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Abstract

In the current era, people and society have grown increasingly reliant on artificial in-
telligence (AI) technologies. AI has the potential to drive us towards a future in which all
of humanity flourishes. It also comes with substantial risks for oppression and calamity.
Discussions about whether we should (re)trust AI have repeatedly emerged in recent years
and in many quarters, including industry, academia, healthcare, services, and so on. Tech-
nologists and AI researchers have a responsibility to develop trustworthy AI systems. They
have responded with great effort to design more responsible AI algorithms. However, ex-
isting technical solutions are narrow in scope and have been primarily directed towards
algorithms for scoring or classification tasks, with an emphasis on fairness and unwanted
bias. To build long-lasting trust between AI and human beings, we argue that the key is to
think beyond algorithmic fairness and connect major aspects of AI that potentially cause
AI’s indifferent behavior. In this survey, we provide a systematic framework of Socially Re-
sponsible AI Algorithms that aims to examine the subjects of AI indifference and the need
for socially responsible AI algorithms, define the objectives, and introduce the means by
which we may achieve these objectives. We further discuss how to leverage this framework
to improve societal well-being through protection, information, and prevention/mitigation.

1. Introduction

Artificial intelligence (AI) has had and will continue to have a central role in countless
aspects of life, livelihood, and liberty. AI is bringing forth a sea-change that is not only
limited to technical domains, but is a truly sociotechnical phenomenon affecting healthcare,
education, commerce, finance, and criminal justice, not to mention day-to-day life. AI offers
both promise and perils. A report published by Martha Lane Fox’s Doteveryone think tank
(Miller C, 2019) reveals that 59% of tech workers have worked on products they felt harmful
to society, and more than 25% of workers in AI who had such an experience quit their jobs
as a result. This was particularly marked in relation to AI products. The rise of activism –
which has been regarded as one of the current few mechanisms to keep big tech companies
in check (Schwab, 2021) – against negative social impacts of big tech have brought Social
Responsibility of AI into the spotlight of the media, the general public, and AI technologists
and researchers (Abdalla & Abdalla, 2020). Even researchers in universities and research
institutes are trying hard to rectify the mistakes made by algorithms. Stanford’s COVID-19
vaccine allocation algorithm, for example, prioritizes older employees over front-line workers
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(Asimov, 2020), turning much of our attention again to the transparency and fairness of
AI.

Research directed towards developing fair, transparent, accountable, and ethical AI al-
gorithms has burgeoned with a focus on decision-making algorithms such as scoring or
classification to mitigate unwanted bias and achieve fairness (Jagadish, 2019). However,
this narrow subset of research risks blinding us to the challenges and opportunities that
are presented by the full scope of AI. To identify potential higher-order effects on safety,
privacy, and society at large, it is critical to think beyond algorithmic bias, to capture all
the connections among different aspects related to AI algorithms. Therefore, this survey
complements prior work through a holistic understanding of the relations between AI sys-
tems and humans. In this work, we begin by introducing an inclusive definition of Social
Responsibility of AI. Drawing on theories in business research, we then present a pyramid
of Social Responsibility of AI that outlines four specific AI responsibilities in a hierarchy.
This is adapted from the pyramid proposed for Corporate Social Responsibility (CSR) by
Carroll et al. (1991). In the second part of the survey, we review major aspects of AI algo-
rithms and provide a systematic framework – Socially Responsible AI Algorithms (SRAs)
– that aims to understand the connections among these aspects. In particular, we examine
the subjects and causes of socially indifferent AI algorithms1, define the objectives, and
introduce the means by which we can achieve SRAs. We further discuss how to leverage
SRAs to improve daily life of human beings and address challenging societal issues through
protecting, informing, and preventing/mitigating. We illustrate these ideas using recent
studies on several emerging societal challenges. The survey concludes with open problems
and challenges in SRAs.

Differences from Existing Surveys. Some recent surveys focus on specific topics such
as bias and fairness (Mehrabi, Morstatter, Saxena, Lerman, & Galstyan, 2019; Caton &
Haas, 2020), interpretability/explainability (Carvalho, Pereira, & Cardoso, 2019; Tjoa &
Guan, 2020), and privacy-preservation (Beigi & Liu, 2020; Dwork, 2008). These surveys
successfully draw great attention to the social responsibility of AI, leading to further de-
velopments in this important line of research. However, as indispensable components of
socially responsible AI, these topics have been presented in their own self-contained ways.
These works pave the way for looking at socially responsible AI holistically. Therefore, our
survey aims to frame socially responsible AI with a more systematic view that goes beyond
discussion of each independent line of research. We summarize our contributions as follows:

• We formally define social responsibility of AI with three specified dimensions: principles,
means, and objectives. We then propose the pyramid of social responsibility of AI, de-
scribing its four fundamental responsibilities: functional, legal, ethical, and philanthropic
responsibilities. The pyramid embraces the entire range of AI responsibilities involving
efforts from various disciplines.

• We propose a systematic framework that discusses the essentials of socially responsible
AI algorithms (SRAs) – including its subjects, causes, means, and objectives – and the
roles of SRAs in protecting, informing users, and preventing them from negative impact
of AI. This framework subsumes existing topics such as fairness and interpretability.

1. We define “indifferent” as the complement of responsible rather than “irresponsible”.
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• We look beyond prior research in socially responsible AI and identify an extensive list of
open problems and challenges, ranging from understanding why we need AI systems to
showing the need to define new AI ethics principles and policies. We hope our discussions
can spark future research on SRAs.

Intended Audience and Paper Organization. This survey is intended for AI re-
searchers, AI technologists, researchers, and practitioners from other disciplines who would
like to contribute to making AI more socially responsible with their expertise. The rest of
the survey is organized as follows: Section 2 introduces the definition and the pyramid of
social responsibility of AI, and compares definitions of similar concepts. Section 3 discusses
the framework of socially responsible algorithms and its essentials, followed by Section 4
that illustrates the roles of SRAs using several emerging societal issues as examples. Section
5 details the open problems and challenges that socially responsible AI currently confronts.
The last section concludes the survey.

