these clustering approaches to anonymization,
the optimization criterion is based on the average dis-
tance or distortion of the individual samples. With such
a criterion, the optimal representation points, i.e. clus-
ter centers, do not follow the same distribution as the
original data. (Without the probability constraint, the
optimal quantizer point density, which is the distribu-
tion of the cluster center locations in the asymptotic
limit as the number of clusters goes to infinity is a nor-
malized version of the original data distribution to the
one third power [9].) We raise this point of the distri-
bution of representation points not following the distri-
bution of the data because the distribution of the data
has an important role in the workload of our interest:
regression with covariate shift.

Distribution-preserving quantization is an alterna-
tive method to the standard k-means or standard quan-
tization approaches that has the desired representation
point behavior and has never been considered in the pri-

vacy preservation context before [13, 5]. The approach
of [13] is based on subtractive dithered quantization [15]
followed by Rosenblatt’s transformation [21]. Dithering,
the introduction of noise or random perturbations, is a
technique for privacy preservation fraught with several
issues [11], but in our work, the introduction of noise is
not for the purpose of privacy preservation, but to allow
the manipulation of the distribution.

Existing approaches for distribution-preserving
quantization take the number of clusters as a param-
eter, just like the standard clustering and quantization
methods, but which is not amenable to achieving good
k-anonymity. To the best of our knowledge, there is
no existing probability-constrained, density-preserving
quantization algorithm, which is what is required for k-
anonymization followed by three-population shift-based
prediction for healthcare market risk assessment. The
second main contribution of this paper is the develop-
ment of such a method.

We apply the proposed methods to publicly-
available health data from the Medical Expenditure
Panel Survey (MEPS) produced by the United States
Department of Health and Human Services’ Agency for
Healthcare Research and Quality. We demonstrate the
efficacy of our solution, modeling the entire MEPS data
set as the existing market and individual rating areas in
California as the new markets, and modeling plan en-
rollment using true Obamacare enrollment distributions
[2, 3]. The proposed three-population shift significantly
improves the aggregate prediction accuracy and the pro-
posed privacy-preservation algorithm does not degrade
prediction accuracy much.

The remainder of the paper is organized as follows.
In Section 2, we provide background on the covariate
shift problem. In Section 3, we detail the exact prob-
lem statement required for new market risk assessment
and propose approaches for its solution. Next, to make
risk assessment tenable in the healthcare domain, we
develop a new privacy-preservation method for the mar-
ket risk assessment workload that combines aspects of
k-member clustering and distribution-preserving quan-
tization in Section 4. We present empirical results on
real-world healthcare data in Section 5. Section 6 pro-
vides a summary and discussion.

2 Background on Covariate Shift Problem.

In this section, we first introduce notation and then
describe the basic learning problem encountered in the
covariate shift setting. This section is very general; we
specialize the exposition to health cost data in Section 3.

Consider the following problem: we wish to predict
a response variable Y using predictor variables X.
Given a class of functions F and training samples
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(xi, yi), i = 1, . . . , n, a predictor function is selected
from F to minimize the empirical risk,

(2.1) Ŷ (·) = arg min
f∈F

1

n

n
∑

i=1

L(f(xi), yi),

for some choice of loss function L that measures the
error between the predicted response f(xi) and actual
response yi.

Assume that the training samples are drawn i.i.d.
from the joint distribution pX,Y = pXpY |X . The prob-
lem of covariate shift occurs when the predictor vari-
ables or covariates are drawn from a different distribu-
tion qX in the test phase. The conditional distribution
pY |X is assumed to remain the same. As the number of
samples n → ∞, the empirical risk in (2.1) converges to
the population risk

E [L(f(X), Y )] = E [E [L(f(X), Y ) | X]] ,

from which it can be seen that the optimal choice of
predictor f depends only on the conditional distribution
pY |X , regardless of the marginal distribution for X
(e.g. pX or qX). Hence as n → ∞, the conditional
distribution pY |X can be learned very accurately and
the optimal predictor can be obtained provided that the
class F is rich enough to contain it. However, when n is
finite and/or F is overly constrained, then the predictor
Ŷ resulting from (2.1) generally depends on the training
distribution pX and thus can be mismatched to the test
distribution qX under which performance is evaluated.

