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ABSTRACT
The machine learning community and society at large have become

increasingly concerned with discrimination and bias in data-driven

decision making systems. This has led to a dramatic increase in

academic and popular interest in algorithmic fairness. In this work,

we focus on fairness in budget-constrained decision making, where

the goal is to acquire information (features) one-by-one for each

individual to achieve maximum classification performance in a

cost-effective way. We provide a framework for choosing a set of

stopping criteria that ensures that a probabilistic classifier achieves

a single error parity (e.g. equal opportunity) and calibration. Our

framework scales efficiently to multiple protected attributes and is

not susceptible to intra-group unfairness. Finally, using one syn-

thetic and two public datasets, we confirm the effectiveness of our

framework and investigate its limitations.
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1 INTRODUCTION
As machine learning-based decision making has become increas-

ingly ubiquitous—e.g., in criminal justice [16], medical diagnosis

[15], human resource management [3], credit [11], and insurance
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[29]—there is widespread concern over how these systems intro-

duce and perpetuate discrimination and inequality. Consequently,

substantial work on defining and achieving fairness in machine

learning systems has been published in the last few years.

The vast majority of this research has relied on the assumption

that all data is readily available or can be acquired at no or little

additional costs. In such a setting, the model bases its decision about

an individual always on all features. In practice, however, there are

many applications where the acquisition of an additional feature

leads to a feature-specific cost [17]. Consider a patient entering a

hospital seeking diagnosis. Typically, the doctor starts the diagnosis

with only a handful of symptoms. From there, the patient under-

goes a progressive inquiry by e.g. measuring vitals or procuring lab

tests. At each step, absent sufficient certainty, the inquiry continues.

Acquiring all features at once using all possible medical tests is

prohibitively expensive and time-consuming, so at each time-step

the doctor is tasked with choosing the next feature that most ef-

ficiently leads to a more confident diagnosis. This setting, active
feature-value acquisition (AFA), is becoming increasingly ubiqui-

tous and is relevant in a wide range of contexts, from credit and

insurance, to employee recruiting, poverty and disaster mapping,

and online advertising [8, 17, 19, 22, 28].

The machine learning community has proposed different frame-

works for quantifying fairness in machine learning [10, 16, 30],

most of which focus on balancing classification errors across pro-

tected population subgroups, towards achieving equal false-positive

rates (predictive equality), equal false-negative rates (equal oppor-
tunity), or both (equal odds). Here, we focus on satisfying equal

opportunity, requiring non-discrimination only within the ‘favor-

able’ outcome [10], while also extending these results to satisfying

predictive equality. We show that our method can jointly achieve

either of these error parity measures and calibration for each sub-

group (test-fairness), a property commonly required of classifiers in

real-world settings [5, 25]. We call an estimator calibrated if, when

we look at the subset of people who receive any given probability

estimate p ∈ [0, 1], we indeed find a p fraction of them to be positive

instances of the classification problem.

To ensure that predictions are fair, “optimal" post-processing

methods have been proposed that achieve either 1) equal odds, or

2) parity in one error rate (e.g. equal opportunity) and calibration

[10, 25]. These methods rely on randomization to attain fairness:
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they randomize the predictions for a subset of individuals in the

advantaged group, and hence increase error rates for that group.

By carefully tuning the share of randomized predictions, one en-

sures equal error rates across groups. Although these methods are

effective, they are also unsettling and several objections to them

have been put forth, such as inefficiency, pareto-suboptimality, and

intra-group unfairness due to the randomization [5, 10, 20, 25].

Despite the pervasiveness of AFA systems and the recent spike

in work on algorithmic fairness, only one paper in the literature

has explored fairness at its intersection with AFA [22]. In that

work, optimization is used to find an information budget for each

population subgroup such that an AFA classifier achieves either 1)

one error parity and calibration or 2) equal odds. Notably, by using

this additional degree of freedom, they show that one can achieve

these notions of fairness in an AFA setting without resorting to

randomization.

Our goal is to further investigate the relationship between equal-

izing error rates and AFA. In particular, we derive a set of stopping

criteria that ensures single error parity (equal opportunity or pre-

dictive equality) for calibrated probabilistic classifiers. In contrast

to previous work, this method does not rely on optimization but di-

rectly relates the stopping criteria to the subgroup-specific base rate

and the desired error rate. We demonstrate that our framework is

effective in practice using one synthetic and two public datasets and

show how it extends naturally to a situation with many subgroups

defined over multiple protected attributes.