2. Social Responsibility of AI

Social Responsibility of AI includes efforts devoted to addressing both technical and societal
issues. While similar concepts (e.g., “Ethical AI”) repeatedly appear in the news, magazines,
and scientific articles, “Social Responsibility of AI” has yet to be properly defined. In this
section, we first attempt to provide an inclusive definition and then propose the Pyramid
of Social Responsibility of AI to outline the various responsibilities of AI in a hierarchy:
functional responsibilities, legal responsibilities, ethical responsibilities, and philanthropic
responsibilities. At last, we compare “Socially Responsible AI” with similar concepts.

2.1 What is Social Responsibility of AI?

Definition 1 (Social Responsibility of AI) Social Responsibility of AI refers to a hu-
man value-driven process where values such as Fairness, Transparency, Accountability, Re-
liability and Safety, Privacy and Security, and Inclusiveness are the principles; designing
Socially Responsible AI Algorithms is the means; and addressing the social expectations of
generating shared value – enhancing both AI’s ability and benefits to society – is the main
objective.

Here, we define three dimensions of Social Responsibility of AI: the principles lay the foun-
dations for ethical AI systems; the means to reach the overarching goal of Social Respon-
sibility of AI is to develop Socially Responsible AI Algorithms; and the objective of Social
Responsibility of AI is to improve both AI’s capability and humanity with the second being
the proactive goal.

2.2 The Pyramid of Social Responsibility of AI

Social Responsibility of AI should be framed in such a way that the entire range of AI
responsibilities are embraced. Adapting Carroll’s Pyramid of CSR (Carroll et al., 1991) in
the AI context, we suggest four kinds of social responsibilities that constitute the Social
Responsibility of AI: functional, legal, ethical, and philanthropic responsibilities, as shown
in Figure 1. By modularizing AI responsibilities, we hope to help AI technologists and
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PHILANTHROPIC 
Responsibilities

Be a good AI citizen.
Build the AI ecosystem to 

address societal challenges.

ETHICAL
Responsibilities

Be ethical.
Obligation to do what is right, fair, 

and just. Prevent harm.

LEGAL
Responsibilities
Obey the law.

Act for a certain sort of reason provided by 
the law. Play by the rules of the game.

FUNCTIONAL
Responsibilities
Be functional.

Create technology that allows computers and 
machines to function in an intelligent manner.

Figure 1: The pyramid of Social Responsibility of AI, adapted from the Pyramid of CSR
by Carroll et al. (1991).

researchers to reconcile these obligations and simultaneously fulfill all the components in
the pyramid. All of these responsibilities have always existed, but functional responsibilities
have been the main consideration until recently. Each type of responsibility requires close
consideration.

The pyramid portrays the four components of Social Responsibility of AI, beginning with
the basic building block notion that the functional competence of AI undergirds all else.
Functional responsibilities require AI systems to perform in a manner consistent with profits
maximization, operating efficiency, and other key performance indicators. Meanwhile, AI
is expected to obey the law, which codifies the acceptable and unacceptable behaviors
in our society. That is, legal responsibilities require AI systems to perform in a manner
consistent with expectations of government and law. All AI systems should at least meet
the minimal legal requirements. At its most fundamental level, ethical responsibilities are
the obligation to do what is right, just, and fair, and to prevent or mitigate negative
impact on stakeholders (e.g., users, the environment). To fulfill its ethical responsibilities,
AI systems need to perform in a manner consistent with societal expectations and ethical
norms, which cannot be compromised in order to achieve AI’s functional responsibilities.
Finally, in philanthropic responsibilities, AI systems are expected to be good AI citizens and
to contribute to tackling societal challenges such as cancer and climate change. Particularly,
it is important for AI systems to perform in a manner consistent with the philanthropic
and charitable expectations of society to enhance people’s quality of life. The distinguishing
feature between ethical and philanthropic responsibilities is that the latter are not expected
in an ethical sense. For example, while communities desire AI systems to be applied to
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Concepts Definitions

Robust AI AI systems with the ability “to cope with errors during exe-
cution and cope with erroneous input” (Wikipedia, 2021a).

Ethical AI AI systems that do what is right, fair, and just. Prevent
harm.

Trustworthy AI AI systems that achieve their full potential if trust can be es-
tablished in the development, deployment, and use (Thiebes,
Lins, & Sunyaev, 2020).

Fair AI AI systems absent from “any prejudice or favoritism toward
an individual or a group based on their inherent or acquired
characteristics” (Mehrabi et al., 2019).

Safe AI AI systems deployed in ways that do not harm humanity
(Feige, 2019).

Dependable AI AI systems that focus on reliability, verifiability, explainabil-
ity, and security (Singh, Vatsa, & Ratha, 2021).

Human-centered AI AI systems that are “continuously improving because of hu-
man input while providing an effective experience between
human and robot”2.

Table 1: Definitions of concepts similar to Socially Responsible AI.

humanitarian projects or purposes, they do not regard the AI systems as unethical if they
do not provide such services. We explore the nature of Social Responsibility of AI by
focusing on its components to help AI technologists to reconcile these obligations. Though
these four components are depicted as separate concepts, they are not mutually exclusive.
It is necessary for AI technologists and researchers to recognize that these obligations are
in a constant but dynamic tension with one another.

2.3 Comparisons of Similar Concepts

Based on Definition 1 and the pyramid of socially responsibility of AI, we compare Socially
Responsible AI with other similar concepts, as illustrated in Table 1. The results show
that Socially Responsible AI holds a systematic view that subsumes existing concepts and
further considers the fundamental responsibilities of AI systems – to be functional and
legal, as well as their philanthropic responsibilities – to be able to improve life quality of
well beings and address challenging societal issues. In the rest of this survey, we focus
our discussions on the ethical (Section 3, essentials of SRAs) and philanthropic (Section 4,
roles of SRAs) responsibilities of AI given that both the functional and legal responsibilities
are the usual focuses in AI research and development. An overview of SRAs research is
illustrated in Figure 2, which we will refer back to throughout the remainder of the survey.
Importantly, in our view, the essentials of SRAs work toward ethical responsibilities, and
their roles in society encompass both ethical and philanthropic responsibilities.

2. https://www.cognizant.com/glossary/human-centered-ai
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Figure 2: An overview of SRAs Research.