A straightforward solution to covariate shift is to
weight the training samples by the ratio qX(xi)/pX(xi).
This weighting represents the relative importance of
each sample under qX rather than pX . The weighted
empirical risk

1

n

n
∑

i=1

qX(xi)

pX(xi)
L(f(xi), yi)

then converges to
(2.2)

EpXpY |X

[

qX(X)

pX(X)
L(f(X), Y )

]

= EqXpY |X
[L(f(X), Y )] ,

thus matching the test distribution.
In practice, the distributions pX , qX and in partic-

ular their ratio need to be estimated from data. We
assume for simplicity and in accordance with the mar-
ket shift application that the predictor variables X are
discrete, taking values in a set X . Then the probability
mass functions (PMFs) of interest can be approximated
by the empirical distributions p̂X(x), q̂X(x) and their
ratio by q̂X(x)/p̂X(x). Rewriting the weighted empiri-
cal risk as an outer sum over X and an inner sum over

training samples with common xi = x, we have

(2.3)
∑

x:p̂X(x)>0

p̂X(x)
q̂X(x)

p̂X(x)

1

n(x)

∑

i:xi=x

L(f(x), yi) =

∑

x:p̂X(x)>0

q̂X(x)
1

n(x)

∑

i:xi=x

L(f(x), yi),

where n(x) is the number of training samples with
xi = x. As desired, under the assumption that the
support of p̂X asymptotically contains the support of
q̂X , the weighted empirical risk (2.3) converges to (2.2)
as n → ∞.

The non-parametric empirical distribution ap-
proach discussed above appears to work well when X
is discrete and the number of possible values |X | is not
too large compared to the sample size. The latter con-
dition is satisfied if the number of predictor variables is
small and the number of possible values for each vari-
able is also modest. However for large |X | or continuous
X, estimating pX(x), qX(x) and/or their ratio becomes
difficult and a parametric form may need to be assumed.
In Section 3.1, we discuss one such parametric approxi-
mation involving logistic regression.

3 Market Risk Assessment.

The covariate shift framework in Section 2 can be
applied to health care cost analysis for market risk
assessment. In particular, the response variable Y of
interest is the annual cost of a member to the insurance
company. The predictor variables are demographic
features such as age, gender, income, veteran status,
smoking status, place of residence, place of origin, and
so on. The response variable being continuous, the
learning problem (2.1) is one of regression. For example,
the set F may be the set of all linear predictors with an
ℓ1-norm less than a fixed constant.

There are some nuances to consider beyond the gen-
eral covariate shift problem recapitulated in Section 2
in our application of interest. Notably, there is a dis-
tinction between member populations and larger mar-
ket populations from which member populations are en-
rolled. To denote the different populations, we use the
binary variables E and M . The variable E indicates en-
rollment in an insurance company’s plan (E = 1 means
enrolled), and the variable M differentiates the existing
current market from the new market (M = 1 means
new market).

Training data with costs is assumed to come from
the insurance company’s data on current plan members.
Thus the training distribution pX in Section 2 is now de-
noted as pX|E,M (x | e = 1,m = 0), referring to enrollees
in the current market. Likewise, the test distribution
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qX is pX|E,M (x | e = 1,m = 1) for enrollees in the
new market. In some cases it may be possible to obtain
pX|E,M (x | 1, 1) directly if enough is known about po-
tential enrollees in the new market. If this is true then
the basic covariate shift framework in Section 2 applies.
We refer to this case as the two-population market shift
problem.

The more general case is that pX|E,M (x | 1, 1) can-
not be estimated directly, which warrants the consider-
ation of a three-population version of the problem. Be-
sides the current member distribution pX|E,M (x | 1, 0),
it is assumed that demographic distributions for the cur-
rent and new markets are available, corresponding to
pX|M (x | 0) and pX|M (x | 1) respectively. These distri-
butions are related by Bayes’ rule,

(3.4) pX|E,M (x | 1,m) =

pE|X,M (1 | x,m)pX|M (x | m)

pE|M (1 | m)
, m = 0, 1.