Finally, the method provides an interesting new perspective on

two central topics in the fairness literature: individual fairness and
fairness gerrymandering. First, as statistical notions of fairness like
equal opportunity are defined with respect to groups, they only

provide guarantees to the group average, not to any individual.

Individual fairness tries to tackle this issue by using constraints

that bind at the individual level [7]. Our method finds a set of stop-

ping criteria that lead to a personalized budget and set of available

features for each individual. Hence, intuitively, it trades off inequal-

ity (the model and the budgets are personalized and thus different

across individuals) for equity (each of the subgroups defined over

the set of protected attributes has the same expected false-negative

rate and even within subgroups each individual is classified with

similar confidence). This can be seen as an attempt to combine

statistical and individual notions of fairness as the stopping criteria

lead to increased equity at the individual level. Second, in fair-
ness gerrymandering, a classifier appears to be fair when measured

across each protected attribute but violates the fairness constraint

on a subgroup defined over several protected attributes [14]. In

contrast to methods based on optimization, our framework is ro-

bust against fairness gerrymandering since it ensures all subgroups

have the same expected false-negative rate.

2 RELATEDWORK
Active feature-value acquisition. Several methods for AFA have

been explored ranging from heuristics-based feature acquisition

strategies to more recent reinforcement learning methods in which

one jointly trains the classifier and the agent that decides which

feature to select next [8, 17, 19, 28]. In line with most prior work in

AFA, we select the next best feature using a feature acquisition strat-

egy while separately training the classifier. The feature acquisition

strategy is based on maximizing the expected utility

EU (x j ) =

∫
v
P(x j = v)

U (x j = v)

c j
(1)

where P(x j = v) is the probability that feature x j will take on value

v andU (x j = v) the utility of the model after adding x j to feature

vector x. The utility function could be defined in multiple ways

depending on the objective, such as the expected classification error

or the expected entropy. We experimented with multiple definitions

for utility and found that one that maximizes the expected increase

or decrease in probability outputted by the model is most cost-

efficient; see Section 5.1 for details.

Fairness in machine learning. Most recent work in fairness in

machine learning, including this work, focuses on matching error

rates (false-positive or false-negative) across population subgroups.

There are, however, multiple other ways to define fairness such as

demographic parity, individual fairness, fairness through unaware-
ness, and counterfactual fairness. Please refer to [30] for a compre-

hensive overview of definitions. Methods for achieving fairness fall

into three categories [1]. First, there are methods for pre-processing

and improving collection of training data [2, 4, 27]. Second, there are

methods for constraining the model during training or optimization

including methods for fair representation learning [21, 33]. Finally,

there are a number of methods for post-processing probabilities to

achieve fairness [10, 32]. For achieving equal opportunity and cali-

bration previous post-processing work has relied on randomization

which led to an inefficient and pareto-suboptimal classifier [5, 25].

In this work, we post-process a classifier trained on all features by

selecting a specific subset of features for each individual.

3 PROBLEM SETUP
The setup of our frameworkmost follows the one in [25] for fairness

in the context of calibrated probabilistic classifiers. However, we

extend their framework for use in the AFA setting. Let (x,y) ∼ P
be an individual in P represented by a d-dimensional feature set

and a binary label y ∈ {0, 1}. In the AFA setting, x(q) ⊂ x denotes

a query on a subset of features in x, with q ⊂ {0, ...,d}, and x(q)

the partial feature vector. The decision maker incurs a cost for the

collected features c(q) =
∑
j ∈q c j . The cost vector c represents the

cost of each feature and is the same for each individual in P . It can
represent different types of costs that the decision maker or an

individual might incur when a feature is queried such as monetary

and privacy costs.

We study the context in which a decision maker can choose what

information to collect about an individual in order to maximize

accuracy while ensuring fairness. Across all individuals in P , the
decision maker is constrained by an average information budget:

Definition 1. The information budget ¯b is a global constraint
that represents the average budget that can be used across individuals
in P , ¯b = 1

n
∑
i ∈P bi with bi =

∑
j ∈q c j , the information budget used

for feature collection for a single individual i in P .