3. Socially Responsible AI Algorithms (SRAs)

The role of AI technologists and researchers carries a number of responsibilities. The most
obvious is developing accurate, reliable, and trustworthy algorithms that can be depended
on by their users. Yet, this has never been a trivial task. For example, due to the various
types of human biases, e.g., confirmation bias, gender bias, and anchoring bias, AI technol-
ogists and researchers often inadvertently inject these same kinds of bias into the developed
algorithms, especially when using machine learning techniques. For example, supervised
machine learning is a common technique for learning and validating algorithms through
manually annotated data, loss functions, and related evaluation metrics. Numerous uncer-
tainties – e.g., imbalanced data, ill-defined criteria for data annotation, over-simplified loss
functions, and unexplainable results – potentially lurk in this “beautiful” pipeline and will
eventually lead to negative outcomes such as biases and discrimination. With the growing
reliance on AI in almost any field in our society, we must bring upfront the vital question
about how to develop Socially Responsible AI Algorithms. While conclusive answers are yet
to be found, we attempt to provide a systematic framework of SRAs (illustrated in Figure
3) to discuss the components of AI’s ethical responsibilities, the roles of SRAs in terms of
AI’s philanthropic and ethical responsibilities, and the feedback from users routed back as
inputs to SRAs. We hope to broaden future discussions on this subject. In this regard, we
define SRAs as follows:

Definition 2 (Socially Responsible AI Algorithms) Socially Responsible AI Algo-
rithms are the intelligent algorithms that prioritize the needs of all stakeholders as the
highest priority, especially the minoritized and disadvantaged users, in order to make just
and trustworthy decisions. These obligations include protecting and informing users; pre-
venting and mitigating negative impact; and maximizing the long-term beneficial impact.
Socially Responsible AI Algorithms constantly receive feedback from users to continually
accomplish the expected social values.

In this definition, we highlight that the functional (e.g., maximizing profits) and societal
(e.g., transparency) objectives are integral parts of AI algorithms. SRAs aim to be socially
responsible while still meeting and exceeding business objectives.
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Subject
Minorities and the 

Disadvantaged 

Cause
Formulation, Bias, 
Measuring error, …

Objective
Fairness, 

Transparency, Safety
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Privacy-preserving, 
Causal Learning, …
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Protect
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Mitigate

Users

Feedback Loop
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Figure 3: The framework of Socially Responsible AI Algorithms (SRAs). It consists of
the essentials (i.e., the internal mechanisms) of SRAs (left), their roles (right),
and feedback received from end users for helping SRAs gradually achieve the
expected social values (bottom). The essentials of SRAs center on the ethical
responsibilities of AI and the roles of SRAs require philanthropic responsibilities
and ethical responsibilities.

3.1 Subjects of Socially Indifferent AI Algorithms

Every human being can be a potential victim of socially indifferent AI algorithms. Mir-
roring society, the ones who suffer the most, both in frequency and severity, are minorities
and disadvantaged groups such as black, indigenous and people of color (BIPOC), and fe-
males. For example, Google mislabeled an image of two black people as “gorillas” (Guynn,
2015) and more frequently showed ads of high-paying jobs to males than females (Carpen-
ter, 2015). Similar gender bias was also found in Facebook algorithms behind the job ads
(Horwitz, 2021). In domains with high-stakes decisions, e.g., financial services, healthcare,
and criminal justice, it is not uncommon to identify instances where socially indifferent AI
algorithms favor privileged groups. For example, the algorithm used in Correctional Of-
fender Management Profiling for Alternative Sanctions (COMPAS) was found almost twice
as likely to mislabel a black defendant as a future risk than a white defendant (Angwin, Lar-
son, Mattu, & Kirchner, 2016). Identifying the subjects of socially indifferent AI algorithms
depends on the context. In another study, the journalistic organization ProPublica3 investi-
gated algorithms that determine online prices for Princeton Review’s tutoring classes. The
results showed that people who lived in higher income areas were charged twice as much
as the general public and than people living in a zip code with high population density.
Asians were 1.8 times more likely to pay higher price, regardless of their income (Angwin &
Larson, 2015). Analogously, these AI algorithms might put poor people who cannot afford
internet service at disadvantage because they simply have never seen such data samples in
the training process.

3. https://www.propublica.org/
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When it comes to purpose-driven collection and use of data, each individual can be the
subject of socially indifferent AI algorithms. Users’ personal data are frequently collected
and used without their consent. Such data includes granular details such as contact infor-
mation, online browsing and session record, social media consumption, location and so on.
While most of us are aware of our data being used, few have controls to where and how
the data is used, and by whom. The misuse of data and lack of knowledge causes users to
become the victims of privacy-leakage and distrust.

3.2 Causes of Socially Indifferent AI Algorithms

There are many potential factors that can cause AI algorithms to be socially indifferent.
Here, we list several causes that have been frequently discussed in literature (Mehrabi
et al., 2019; Getoor, 2019). They are formalization, measuring errors, bias, privacy, and
correlation versus causation.

3.2.1 Formalization

AI algorithms encompass data formalization, label formalization, formalization of loss func-
tion and evaluation metrics. We unconsciously make some frame of reference commitment
to each of these formalizations. Firstly, the social and historical context are often left out
when transforming raw data into numerical feature vectors. Therefore, AI algorithms are
trained on pre-processed data with important contextual information missing. Secondly,
data annotation can be problematic for a number of reasons. For example, what are the
criteria? Who defines the criteria? Who are the annotators? How can it be ensured that
they all follow the criteria? What we have for model training are only proxies of the true
labels (Getoor, 2019). Ill-formulated loss functions can also result in socially indifferent AI
algorithms. Many loss functions in the tasks are over-simplified to solely focus on maxi-
mizing profits and minimizing losses. The concerns of unethical optimization are recently
discussed by Beale, Battey, Davison, and MacKay (2019). Unknown to AI systems, certain
strategies in the optimization space that are considered as unethical by stakeholder may be
selected to satisfy the simplified task requirements. Lastly, the use of inappropriate bench-
marks for evaluation may push algorithms away from the overarching goal of the task and
fuel injustice.