Taking the ratio of m = 1 to m = 0 gives

(3.5)
pX|E,M (x | 1, 1)

pX|E,M (x | 1, 0)
∝

pE|X,M (1 | x, 1)

pE|X,M (1 | x, 0)

pX|M (x | 1)

pX|M (x | 0)

as functions of x.
We now make the assumption that pE|X,M (1 |

x,m), the probability of enrollment conditioned on the
predictor variables and market, is actually independent
of the market m once x is fixed. In other words,
E and M are conditionally independent given X and
pE|X,M (1 | x,m) = pE|X(1 | x). This seems to
be a reasonable assumption since enrollment can be
expected to depend on demographic variables such as
age, sex, etc., but not to depend on which market the
individual belongs to once those demographic variables
are specified. With this assumption of conditional
independence, (3.5) simplifies to

pX|E,M (x | 1, 1) ∝ pX|E,M (x | 1, 0)
pX|M (x | 1)

pX|M (x | 0)
.

Since the training samples are distributed according to
pX|E,M (x | 1, 0) while the test samples are distributed
according to pX|E,M (x | 1, 1), the importance weighting
is therefore pX|M (x | 1)/pX|M (x | 0) (up to a constant
of proportionality), taking the place of qX(x)/pX(x) in
Section 2. Obtaining the required PMFs via empirical
distributions in the same way as discussed in Section 2,
the weighted empirical risk from (2.3) formally becomes

∑

x

p̂X|E,M (x | 1, 0)
p̂X|M (x | 1)

p̂X|M (x | 0)

1

n(x)

∑

i:xi=x

L(f(x), yi).

3.1 Importance Weighting via Logistic Regres-

sion Logistic regression provides a parametric alterna-
tive to estimating the probability ratio qX(x)/pX(x),
i.e. pX|M (x | 1)/pX|M (x | 0). First, a logistic regression
model is trained to decide between the existing market
M = 0 and new market M = 1 given the covariate x,
using demographic data for the two markets. The model
yields a parametric form for the conditional probability
of belonging to each market,

pM |X(1 | x) =
1

1 + e−βT x
, pM |X(0 | x) =

e−βT x

1 + e−βT x
.

An application of Bayes’ rule shows that

eβ
T x =

pM |X(1 | x)

pM |X(0 | x)
∝

pX|M (x | 1)

pX|M (x | 0)

as functions of x. Hence the desired probability ratio

is given by eβ
T x, the exponential of a linear function

of x. It follows that the ratio is only allowed to
vary monotonically in the direction β. The advantage
of logistic regression is that there are only as many
parameters to estimate in β as there are variables in x.
The disadvantage is that the estimated probability ratio
is highly restricted and may differ significantly from the
true ratio.

3.2 Aggregate Prediction Error In health care
insurance applications such as market risk assessment,
one is typically interested in aggregate predictions of
the average or total cost for groups of individuals. For
example, one may wish to predict the average cost for a
new enrollee population as a whole or for segments of the
population. This section overviews calculations relating
the aggregate prediction error to common measures of
performance.

Suppose that the average cost for m i.i.d. individ-
uals, (1/m)

∑m

i=1 Yi, is predicted by averaging the pre-

dictions Ŷ (Xi) for each individual. The aggregate pre-
diction error is therefore

ε =
1

m

m
∑

i=1

(

Ŷ (Xi)− Yi

)

.

The mean error is given by

E[ε] = E[Ŷ (X)]− E[Y ] = b(Ŷ ),

where b(Ŷ ) denotes the bias of the predictor. Using the
definition of the (population) coefficient of determina-
tion R2,

R2 = 1−

E

[

(

Ŷ (X)− Y
)2

]

var(Y )
,
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the error variance can be written as

var(ε) =
1

m

(

(1−R2) var(Y )− b(Ŷ )2
)

.