In our population P we have a set of k disjoint population sub-

groups G1, . . . ,Gk defined over the protected attributes (such as
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certain combinations of protected attribute values like race and

gender) across which we measure fairness. Note that the number

of population subgroups is exponential in the number of protected

attributes (e.g. three binary protected attributes will lead to 2
3 = 8

subgroups). Generally, these subgroups will have different base

rates µt , which represents the probability of belonging to the posi-

tive class µt = P(x,y)∼Gt [y = 1] across individuals in group t . For
classification, we have a separate probabilistic classifier for each

group Gt , ht : Rk → [0, 1]. In practice, these separate classifiers

are stemming from a single classifier trained on P and only differ

because of subgroup-specific calibration. For the probabilistic error

rates as well as for measuring disparity, we follow the generalized

definitions introduced in [25]:

Definition 2. The generalized false-positive rate for classifier
ht is cf p (ht ) = E(x,y)∼Gt [ht (x

(q)) | y = 0]. The generalized false-
negative rate is cf n (ht ) = E(x,y)∼Gt [1 − ht (x(q)) | y = 1].

If the classifier would output binary predictions instead of prob-

abilities, these rates would simply represent standard false-positive

and false-negative rates. Similarly, we use generalized notions of

equalized odds and equal opportunity for probabilistic classifiers:

Definition 3. Equal opportunity for a set probabilistic classifiers
h1, . . . ,hk for groups G1, . . . ,Gk requires cf n (ht ) = cf n (ht ′) for all
possible combinations of t and t ′. Equal odds requires both cf n (ht ) =
cf n (ht ′) and cf p (ht ) = cf p (ht ′).

For probabilistic classifiers, however, these two conditions do

not ensure fairness if the classifier probabilities the classifier out-

puts are not calibrated. This is confirmed both theoretically and

experimentally in [5, 6, 25].

Definition 4. A classifier ht is calibrated if P(x,y)∼Gt [y = 1 |

ht (x(q)) = p] = p.

In Figure 1, we observe the set of calibrated classifiers for two

groupsG1 and G2. For each group, the classifiers lie on a line with

slope (1 − µt )/µt that connects the perfect classifier at the origin
with the base rate classifier on the cf p + cf n = 1 line. The perfect

classifier always assigns the correct prediction, while the base rate

classifier has no predictive power and naively assigns the base

rate to each individual [16, 25]. For an AFA classifier, the base rate

classifier is simply the classifier before any features have been

acquired h(xq=∅).

4 EQUAL OPPORTUNITY
We will now derive a set of stopping criteria for each population

subgroup that ensure satisfying equal opportunity. Intuitively, the

stopping criteria should be chosen such that we collect more fea-

tures for subgroups for which the model is less certain. By stopping

later, we acquire more features, have more predictive power, and

move down the slope in Figure 1 towards the perfect classifier at

the origin. First, we reformulate cf n from Definition 2 as

cf n (ht ) =
1∑

(x,y)∈Gt 1y=1

∑
(x,y)∈Gt

1y=1(1 − ht (x(q))) (2)

The normalization can simply be replaced by a constant 1/(|Gt |µt )
since we marginalize over all x in Gt . Because we do not have

0 µ1 µ2 1
cfp

0

1− µ2

1− µ1

1

c f
n

0 cfp(h1) cfp(h2) 1
cfp

0

β

1

c f
n

h1

h2

Figure 1: Left, we observe the set of calibrated classifiers h1

and h2 forG1 in green andG2 in blue. The base rates are µ1 =

0.4 and µ2 = 0.65. Right, we observe two classifiers h1 and h2

that satisfy calibration and equal opportunity with a target
generalized false-negative rate β .

access to ground truth labels 1y=1 at test time, we replace them

with the estimates from the the probabilistic classifier ht (x
(q)):

cf n (ht ) =
1

|Gt |µt

∑
(x,y)∈Gt

ht (x(q))(1 − ht (x(q))). (3)