3.2.2 Measuring Errors

Another cause of socially indifferent AI algorithms is the errors when measuring algorithm
performance. When reporting results, researchers typically proclaim the proposed algo-
rithms can achieve certain accuracy or F1 scores. However, this is based on assumptions
that the training and test samples are representative of the target population and their
distributions are similar enough. Yet, how often does the assumption hold in practice? As
illustrated in Figure 4, with non-representative samples, the learned model can achieve zero
training error and perform well on the testing data at the initial stage. However, with more
data being tested later, the model performance deteriorates because the learned model does
not represent the true model.
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Figure 4: An example of measuring errors. The green line denotes the learned model and
the blue one is the true model. ‘+’ and ‘-’ represent training data belonging to
different classes; ‘X’ represents testing data. Image taken from Getoor’s slides for
2019 IEEE Big Data keynote (Getoor, 2019) with permission.

3.2.3 Bias

Bias is one of the most discussed topics regarding responsible AI. We here focus on the data
bias, automation bias, and algorithmic bias (Getoor, 2019).

Data Bias. Data, especially big data, is often heterogeneous – data with high variabil-
ity of types and formats, e.g., text, image, and video. The availability of multiple data
sources brings unprecedented opportunities as well as unequivocally presented challenges
(Li, Cheng, Wang, Morstatter, Trevino, Tang, & Liu, 2017). For instance, high-dimensional
data such as text is infamous for the danger of overfitting and the curse of dimensionality.
Additionally, it is rather challenging to find subset of features that are predictive but un-
correlated. The required number samples for generalization also grows proportionally with
feature dimension. One example is how the U.S. National Security Agency tried to use AI
algorithms to identify potential terrorists. The Skynet project collected cellular network
traffic in Pakistan and extracted 80 features for each cell phone user with only 7 known
terrorists (Gershgorn, 2019). The algorithm ended up identifying an Al Jazeera reporter
covering Al Qaeda as a potential terrorist. Data heterogeneity is also against the well known
i.i.d. assumption in most learning algorithms (Li et al., 2017). Therefore, training these
algorithms on heterogeneous data can result in undesired results. Imbalanced subgroups
is another source of data bias. As illustrated in (Mehrabi et al., 2019), regression analysis
based on the subgroups with balanced fitness level suggests positive correlation between
BMI and daily pasta calorie intake whereas that based on less balanced data shows almost
no relationship.

Automation Bias. This type of bias refers to our preference to results suggested by au-
tomated decision-making systems while ignoring the contradictory information. Too much
reliance on the automated systems without sparing additional thoughts in making final
decisions, we might end up abdicating decision responsibility to AI algorithms.

Algorithmic Bias. Algorithmic bias regards biases added purely by the algorithm itself
(Baeza-Yates, 2018). Some algorithms are inadvertently taught prejudices and unethical
biases by societal patterns hidden in the data. Typically, models fit better to features
that frequently appear in the data. For example, an automatic AI recruiting tool will
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Figure 5: Confounders are common reasons for spurious correlation between two variables
that are not causally connected.

learn to make decisions for a given applicant of a software engineer position using observed
patterns such as “experience”, “programming skills”, “degree”, and “past projects”. For a
position where gender disparity is large, the algorithms mistakenly interpret this collective
imbalance as a useful pattern in the data rather than undesirable noise that should have
been discarded. Algorithmic bias is systematic and repeatable error in an AI system that
creates discriminated outcome, e.g., privileging wealthy users over others. It can amplify,
operationalize, and even legitimize institutional bias (Getoor, 2019).

3.2.4 Data Misuse

Data is the fuel and new currency that has empowered tremendous progress in AI research.
Search engines have to rely on data to craft precisely personalized recommendation that
improves the online experience of consumers, including online shopping, book recommen-
dation, entertainment, and so on. However, users’ data are frequently misused without
the consent and awareness of users. One example is the Facebook-Cambridge Analytical
scandal (Wikipedia, 2021b) where millions of Facebook users’ personal data was collected
by Cambridge Analytica (Wikipedia, 2021c), without their consent. In a more recent study
(Cabañas, Cuevas, Arrate, & Cuevas, 2020), researchers show that Facebook allows adver-
tisers to exploit its users’ sensitive information for tailored ad campaigns. To make things
worse, users often have no clue about where, how, and why their data is being used, and by
whom. The lack of knowledge and choice over their data causes users to undervalue their
personal data, and further creates issues such as privacy and distrust.

3.2.5 Correlation vs Causation

AI Algorithms can become socially indifferent when correlation is misinterpreted as causa-
tion. For example, in the diagram in Figure 5, we observe a strong correlation between the
electric bill of an ice cream shop and ice cream sales. Apparently, high electric bill cannot
cause the ice cream sales to increase. Rather, weather is the common cause of electric bill
and the sale, i.e., high temperature causes high electric bill and the increased ice cream sales.
Weather – the confounder – creates a spurious correlation between electric bill and ice cream
sales. Causality is a generic relationship between the cause and the outcome (Guo, Cheng,
Li, Hahn, & Liu, 2020). While correlation helps with prediction, causation is important for
decision making. One typical example is Simpson’s Paradox (Blyth, 1972). It describes a
phenomenon where a trend or association observed in subgroups maybe opposite to that
observed when these subgroups are aggregated. For instance, in the study of analyzing the
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Figure 6: The objectives of Socially Responsible AI Algorithms.

sex bias in graduation admissions at UC Berkeley (Bickel, Hammel, & O’Connell, 1975),
the admission rate was found higher in male applicants when using the entire data. How-
ever, when the admission data were separated and analyzed over the departments, female
candidates had equal or even higher admission rate over male candidates.

3.3 Objectives of Socially Responsible AI Algorithms

Essentially, the goal is to (re)build trust in AI. By definition, trust is the “firm belief in the
reliability, truth or ability of someone or something”4. It is a high-level concept that needs
to be specified by more concrete objectives. We here discuss the SRAs objectives that have
been discussed comparatively frequently in literature. They are fairness, transparency, and
safety as illustrated in Figure 6.