We compare the error ε to the true average cost
(1/m)

∑m

i=1 Yi, which has mean E[Y ] and variance
var(Y )/m. It follows that when m is large, the relative
error ε̄ is given to first order by ε/E[Y ], and

E[ε̄] ≈ b̄(Ŷ ),

var(ε̄) ≈
1

m

(

(1−R2)
var(Y )

E[Y ]2
− b̄(Ŷ )2

)

,

where b̄(Ŷ ) is the relative bias.
Note that as m increases, the variance decreases as

1/m while the mean remains constant. Thus the bias
of the predictor becomes increasingly important as the
size of the aggregate group increases. As an illustration,
the mean squared relative error is given by

(3.6) E[ε̄2] ≈
m− 1

m
b̄(Ŷ )2 +

1−R2

m

var(Y )

E[Y ]2
.

The ratio var(Y )/E[Y ]2 is the squared coefficient of
variation of Y , with typical values for health care cost
ranging from 5 to 10. Thus even for R2 close to zero,
the two terms in the mean squared error are comparable
if the relative bias b̄(Ŷ ) is a few percent and m ∼ 104,
and the bias dominates if m is larger.

4 Privacy-Preservation for the Market Risk

Estimation Workload.

As discussed in the introduction, the privacy of in-
dividuals must be protected when working with their
personal health cost data. In particular, taking k-
anonymity as the notion of privacy, the quasi-identifiers
of the original data x must be converted to some other
values x̄ in a way that the data for an individual can-
not be distinguished from at least k − 1 others. (Note
that for simplicity, when we refer to X,Y in this sec-
tion, we are really referring to X,Y | e = 1,m = 0, the
data available to the insurance company from its mem-
bers.) With our goal of achieving small aggregate pre-
diction error of cost Y , we not only want the samples x̄i,
i = 1, . . . , n to have the k-anonymity property, but for
the regression model learned from (x̄i, yi), i = 1, . . . , n
to have small relative bias, large R2, and good perfor-
mance in other measures of generalization. With these
dual goals in mind, we propose a novel combination
of operations inspired by k-member clustering [7] and
distribution-preserving quantization with dithering and
transformation [13].

The several operations we propose that map (xi, yi)
to (x̄i, yi) are summarized in Figure 1. The original data

ܻܺ ܺ ܷ തܺ෨ܺk-member 

clustering

noise

ܨ ෨ ିܨ ଵ

Figure 1: Block diagram of the operations to achieve
k-anonymity and distribution preservation.

is first clustered using a modification of the k-member
clustering algorithm proposed in [7]. Our modifications
are to use Euclidean distance as the distortion criterion
and to base the distortion calculation on both the quasi-
identifiersX and the sensitive data Y so that individuals
with similar costs are grouped together, which is ben-
eficial for the downstream regression. We drop Y once
final cluster assignments have been determined. This
step achieves our goal of k-anonymity; all other oper-
ations that follow are meant to improve the regression
model learning. The output of the clustering is the set
of values x̂i, where all samples within the same cluster
share a x̂ value. Let c = ⌊n

k
⌋ be the number of clusters

and j index the clusters. Let nj ≥ k be the number of
samples in cluster j.

The output set of the k-member clustering contains
only c distinct values that are not distributed like
X. The second proposed operation, dithering (the
intentional application of noise), returns the data set
to having n distinct values. In particular, we estimate
covariances of each of the clusters, Σj , j = 1, . . . , c, and
add Gaussian noise N

(

0,Σ{j:i∈clusterj} + αI
)

to each
sample according to its cluster membership to produce
values x̃i. The extra bit of covariance with parameter
α > 0 is to account for clusters in which all x values are
the same, which tends to occur for smaller values of k.
The cumulative distribution function (CDF) of X̃ is a
Gaussian mixture with c mixture components:

(4.7) FX̃(x̃) =
c

∑

j=1

nj

n
Φ(x̃; x̂j ,Σj + αI).