One way to satisfy equal opportunity is to ensure that, in expec-

tation, we have the same generalized false-negative rate cf n for

each group Gt such that E(x,y)∼Gt [cf n (x
(q))] = β ∀t , where β can

be chosen according to the information budget
¯b. To achieve this,

we slowly increase the confidence of our classifier (ht (x(q)) → 1 or

ht (x(q)) → 0) by sequentially adding features one-by-one. We stop

collecting features when our probabilistic classifier crosses an upper

or lower threshold probability, ht (x(q)) ≥ αu or ht (x(q)) ≤ αl . For
a desired β we can find these stopping thresholds αu and αl by en-

suring equalht (x(q))(1−ht (x(q))/µt = β for every individual in our

groupGt . Bringing everything except the classifier to one side of the

equation, wewant the probabilities to beht (x(q)) = 1

2
± 1

2

√
1 − 4βµt

which leads to thresholds

αu =
1

2

+
1

2

√
1 − 4βµt , αl =

1

2

−
1

2

√
1 − 4βµt (4)

Thus, by choosing the right stopping criteria for each individual x
according to their subgroup-specific base rate µt , we ensure that
we satisfy equal opportunity. See Figure 1 for an example with

two subgroups. In practice, a decision maker would not choose the

target rate β but, instead, tune β to meet an information budget
¯b.

A higher information budget
¯b allows for a lower target rate β .

Analogously, if we insteadwant to achieve equalized false-positive

rates (predictive equality) across groups, we can derive a similar

but different set of thresholds αu =
1

2
+ 1

2

√
1 + 4β(µt − 1) and

αl =
1

2
− 1

2

√
1 + 4β(µt − 1). Finally, to achieve equal odds, we would

have to find the same set of thresholds for both equal false-positive

rates and equal false-negative rates. The only case for which these

thresholds are the same is for 1 − µt = µt (i.e. µt = 0.5) which is

the trivial case for which there was already no unfairness. This

confirms the conclusion in [25] that for different base rates, one

cannot simultaneously achieve equal odds and calibration.
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Table 1: Overview of the datasets and subgroups split by the protected attributes. Accuracy andAUC are computed on a dataset-
level using the full feature set, while µ is the dataset-level base-rate P(y). For each subgroup we compute the relative number
of individuals nt and the base rate µt .

Dataset Subgroup1 Subgroup0

Name Nsamples Nf eat Acc AUC µ Label1 n1 µ1 Label0 n0 µ0

Synthetic [9, 23] 10,000 150 85.9% 0.933 50.0% z = 1 50.0% 41.3% z = 0 50.0% 58.9%

Mexican poverty [12, 22] 70,305 182 78.7% 0.856 35.5% Urban 63.6% 34.9% Rural 36.4% 36.6%

Adult income [18] 49,000 14 86.3% 0.911 23.9% White 85.4% 25.4% Non-white 14.6% 15.3%

Assumptions. In this framework, we make two key assumptions.

First, we assume that for each individual we have sufficient statis-

tical power to reach the target β by simply adding more features.

In practice, however, there will be a non-zero Bayes-optimal error

rate such that we cannot reach the perfect classifier with β = 0

even with unlimited budget for feature acquisition. Second, we

assume that the probabilities are exactly p = αu or p = αl while in
reality we stop when we cross the threshold and thus p ≥ αu or

p ≤ αl . In the experiments in Section 5 we show that relaxing both

assumptions does not limit the effectiveness of our framework.

4.1 Implications
This result is important for several reasons. First, it provides a theo-

retical framework for understanding the results presented in [22]. In

the active fairness framework described there, optimization is used

to find a set of parameters that allows for equal opportunity and

calibration in the AFA setting, but lacks a theoretical underpinning.

Second, we only need a subgroup’s base rate to find αu and αl .
This is crucial when the problem is extended to a case with several

multi-class protected attributes, like gender, race, and sexual orien-

tation. If one instead would try to find the parameters by optimizing

over a budget and fairness constraints for each protected attribute,

the resulting classifier could contain intra-group unfairness.

Third, comparing this result to the randomization approach pre-

sented in [25], our framework shows that by using AFA, we can

achieve fairness in a budget-constrained setting without having

to resort to randomized approaches that are inefficient, pareto-

suboptimal, and lead to intra-group unfairness.

5 EXPERIMENTS
In light of these findings, we demonstrate the effectiveness and

limitations of our framework on one synthetic and two public real-

world datasets. In this section we aim to satisfy equal opportunity

(equal false-negative rates) but in Appendix A we demonstrate that

the method can also be used for satisfying predictive equality (equal

false-positive rates).