3.3.1 Fairness

Fairness in AI has gained substantial attentions in both research and industry since 2010.
For decades, researchers found it rather challenging to present a unified definition of fairness
in part because fairness is a societal and ethical concept. This concept is mostly subjective,
changes over social context, and evolves over time, making fairness a rather challenging
goal to achieve in practice. Because SRAs is a decision-making process commensurate with
social values, we here adopt a fairness definition in the context of decision-making:

Definition 3 (Fairness) “Fairness is the absence of any prejudice or favoritism toward
an individual or a group based on their inherent or acquired characteristics” (Mehrabi et al.,
2019).

Note that even an ideally “fair” AI system defined in a specific context might still lead to
biased decisions as the entire decision making process involves numerous elements such as
policy makers and environment. While the concept of fairness is difficult to pin down, unfair-
ness/bias/discrimination might be easier to identify. There are six types of discrimination
(Mehrabi et al., 2019). Direct discrimination results from protected attributes of individuals
while indirect discrimination from seemingly neural and non-protected attributes. Systemic

4. Definition from Oxford Languages.
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discrimination relates to policies that may show discrimination against subgroups of pop-
ulation. Statistical discrimination occurs when decision makers use average statistics to
represent individuals. Depending whether the differences amongst different groups can be
justified or not, we further have explainable and unexplainable discrimination.

3.3.2 Transparency

Transparency is another important but quite ambiguous concept. This is partly because
AI alone can be defined in more than 70 ways (Legg, Hutter, et al., 2007). When we seek
a transparent algorithm, we are asking for an understandable explanation of how it works
(Yeo, 2020): What does the training set look like? Who collected the data? What is
the algorithm doing? There are mainly three types of transparency with regard to human
interpretability of AI algorithms (Weller, 2017): For a developer, the goal of transparency
is to understand how the algorithm works and get a sense of why; for a deployer who owns
and releases the algorithm to the public, the goal of transparency is to make the consumers
to feel safe and comfortable to use the system; and what transparency means to a user is
understanding what the AI system is doing and why. We may further differentiate global
transparency from local transparency, the former aims to explain the entire system whereas
the latter explains a decision within a particular context.

Yet, at the same time, disclosures about AI can pose potential risks: explanations can be
hacked and releasing additional information may make AI more vulnerable to attacks. It is
becoming clear that transparency is often beneficial but not universally good (Weller, 2017).
The AI “transparency paradox” encourages different parties of AI systems to think more
carefully about how to balance the transparency and the risks it poses. We can also see re-
lated discussions in recent work such as (Slack, Hilgard, Jia, Singh, & Lakkaraju, 2020). The
paper studied how the widely recognized interpretable algorithms LIME (Ribeiro, Singh,
& Guestrin, 2016) and SHAP (Lundberg & Lee, 2017) could be hacked. As the authors
illustrated, explanations can be purposefully manipulated, leading to a loss of trust not only
in the model but also in its explanations (Slack et al., 2020). Consequently, while working
towards the goal of transparency, we must also recognize that privacy and security are the
indispensable conditions we need to satisfy.

3.3.3 Safety

Because AI systems operate in a world with much uncertainty, volatility, and flux, another
objective of SRAs is to be safe, accurate, and reliable (Varshney & Alemzadeh, 2017). There
are four operational objectives relevant to Safety: accuracy, reliability, security, and robust-
ness (Leslie, 2019). In machine learning, accuracy is typically measured by error rate or the
fraction of instances for which the algorithm produces an incorrect output. As a standard
performance metric, accuracy should be the fundamental component to establishing the
approach to safe AI. It is necessary to specify a proper performance measure for evaluating
any AI systems. For instance, when data for classification tasks is extremely imbalanced,
precision, recall, and F1 scores are more appropriate than accuracy. The objective of relia-
bility is to ensure that AI systems behave as we anticipate. It is a measure of consistency
and is important to establish confidence in the safety of AI systems. Security encompasses
the protection of information integrity, confidentiality, and continuous functionality to its
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users. Under harsh conditions (e.g., adversarial attack, perturbations, and implementation
error), AI systems are expected to functions reliably and accurately, i.e., Robustness.

3.4 Means Towards Socially Responsible AI Algorithms

In this section, we review four primary machine learning techniques and statistical methods
for achieving the goals of SRAs – interpretability and explainability, adversarial machine
learning, causal learning, and uncertainty quantification. Existing surveys have conducted
comprehensive reviews on each of these techniques: e.g., interpretablity (Carvalho et al.,
2019; Tjoa & Guan, 2020), causal learning (Guo et al., 2020; Yao, Chu, Li, Li, Gao, &
Zhang, 2020), adversarial machine learning (Chakraborty, Alam, Dey, Chattopadhyay, &
Mukhopadhyay, 2018; Akhtar & Dasgupta, 2019), and uncertainty quantification (Kabir,
Khosravi, Hosen, & Nahavandi, 2018). We thereby focus on the basics and the most fre-
quently discussed methods in each means.

3.4.1 Interpretability and Explainability

Interpretability and explanability are the keys to increasing transparency of AI algorithms.
This is extremely important when we leverage these algorithms for high-stakes prediction
applications, which deeply impact people’s lives (Rudin, 2019). Existing work in machine
learning interpretability can be categorized according to different criteria. Depending on
when the interpretability methods are applicable (before, during, or after building the ma-
chine learning model), we have pre-model (before), in-model (during), and post-model (af-
ter) interpretability. Pre-model techniques are only applicable to the data itself. It requires
an in-depth understanding of the data before building the model, e.g., sparsity and dimen-
sionality. Therefore, it is closely related to data interpretability (Carvalho et al., 2019), in
which classic descriptive statistics and data visualization methods are often used, includ-
ing Principal Component Analysis (Wold, Esbensen, & Geladi, 1987) and t-SNE (Maaten
& Hinton, 2008), and clustering methods such as k-means (Hartigan & Wong, 1979). In-
model interpretability asks for intrinsically interpretable AI algorithms (e.g., Yang, Yang,
Dyer, He, Smola, & Hovy, 2016), we can also refer to it as intrinsic interpretability. It
can be achieved through imposition of constraints on the model such as causality, sparsity,
or physical conditions from domain knowledge (Rudin, 2019). In-model interpretability
answers question how the model works (Lipton, 2018). Decision trees, rule-based models,
linear regression, attention network, and disentangled representation learning are in-model
interpretability techniques. Post-model interpretability, or post-hoc interpretability (e.g.,
Mordvintsev, Olah, & Tyka, 2015; Ribeiro et al., 2016), is applied after model training.
It answers the question what else can the model tell us (Lipton, 2018). Post-model in-
terpretability include local explanations (Ribeiro et al., 2016), saliency maps (Simonyan,
Vedaldi, & Zisserman, 2013), example-based explanations (Kim, Khanna, & Koyejo, 2016),
influence functions (Koh & Liang, 2017), feature visualization (Erhan, Bengio, Courville,
& Vincent, 2009), and explaining by base interpretable models (Craven & Shavlik, 1996).