This FX̃(·) may be quite different from the original
data distribution FX|E,M (· | 1, 0). The goal of the

final two operations is to transform X̃ so that it is
distributed like X. The vector of quasi-identifiers is in
general d-dimensional, d > 1, and in our case composed
of discrete-valued elements. Due to the multivariate
nature of our desired transformation, we require a
procedure like the one developed by Rosenblatt [21]. We
first use the CDF of X̃ to transform X̃ to a uniformly-
distributed variable U and then the inverse CDF ofX to
transform U to X̄, which is distributed likeX. Denoting
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the lth dimension of a vector with the subscript l,

U1 = FX̃1
(X̃1)

U2 = FX̃2|X̃1
(X̃2 | X̃1)

...(4.8)

Ud = FX̃d|X̃1,...,X̃d−1
(X̃d | X̃1, . . . , X̃d−1).

The conditional CDFs are univariate Gaussian mix-
tures; their parameters and mixture weights can be ob-
tained in closed form from (4.7). The second of the final
operations is similar, but with the inverse CDF of X:

X̄1 = F−1
X1

(U1)

X̄2 = F−1
X2|X1

(U2 | U1)

...(4.9)

X̄d = F−1
Xd|X1,...,Xd−1

(Ud | U1, . . . , Ud−1).

In practice, the inverse CDFs are empirical estimates
and thus, since conditioning reduces the number of sam-
ples available on which to base the estimate, it is good
to order the dimensions in the sequential procedure in
increasing number of discrete values.

At the end of the process, the sensitive yi values
are rejoined with the clustered and transformed quasi-
identifiers x̄i. Overall, this sequence of steps yields
output samples (x̄i, yi) that are as close as possible
to the samples (xi, yi) in distribution while being k-
anonymous. The main free parameter, k, can be varied
to achieve the desired tradeoff between privacy and
aggregate prediction error.

5 Empirical Results.

In this section, we describe the results of an empirical
study on real-world health cost data. Section 5.1 dis-
cusses data sources and simulation of the different pop-
ulations. Sections 5.2 and 5.3 present prediction results
without and with privacy constraints, respectively.

5.1 Description of Data We use publicly-available
MEPS data, which shares many characteristics with
actual health cost data from insurance companies that
we have worked with in the recent past, but cannot
include in this paper due to its confidentiality. Based
on large-scale surveys, MEPS contains the annual health
care cost and demographic information of people across
the United States. However, since it does not come from
an insurance company, there is neither a concept of a
market in the data nor of enrollment in a company’s
plan. Thus in order to perform market risk assessment,
we define two market populations and enrolled subsets
of these populations as described below.

We consider a scenario in which an insurance com-
pany is currently active in many areas that collectively
are representative of the US as a whole. The company
is deciding whether to enter specific rating areas in Cali-
fornia, where a rating area consists of one or more coun-
ties. Therefore the demographic distribution of the ex-
isting market, pX|M (x | 0), can be taken to be that of
the US, while the new market distributions pX|M (x | 1)
correspond to California rating areas. To simulate these
two markets, the MEPS dataset is randomly and evenly
split into training and test sets. All results reported in
Sections 5.2 and 5.3 are averaged over 20 such splits.
The existing market distribution pX|M (x | 0) is esti-
mated empirically directly from the training set. The
distribution pX|M (x | 1) is obtained by reweighing sam-
ples from the test set according to the demographics of
each rating area, relative to the national baseline repre-
sented by MEPS. Rating area-specific demographics are
obtained from the American Community Survey (ACS)
[1].

Once the market distributions are created, the en-
rollment in the company’s plan must also be simulated.
We focus on the dependence of enrollment on age. To
generate the existing plan distribution pX|E,M (x | 1, 0),
samples in the existing market dataset are reweighed
based on the age distribution in the initial enrollment
period of the Health Insurance Marketplaces created by
the Affordable Care Act [2, 3], again relative to the na-
tional baseline. The resulting distribution differs no-
tably from that of the larger market, pX|M (x | 0), in
having few children (< 18) and seniors (> 65). The
age-dependent enrollment probabilities pE|X(1 | x) in-
duced by this procedure are then applied to samples in
the new market to simulate plan enrollment in the new
market, pX|E,M (x | 1, 1).

The specific MEPS dataset we consider is for the
year 2005, containing just over 15000 weighted records,
and the demographic variables are gender, age (binned
into 8 groups similar to those in [3]), education level
(0–5), and income level (categories 0–4 relative to the
federal poverty level). The specific cost variable we use
is known in MEPS as “total expenditure” (TOTEXP)
over the year.