5.1 Implementation
Implementation requires two elements, a probabilistic model and a

feature acquisition strategy.

Probabilistic model. First, we need a model that allows us to es-

timate P(y |x(q)) for arbitrary feature subsets x(q), with q ∈ [0,d].
We implement this using a probabilistic random forest, designed

to deal with incomplete data in trees [26]. Specifically, we first

train a standard random forest using the complete feature vector

x for each individual in our training set. At test time, however,

we now only have access to part of the feature vector x(q). In a

probabilistic random forest, when the algorithm encounters a tree

node for which the value is missing in the feature vector x(q), the
algorithm continues along both branches towards the leafs while

the outcomes in each branch are weighted based on the estimated

probability for the missing value. For each individual, that proba-

bility is estimated from the frequency of values in the training set.

We then compute classification probabilities as a weighted average

of the leaf purity across all leaves landed on by the search. Finally,

the predicted probability is averaged across all trees. Analogously,

gradient boosting and other models can be adjusted to admit in-

complete feature vectors [26, 31]. In this work, all random forests

are created using scikit-learn with 64 trees and maximally 150

leaf nodes. Additionally, we built a custom predict function that

works with the scikit-learn object but accounts for the missing

feature values.

Feature acquisition strategy. Second, we implement an efficient

feature acquisition strategy to estimate which next feature can be

best selected based on the current partially observed feature vector

x(q), while balancing cost and increasing accuracy. We implement

a greedy feature selection algorithm based on the expected utility

methods described in [13, 17]. For an individual with feature vector

x, and at each feature collection iteration, the algorithm searches

for the feature j ′ < q that maximizes the difference between the

current predicted probability P̂ and the expected probability given

that an additional feature j ′ is queried with cost c j , given by:

j ′ = arg max

{j :j<q, j ∈[0,d ]}

1

c j

��P̂{y = 1|x(q∪j)} − P̂{y = 1|x(q)}
��. (5)

5.2 Datasets
An overview of the datasets is given in Table 1. All results are com-

puted using random 60%/20%/20% train/validation/test splits. The

Synthetic dataset is generated using the make_classification
function from scikit-learn [9, 23] where we use the default set
of parameters while setting class_sep to 1.5 (default is 1.0) to

make the task slightly easier. The protected attribute is a randomly

selected feature which we exclude from the dataset and binarize

by splitting along the median. The Mexican Poverty dataset is ex-

tracted from the 2016 publicly available Mexican household survey

containing household binary poverty levels for prediction, as well

as a series of household features [12]. We will release the processed
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dataset. Finally, we use the Adult Income dataset from UCI Machine

Learning Repository [18] which comprises demographic and occu-

pational attributes, with the goal of classifying whether a person’s

income is above $50,000.

5.3 Achieving equal opportunity
We empirically demonstrate that our framework satisfies equal

opportunity for a given information budget
¯b. To make the results

more interpretable, we choose the costs to be the same for each

feature c j = 1. Hence, the budget
¯b is simply the average number of

features that can be queried across individuals. We also tested the

framework with linearly increasing feature costs and feature costs

drawn from a normal distribution, while observing similar behavior.

To ensure calibrated probabilities, we fit a sigmoid function to the

classifier’s scores using the validation set; a calibration method

known as Platt scaling [24].

Figure 2 demonstrates that we can satisfy equal opportunity for

the three datasets. In Figure 2a we plot the derived equal opportu-

nity classifiers in the generalized false-positive/false-negative plane

with 5%, 10%, and 20% as information budgets for respectively the

Synthetic, Adult Income, and Mexican Poverty datasets. Table 2

shows the residual false-negative disparities after applying our stop-

ping criteria as well as the false-positive disparity. The results in

the table are benchmarked against the disparities between groups

when the classifiers have access to all features (i.e. no stopping

criteria). As expected, our framework leads to drastically lower

false-negative disparities while the false-positive disparities are

similar to the baseline. In Table A1 we find the stopping criteria,

budgets, and classifier performance (using area under the ROC

curve) for equal opportunity, predictive equality and the baseline

model using all features.

Figure 2b demonstrates that our framework allows for achieving

equal opportunity for a range of different information budgets. The

steepest decrease in cf n is observed for smaller information budgets

because our feature acquisition strategy chooses themost predictive

features first. For larger budgets, the curves plateau as the additional

features do not further increases the classifier performance.