Another criterion to group current interpretability techniques is model-specific vs model-
agnostic. Model-specific interpretation is based on internals of a specific model (Molnar,
2020). To illustrate, the coefficients of a linear regression model belong to model-specific
interpretation. Model-agnostic methods do not have access to the model inner workings,
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rather, they are applied to any machine learning model after it has been trained. Essen-
tially, the goal of interpretability is to help the user understand the decisions made by
the machine learning models through the tool explanation. There are pragmatic and non-
pragmatic theories of explanation. The former indicates that explanation should be a good
answer that can be easily understood by the audience. The non-pragmatic theory empha-
sizes the correctness of the answer to the why-question. Both need to have the following
properties (Robnik-Šikonja & Bohanec, 2018): expressive power, translucency, portability,
and algorithmic complexity.

3.4.2 Adversarial Machine Learning

Machine learning models, especially deep learning models, are vulnerable to crafted adver-
sarial examples, which are imperceptible to human eyes but can easily fool deep neural
networks (NN) in the testing/deploying stage (Yuan, He, Zhu, & Li, 2019). Adversarial
examples have posed great concerns in the security and integrity of various applications.
Adversarial machine learning, therefore, closely relates to the robustness of SRAs.

The security of any machine learning model is measured with regard to the adversarial
goals and capabilities (Chakraborty et al., 2018). Identifying the threat surface (Papernot,
McDaniel, Sinha, & Wellman, 2016a) of an AI system built on machine learning models is
critical to understand where and how an adversary may subvert the system under attack.
For example, the attack surface in a standard automated vehicle system can be defined
with regard to the data processing pipeline. Typically, there are three types of attacks the
attack surface can identify: evasion attack – the adversary attempts to evade the system
by manipulating malicious samples during testing phase, poisoning attack – the adversary
attempts to poison the training data by injecting carefully designed samples into the learn-
ing process, and exploratory attack – it tries to collect as much information as possible
about the learning algorithm of the underlying system and pattern in training data. De-
pending on the amount of information available to an adversary about the system, we can
define different types of adversarial capabilities. In the training phase (i.e., training phase
capabilities), there are three broad attack strategies: (1) data injection. The adversary can
only augment new data to the training set; (2) data modification. The adversary has full
access to the training data; and (3) logic corruption. The adversary can modify the learning
algorithm. In the testing phase (i.e., testing phase capabilities), adversarial attacks focus on
producing incorrect outputs. For white-box attack, an adversary has full knowledge about
the model used for prediction: algorithm used in training, training data distribution, and
the parameters of the fully trained model. The other type of attack is black-box attack,
which, on the contrary, assumes no knowledge about the model and only uses historical
information or information about the settings. The primary goal of black-box attack is to
train a local model with the data distribution, i.e., non-adaptive attack, and with carefully
selected dataset by querying the target model, i.e., adaptive attack.

Exploratory attacks do not have access to the training data but aim to learn the current
state by probing the learner. Commonly used techniques include model inversion attack
(Fredrikson, Lantz, Jha, Lin, Page, & Ristenpart, 2014; Fredrikson, Jha, & Ristenpart,
2015), model extraction using APIs (Tramèr, Zhang, Juels, Reiter, & Ristenpart, 2016),
and inference attack (Ateniese, Mancini, Spognardi, Villani, Vitali, & Felici, 2015; Shokri,
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Stronati, Song, & Shmatikov, 2017). The popular attacks are evasion attacks where ma-
licious inputs are craftily manipulated so as to fool the model to make false predictions.
Poisoning attacks, however, modify the input during the training phase to obtain the de-
sired results. Some of the well-known techniques are generative adversarial network (GAN)
(Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, & Bengio, 2014),
adversarial examples generation (including training phase modification, e.g., Barreno, Nel-
son, Sears, Joseph, & Tygar, 2006, and testing phase modification, e.g., Papernot, McDaniel,
Wu, Jha, & Swami, 2016b), GAN-based attack in collaborative deep learning (Hitaj, Ate-
niese, & Perez-Cruz, 2017), and adversarial classification (Dalvi, Domingos, Sanghai, &
Verma, 2004).

3.4.3 Causal Learning

Causal inference and reasoning is a critical ingredient for AI to achieve human-level in-
telligence, an overarching goal of Socially Responsible AI. The momentum of integrating
causality into responsible AI is growing, as witnessed by a number of works (e.g., Kusner,
Loftus, Russell, & Silva, 2017; Xu, Wu, Yuan, Zhang, & Wu, 2019; Holzinger, Langs, Denk,
Zatloukal, & Müller, 2019) studying SRAs through causal learning methods.

Basics of Causal Learning. The two fundamental frameworks in causal learning are
structural causal models (Pearl, 2009) and potential outcome (Rubin, 1974). Structural
causal models rely on the causal graph, which is a special class of Bayesian network with
edges denoting causal relationships. A more structured format is referred to as structural
equations. One of the fundamental notions in structural causal models is the do-calculus
(Pearl, 2009), an operation for intervention. The difficulty to conduct causal study is the
difference between the observational and interventional distribution, the latter describes
what the distribution of outcome Y is if we were to set covariates X = x. Potential
outcome framework interprets causality as given the treatment and outcome, we can only
observe one potential outcome. The counterfactuals – potential outcome that would have
been observed if the individual had received a different treatment – however, can never be
observed in reality. These two frameworks are the foundations of causal effect estimation
(estimating effect of a treatment) and causal discovery (learning causal relations amongst
different variables).