5.2 Estimation Results Without Privacy

Preservation We first discuss cost prediction in the
absence of privacy-preserving data transformations.
Two covariate shift methods are compared, the non-
parametric method described in Section 3 and the
logistic regression method of Section 3.1, along with a
baseline that does not account for covariate shift. The
predictive model (corresponding to the function class
F in Section 2) used in all cases is a sum of univariate
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functions of each demographic variable. Note that
while the functions are combined linearly, the functions
themselves are not constrained to be linear and can
vary arbitrarily with input value.

Table 1 summarizes performance in predicting the
cost in even-numbered rating areas as new markets.
Results for odd-numbered rating areas are similar. As
argued in Section 3.2, for aggregate prediction the bias
is often the more important performance metric. Table
1 shows that the baseline approach has a noticeable
bias, whereas the proposed approaches reduce the bias
by shifting the distribution of existing plan members to
look more like prospective enrollees in the new market.
This reduction is particularly significant with the non-
parametric shift method.

5.3 Results With Privacy Preservation Next we
present results where the insurer’s existing plan data,
i.e. X,Y | E = 1,M = 0, is first subject to privacy-
preserving transformation instead of being used directly.
We focus in this subsection on rating area 18 as the
new market. Two procedures are investigated: the full
procedure described in Section 4 in which k-member
clustering is followed by a probability transformation
to recover the original distribution; and conventional
k-anonymization that only includes the clustering and
replaces samples ofX with corresponding cluster centers
x̂j . Privacy transformation may be necessary for the
insurer’s plan data because healthcare cost is considered
potentially sensitive information. However, data for
the markets-at-large, both existing and new, does not
include cost and hence does not require the same
protection.

Figure 2 shows the prediction performance of the
proposed privacy-preserving procedure combined with
different covariant shift methods. In general, as the
anonymity parameter k increases, the relationship be-
tween X and Y inevitably becomes distorted relative
to the original relationship, causing the prediction bias
(as defined in Section 3.2) to increase and R2 to de-
crease. The non-parametric covariate shift method suc-
ceeds at reducing bias, more significantly for small k
where the distortion is mild and less so for large k where
the distortion can be severe. On the other hand, R2 is
slightly lower for the covariate shift methods because
the reweighting of training samples to reduce bias also
introduces some additional variability. Note that R2 is
in any case quite low for this difficult healthcare cost
prediction problem based on demographics alone, and
that for aggregate prediction, R2 is less important than
bias.

Figure 3 shows results for k-anonymization with-
out distribution preservation. As k increases, the orig-

(a) (b)

Figure 2: Prediction bias (a) and R2 coefficient (b) re-
sulting from different covariate shift methods and the
proposed distribution-preserving procedure to achieve
k-anonymity for different values of k. As k increases,
distribution preservation moderates the increase in bias,
the more important metric for aggregate prediction,
while the proposed three-population covariate shift
methods reduce bias.

inal samples from the plan data are represented more
and more coarsely by their cluster centers. As a conse-
quence, prediction accuracy suffers markedly.

(a) (b)

Figure 3: Bias (a) and R2 coefficient (b) for different
covariate shift methods and k-anonymization without
distribution preservation. Prediction error increases
unacceptably as k increases.

Some insight into the behavior in Figures 2 and
3 can be seen in Figure 4, which depicts the similar-
ity between the new enrollment distribution estimated
through the covariate shift methods, and the actual new
enrollment (as simulated). We use the histogram inter-
section similarity [24] for concreteness. A value close
to 1 implies that the predictor is trained on a distri-
bution much like the one encountered in testing. Us-
ing distribution-preserving privacy transformations in
Figure 4(a), the similarity can be kept constant as the
anonymity k increases and can be further enhanced by
the covariate shift methods. However, under conven-
tional k-anonymization in Figure 4(b) the similarity de-
creases rapidly with k.
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Table 1: Coefficient of determination R2 and relative bias when new markets are chosen as rating areas of
California, for the baseline (no shift) method and the proposed logistic and non-parametric shift methods.

