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ABSTRACT
In recent years, the rapid advances in Artificial Intelligence (AI)
techniques along with an ever-increasing availability of healthcare
data have made many novel analyses possible. Significant successes
have been observed in a wide range of tasks such as next diagnosis
prediction, AKI prediction, adverse event predictions includingmor-
tality and unexpected hospital re-admissions. However, there has
been limited adoption and use in the clinical practice of these meth-
ods due to their black-box nature. A significant amount of research
is currently focused on making such methods more interpretable
or to make post-hoc explanations more accessible. However, most
of this work is done at a very low level and as a result, may not
have a direct impact at the point-of-care. This tutorial will provide
an overview of the landscape of different approaches that have
been developed for explainability in healthcare. Specifically, we
will present the problem of explainability as it pertains to vari-
ous personas involved in healthcare viz. data scientists, clinical
researchers, and clinicians. We will chart out the requirements for
such personas and present an overview of the different approaches
that can address such needs. We will also walk-through several use-
cases for such approaches. In this process, we will provide a brief
introduction to explainability, charting its different dimensions as
well as covering some relevant interpretability methods spanning
such dimensions. We will touch upon some practical guides for
explainability and provide a brief survey of open source tools such
as the IBM AI Explainability 360 Open Source Toolkit.
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CCS CONCEPTS
• Applied computing → Health informatics; • Computing
methodologies → Artificial intelligence.
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TUTORIAL WEBPAGE
Thewebpage for this tutorial can be accessed at https://healthxaitutorial.
github.io/kdd2020/

TARGET AUDIENCE AND PRE-REQUISITE
KNOWLEDGE
The primary target for this tutorial are “Data Scientists” interested
in building models and systems on healthcare data with improved
clinical adoption. The audience is expected to have basic knowledge
of machine learning.

TUTORIAL OUTLINE
• Introduction (30 mins)
– Overview of AI in healthcare
– Challenges for adoption of AI in practice

• A Brief Intro to Explainability (40 mins)
– General dimensions of Explainability
– Open source Tools
– Model cards and factsheets
– Some Example Methods

• Need for persona driven Explainability in Healthcare (40
mins)
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– Critique of Explainability
– General Personas for Explainability

• Persona Specific Perspective (40 mins)
– Data Scientist perspectives and use-cases
– Clinical Research perspectives and use-cases
– Clinician Perspectives and use-cases

• General takeaways for Healthcare personas need for Explain-
ability (20 mins)

• Conclusions and Discussions (30 mins)
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