Many important concepts in causal inference have been adapted to AI such as interven-
tion and counterfactual reasoning. Here, we introduce the causal concept most frequently
used in SRAs – propensity score, defined as “conditional probability of assignment to a
particular treatment given a vector of observed covariates” (Rosenbaum & Rubin, 1983). A
popular propensity-based approach is Inverse Probability of Treatment Weighting (Hirano,
Imbens, & Ridder, 2003). To synthesize a randomized control trial (Rubin, 1974), it uses
covariate balancing to weigh instances based on their propensity scores and the probability
of an instance to receive the treatment. Let ti and xi be the treatment assignment and
covariate of instance i, the weight wi is typically computed by the following formula:

wi =
ti

P (ti|xi)
+

1− ti
1− P (ti|xi)

, (1)
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where P (ti|xi) quantifies the propensity score. The weighted average of the observed out-
comes for the treatment and control groups are defined as

τ̂ =
1

n1

∑
i:ti=1

wiyi −
1

n0

∑
i:ti=0

wiyi, (2)

where n1 and n0 denote the sizes of the treated and controlled groups.
Causal Learning for SRAs. Firstly, it is becoming increasingly popular to use causal
models to solve fairness-related issues. For example, the subject of causality and its impor-
tance to address fairness issue was discussed in (Loftus, Russell, Kusner, & Silva, 2018).
Causal models can also be used to discover and eliminate discrimination to make decisions
that are irrespective of sensitive attributes, on individual-, group-, and system-level, see,
e.g., (Zhang, Wu, & Wu, 2016; Zhang & Wu, 2017; Nabi & Shpitser, 2018). Secondly,
bias alleviation is another field where causal learning methods are frequently discussed and
affect many machine learning applications at large. The emerging research on debiasing rec-
ommender system (Wang, Golbandi, Bendersky, Metzler, & Najork, 2018b; Wang, Liang,
Charlin, & Blei, 2018c; Joachims, Swaminathan, & Schnabel, 2017) can serve as one exam-
ple. Due to the biased nature of user behavior data, recommender systems inevitably involve
with various discrimination-related issues: recommending less career coaching services and
high-paying jobs to women (Lambrecht & Tucker, 2019; Datta, Tschantz, & Datta, 2015),
recommending more male-authored books (Ekstrand, Tian, Kazi, Mehrpouyan, & Kluver,
2018), and minorities are less likely to become social influencers (Karimi, Génois, Wagner,
Singer, & Strohmaier, 2018; Stoica, Riederer, & Chaintreau, 2018). Gender and ethnic
biases were even found in a broader context, e.g., word embeddings trained on 100 years of
text data (Garg, Schiebinger, Jurafsky, & Zou, 2018). Causal approaches such as (Yang &
Feng, 2020) aim to mitigate such bias in word embedding relations.

Thirdly, causal learning methods also have had discernible achievements in transparency,
especially the interpretability of black-box algorithms. Causality is particularly desired
since these algorithms only capture correlations not real causes (Moraffah, Karami, Guo,
Raglin, & Liu, 2020). Further, it has been suggested that counterfactual explanations are
the highest level of interpretability (Pearl, 2018). For model-based interpretations, causal
interpretability aims to explain the causal effect of a model component on the final decision
(Chattopadhyay, Manupriya, Sarkar, & Balasubramanian, 2019; Parafita & Vitrià, 2019;
Narendra, Sankaran, Vijaykeerthy, & Mani, 2018). One example to differentiate it from
traditional interpretability is only causal interpretability is able to answer question such as
“What is the effect of the n-th filter of the m-th layer of a neural network on the prediction
of the model?”. Counterfactual explanations is a type of example-based explanations, in
which we look for data instances that can explain the underlying data distributions. Coun-
terfactual explanations are human friendly, however, it is possible to have different true
versions of explanations for the predicted results, i.e., the Rashomon effect (Molnar, 2020).
Studies such as (Wachter, Mittelstadt, & Russell, 2017; Grath, Costabello, Van, Sweeney,
Kamiab, Shen, & Lecue, 2018; Liu, Kailkhura, Loveland, & Han, 2019) are proposed to ad-
dress this issue. For detailed discussion on causal interpretability, please refer to (Moraffah
et al., 2020). Lastly, causal learning is inherently related to the robustness or adaptability
of AI systems, which have been noted to lack the capability of reacting to new circum-
stances they are not trained for. Causal relationship, however, is expected to be invariant
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and robust across environments (Pearl, 2019, 2009). This complements intensive earlier
efforts toward “transfer learning”, “domain adaptation”, and “lifelong learning” (Chen &
Liu, 2018). Some current work seeking to extrapolate the relationship between AI robust-
ness and causality includes the independent causal mechanism principle (Peters, Janzing,
& Schölkopf, 2017; Schölkopf, 2019), invariant prediction (Arjovsky, Bottou, Gulrajani, &
Lopez-Paz, 2019), and disentangled causal mechanism (Suter, Miladinovic, Schölkopf, &
Bauer, 2019; Bengio, Deleu, Rahaman, Ke, Lachapelle, Bilaniuk, Goyal, & Pal, 2019).

3.4.4 Uncertainty Quantification

AI research continues to develop new state-of-the-art algorithms with superior performance
and large-scaled datasets with high quality. Even using the best models and training data, it
is still infeasible for AI systems to cover all the potential situations when deployed into real-
world applications. As a matter of fact, AI systems always encounter new samples that are
different from those used for training. The core question is how to leverage the strengths of
these uncertainties. Recent research, e.g., (Bhatt, Antorán, Zhang, Liao, Sattigeri, Fogliato,
Melancon, Krishnan, Stanley, Tickoo, et al., 2020), has advocated to measure, communi-
cate, and use uncertainty as a form of transparency. There are also tools such as IBM’s
Uncertainty Quantification 3605 to provide AI practitioners access to related resources as
common practices for AI transparency. Consequently, uncertainty quantification plays a
crucial role in the optimization and decision-making process in SRAs. There are typically
two kinds of uncertainties in risk analysis processes: first, the aleatory uncertainty describes
the inherent randomness of systems. For example, an AI system can present different results
even with the same set of inputs. The uncertainty arises from underlying random variations
within the data. Second, the epistemic uncertainty represents the effect of an unknown phe-
nomenon or an internal parameter. The primary reason leading to this type of uncertainty
is the lack of observed data. As the variation among the data in aleatory uncertainty is
often observable, we can well quantify the uncertainty and assess the risks. Quantification
of epistemic uncertainty is more challenging because AI systems are forced to extrapolate
over unseen situations (St̊ahl, Falkman, Karlsson, & Mathiason, 2020). In the literature
of uncertainty quantification, one of the most widely recognized techniques are prediction
intervals (PI). For neural-network-based models, PI can be categorized into multi-step PI
construction methods (e.g., Bayesian method) and direct PI construction methods (e.g.,
lower upper bound estimation). Here, we briefly discuss several methods in each category.
Please refer to the survey (Kabir et al., 2018) for more details.