New Market R
2 value Relative Bias (%)

No Shift Logistic Non-param. No Shift Logistic Non-param.
RA 2 0.0247 0.0225 0.0226 7.53 6.86 3.60
RA 4 0.0270 0.0252 0.0252 4.42 3.90 2.63
RA 6 0.0262 0.0243 0.0244 4.23 3.41 2.21
RA 8 0.0251 0.0235 0.0233 4.14 3.18 1.93
RA 10 0.0257 0.0242 0.0241 4.41 3.56 1.95
RA 12 0.0259 0.0242 0.0243 4.57 3.74 1.91
RA 14 0.0271 0.0253 0.0245 4.43 3.71 2.20

RA 15-16 0.0291 0.0275 0.0283 2.53 2.28 0.32
RA 18 0.0247 0.0245 0.0245 3.04 2.04 0.44

(a) (b)

Figure 4: Histogram intersection between the estimated
and actual new enrollment distributions for different co-
variate shift methods. In (a), the proposed distribution-
preserving transformation maintains constant similari-
ties as the anonymity k increases, while in (b), the simi-
larity deteriorates under conventional k-anonymization.

6 Conclusion.

In this paper we have addressed the market risk assess-
ment problem, especially pertinent after passage of the
Affordable Care Act, in which insurance companies de-
cide which markets to enter based on the expected cost
distribution of enrollees in the new market. To date,
insurance companies have not developed sophisticated
data mining and machine learning approaches for this
problem, only relying on crude estimates mainly driven
by intuition and very coarse-level aggregate data. The
main issue is the lack of health cost data from markets in
which insurers are not active. To solve this problem and
allow the use of more advanced regression methods and
individual member-level data, we develop two versions
of a novel three-population covariate shift-based estima-
tion procedure. The non-parametric version in partic-
ular is successful in significantly reducing the relative
bias of the regression that would occur if the covari-
ate shift were not done, as seen using real-world MEPS
data with realistic simulations for new markets and en-
rollment probabilities.

Using the accurate proposed approach with fine-
level member health cost data presents legal difficul-
ties for insurance companies due to privacy regulations
in the United States. Therefore, to construct a full
data mining solution that could be deployed, we also
propose a novel privacy-preservation method based on
dithered quantization and Rosenblatt’s transformation.
The novelty is required because the workload for the
data set after privacy transformation, namely covariate
shift and regression, requires preservation of the joint
distribution. To the best of our knowledge, such a work-
load has not been dealt with in the privacy-preserving
data mining literature. Our proposed approach is able
to maintain predictive accuracy and bias reduction in
the downstream regression significantly better than ex-
isting privacy-preservation with a non-specific workload.
In fact, without our new privacy preservation method,
cost prediction essentially fails for k-anonymity greater
than ten or twenty.

One direction for future work addresses the follow-
ing issue. In the market risk assessment problem, it is
possible that the conditional distribution pY |X is not
the same in the training and test populations, i.e., cur-
rent and new markets, unlike in the standard covariate
shift problem. For example, the overall cost of living
in the new market may differ from that in the exist-
ing market and this may affect health care costs as
well. However, it is unlikely for there to be sufficient
data to learn the full conditional distribution pY |X,M

(otherwise market shift would not be much of a prob-
lem). One approximation is to assume a simple scal-
ing where an underlying conditional distribution pY |X

is scaled by a cost-of-living factor a(M) depending on
M (implying that the conditional mean for example is
E[Y | X,M ] = a(M)E[Y | X]).

Another direction for future work is theoretical
analysis of the proposed privacy-preservation method.
Dithered quantization has much supporting theory that
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we would like to further explore in the context of pri-
vacy, where it has never been applied before. Further-
more, although this paper is wholly concerned with the
healthcare domain, similar problems occur in other ap-
plications where privacy is regulated. For example in
education, charter schools need to estimate properties
of markets they may enter, and data is protected by the
Family Educational Rights and Privacy Act. We would
also like to explore stronger notions of privacy such as
l-diversity [16] and t-closeness [14] with distribution-
preserving workloads.
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Intell., Québec City, Canada, July 2014, pp. 1341–
1347.

234 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.