Our framework assumes a one-to-one mapping between the tar-

get β and the actual generalized-false negative rate cf n . For the
Synthetic dataset in Figure 2c, we indeed observe an approximate

one-to-one mapping between target and actual. For the Mexican

Poverty dataset, however, we observe a strong positive correlation

but the actual false-negative rate increases slower than the target

rate. For small target rates β this is the result of lower overall classi-

fication performance for the Mexican dataset (AUC 0.85 when using

all features versus 0.93 for the Synthetic dataset); as β becomes

smaller, the thresholds αu and αl approach 1 and 0. Therefore, when

the classification performance is low, many instances will fail to

meet the stopping criteria before running out of possible features

to query which increases the actual rate cf n . For high values of β ,
another effect is at play. The smaller than expected cf n is observed

because our probabilities do not end up exactly at αu and αl (our

stopping criteria are defined as ht (x(q)) ≥ αu , not as ht (x(q)) = αu ).
Importantly, however, we observe that these assumptions do not

affect our ability to achieve equal opportunity.

Table 2: Information budgets ¯b and absolute differences
(disparities) in generalized false-negative |∆cf n | and false-
positive rates |∆cf p | for the equal opportunity classifiers vi-
sualized in Figure 2. We benchmark our framework to the
classifiers with access to all features x (¯b = 100%).

Equal opportunity All features

Dataset
¯b |∆cf n | |∆cf p | ¯b |∆cf n | |∆cf p |

Synthetic 5% 0.0039 0.221 100% 0.097 0.042

Mexican Pov. 20% 0.0063 0.040 100% 0.019 0.042

Adult income 10% 0.026 0.065 100% 0.038 0.056

Finally, we test our framework for eight disjoint subgroups de-

fined over three protected household attributes (Young/Old, Ur-

ban/Rural, and With/Without Children) in the Mexican Poverty

dataset. When using optimization for achieving fairness, large intra-

group unfairness can manifest itself; even though disparities mea-

sured across protected attributes are small, large differences be-

tween false-negative rates for each subgroup defined over the at-

tributes can exist [14]. In contrast, our framework requires all eight

false-negative rates to be approximate equal and, indeed, empir-

ically we observe that all fall within the [0.440, 0.541] range. See

Tables A2 and A3 in the appendix for an overview of results for the

three protected attributes.

6 CONCLUSION
We introduced a framework for achieving equal opportunity (and

predictive equality) for calibrated probabilistic classifiers in an ac-

tive feature-value acquisition setting. The framework relates a tar-

get generalized false-negative rate and a subgroup-specific base

rate to a set of stopping criteria, used to determine when to stop

querying additional features for fair classification. The target false-

negative rate can be tuned using the available information budget.

The relationship between error and base rates is intuitive as base

rate differences are what give rise to disparities between calibrated

classifiers. On three datasets, we show the effectiveness of the

framework and demonstrate that relaxing some of the assumptions

in our framework does not significantly change its effectiveness.

Importantly, the proposed framework neither relies on optimiza-

tion nor any form of randomization. Furthermore, it is not suscep-

tible to intra-group unfairness and provides a new perspective on

how we could combine individual and statistical notions of fair-

ness. The ability to set the expected false-negative rates for each

subgroup simply by deriving a set of stopping criteria could be

used to ensure statistical notions of fairness to hold not only for a

small number of larger subgroups but potentially for an exponential

number of smaller subgroups. This could enable a set of classifiers

for which both individual and statistical notions of fairness hold

without having to collect the protected attributes. In turn, this al-

lows for fair decision making in contexts where one deals with a

multitude of subgroups or when collecting the protected attributes

is unethical or impossible.
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(a) The line of calibrated classifiers and the equal opportunity classifiers plotted in the generalized false-positive/false-negative
plane similar to Figure 1. The values for the differences between the error rates can be found in Table A3. The black line traces
cf p + cf n = 1 and contains the naive base rate classifiers for which no features are queried.
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(b) Generalized false-negative rates cf n for equal opportunity
classifiers along a range of different information budgets ¯b .
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(c) Generalized false-negative rates cf n for different target
false-negative rates β . Ideally, you expect a straight-line rela-
tionship with slope 1.

Figure 2: For the datasets described in Table 1, we demonstrate equal opportunity for three different budgets. For each sub-
group, we show the possible set of calibrated classifiers (lines) together with the specific classifier that achieves equal oppor-
tunity for the given budget (diamonds).
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A ACHIEVING PREDICTIVE EQUALITY
In line with satisfying equal opportunity in the main text, we empir-

ically demonstrate that our framework satisfies predictive equality

(equal false-positive rates) for three different information budgets

10%, 15%, and 30% for respectively the Synthetic, Adult Income, and

Mexican Poverty datasets. In Table A1 we observe the statistics for

both equal opportunity and predictive equality. In agreement with

equal opportunity, we see a drastic decrease in target error rate

(now |∆cf p |) with respect to the false-positive disparity measured

across the benchmark classifiers that have access to all features.
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Table A1: Comparison of AUC, absolute differences in generalized false-negative |∆cf n | and false-positive |∆cf p | rates across
the equal opportunity, predictive equality and benchmark classifiers for the three different datasets. The equal opportunity
and predictive equality classifier were derived by setting a group-specific threshold and applying active feature acquisition
while the benchmark classifier has access to the complete feature set. The upper threshold αu is shownwhile the lower thresh-
old relates to the upper threshold as αl = 1 − αu . Both are determined by the average information budget ¯b.

Equal opportunity Predictive equality All features

Dataset
¯b |∆cf n | |∆cf p | AUC αu,1 αu,0 ¯b |∆cf n | |∆cf p | AUC αu,1 αu,0 ¯b |∆cf n | |∆cf p | AUC

Synthetic 5% 0.0039 0.221 0.77 0.82 0.71 10% 0.225 0.002 0.77 0.69 0.81 100% 0.097 0.042 0.933

Mexican Poverty 20% 0.0063 0.040 0.78 0.77 0.75 30% 0.038 0.011 0.79 078 0.79 100% 0.019 0.042 0.856

Adult Income 10% 0.026 0.065 0.86 0.78 0.89 15% 0.423 0.010 0.81 0.78 0.73 100% 0.038 0.056 0.911

Table A2: Active feature acquisition for eight different subgroups defined over three binary protected attributes in theMexican
Poverty dataset. The metrics cf n , cf p and AUC are computed on each subgroup level with a 25% information budget ¯b. Each
subgroup has its own threshold as stopping criterion based on the subgroup specific base rate µt . Furthermore, we report the
relative number of individuals nt with respect to the whole set and the fairness statistics for the benchmark case.

Equal opportunity All features

Subgroup nt µt cf n cf p AUC cf n cf p AUC

Young ∩ Urban ∩ With Children 20.0 % 51.4% 0.465 0.460 0.667 0.305 0.306 0.848

Young ∩ Urban ∩ Without Children 13.4% 21.6% 0.502 0.174 0.828 0.494 0.140 0.866

Young ∩ Rural ∩ With Children 13.5% 50.3% 0.443 0.446 0.699 0.333 0.349 0.812

Young ∩ Rural ∩ Without Children 5.8% 23.0% 0.541 0.186 0.773 0.559 0.153 0.810

Old ∩ Urban ∩ With Children 7.4% 54.0% 0.448 0.468 0.681 0.320 0.307 0.750

Old ∩ Urban ∩ Without Children 22.4% 21.7% 0.543 0.188 0.810 0.542 0.160 0.838

Old ∩ Rural ∩ With Children 4.5% 49.5% 0.440 0.433 0.711 0.339 0.322 0.817

Old ∩ Rural ∩ Without Children 12.7% 24.1% 0.530 0.224 0.785 0.531 0.191 0.804

∪Subдroups 100% 35.5% 0.480 0.283 0.794 0.432 0.233 0.824

Table A3: Absolute differences in generalized false-negative |∆cf n | and false-positive |∆cf p | rates on a group-level. The thresh-
olds for feature acquisition were set on a subgroup level (same as in Table 4). Controlling for error rates (in this case cf n ) on a
subgroup level leads to fairness on the level of the sensitve attribute.

Group |∆cf n | |∆cf p |

Young/Old 0.045 0.088

Urban/Rural 0.070 0.097

With/Without Children 0.089 0.257
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