Multi-Step Prediction Intervals Construction Methods. Delta method, Bayesian
method, Mean-Variance Estimation method, and Bootstrap method are the four conven-
tional multi-step methods reported in literature. Delta method constructs PIs through
nonlinear regression using Tylor series expansion. Particularly, we linearize neural network
models through optimization by minimizing the error-based loss function, sum square error.
Under the assumption that uncertainty is from normal and homogeneous distribution, we
then employ standard asymptotic theory to construct PIs. Delta method has been used
in numerous case studies, e.g., (Lu & Viljanen, 2009; Ho, Xie, Tang, Xu, & Goh, 2001).
Bayesian learning provides a natural framework for constructing PIs (Kasiviswanathan &

5. http://uq360.mybluemix.net/overview
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Roles of SRAs （Philanthropic and Ethical）

Protect

Cover or shield human
from harm, injury, and
any negative impact of AI
systems. Example:
Privacy preserving

Inform

Deliver the facts or
information to users,
particularly the potential
negative results, timely.
Example: Bias detection

Prevent/Mitigate

Prevent/mitigate the
negative impact of
socially irresponsible AI
algorithms when the first
two steps fail. Example:
Bias mitigation

Figure 7: Illustration of what Socially Responsible AI Algorithms (SRAs) can do. It re-
quires philanthropic responsibilities and ethical responsibilities.

Sudheer, 2016; Ungar, De Veaux, & Rosengarten, 1996) as it optimizes the posterior distri-
bution of parameters from the assumed prior distribution. Despite its high generalization
power, Bayesian techniques are limited by large computational complexity due to the calcu-
lation of Hessian matrix. Bootstrap method is the most popular among the four conventional
multi-step PI construction methods (Errouissi, Cardenas-Barrera, Meng, Castillo-Guerra,
Gong, & Chang, 2015; Zio, 2006; Dybowski & Roberts, 2001). It includes smooth, para-
metric, wild, pairs, residual, Gaussian process, and other types of bootstrap techniques. In
NN-based pairs bootstrap algorithm, for example, the key is to generate bootstrapped pairs
by uniform sampling with replacement from the original training data. The estimation is
then conducted for a single bootstrapped dataset (Kabir et al., 2018).

Direct Prediction Intervals Construction Methods. This category of methods can
tackle some of the limitations in previous methods, such as high demanding in computa-
tional power and stringent assumptions. When NN models are constructed through direct
training without any assumptions, they can provide more adaptive and smarter PIs for any
distribution of targets (Chu, Li, Pedro, & Coimbra, 2015). Lower Upper Bound estimation
method is such a technique that can be applied to arbitrary distribution of targets with
more than one order reduced computation time. It directly calculates the lower and the
upper bounds through trained NNs. Initially, Lower Upper Bound estimation NNs are opti-
mized with the coverage width-based criterion, which presents several limitations. With all
the benefits of the original Lower Upper Bound estimation method, the NN-based Direct
Interval Forecasting method (Wan, Xu, Pinson, Dong, & Wong, 2013) has much shorter
computation time and narrower PIs credited to the improved cost function and the reduced
average coverage error. Other approaches for improving the cost function of Lower Up-
per Bound estimation include the normalized root-mean-square width and particle swarm
optimization (Quan, Srinivasan, & Khosravi, 2014), optimal system by (Hosen, Khosravi,
Nahavandi, & Creighton, 2014), the independent width and penalty factors (Khosravi,
Nahavandi, Srinivasan, & Khosravi, 2014), the deviation from mid-interval consideration
(Maŕın, Valencia, & Sáez, 2016), and the deviation information-based criterion (Zhang, Wu,
Wong, Xu, Dong, & Iu, 2014).

18



Socially Responsible AI Algorithms: Issues, Purposes, and Challenges

4. Roles of SRAs

So far, we have introduced the essentials of SRAs to achieve the expected ethical responsibil-
ities. But pragmatic questions regarding their intended use remain: How to operationalize
SRAs? What can SRAs eventually do for societal well-being to address societal challenges?
Both ethical and philanthropic responsibilities are indispensable ingredients of the answers.
While the ultimate goal of SRAs is to do good and be a good AI citizen, their ethical re-
sponsibilities should be ensured first. When AI fails to fulfill its ethical responsibilities,
its philanthropic benefits can be insignificant. For instance, despite the immense public
good of COVID-19 vaccines, there has been great controversy about algorithms for their
distribution, which have been shown to be inequitable (Branswell, 2021). Some argue that
distribution algorithms should prioritize saving more lives and bringing the economy back
more rapidly (Cowen, 2020); they support such an ‘unfair’ allocation, but we would argue
that that is not unfairness, but simply a difference of values and ethics. In our view, roles
of SRAs are expected to encompass both ethical and philanthropic responsibilities. In this
survey, we describe three dimensions that SRAs can help with to improve the quality of
human life as illustrated in Figure 7: Protect (e.g., protect users’ personal information),
Inform (e.g., fake news early detection), and Prevent/Mitigate (e.g., cyberbullying miti-
gation). We illustrate each dimension with research findings in several emerging societal
issues. Particularly, for protecting dimension, we focus on privacy preserving and data dig-
nity; for informing and preventing/mitigating dimensions, we discuss three societal issues
that raise growing concerns recently: disinformation, abusive language, and unwanted bias.
Because there are many various forms of abusive language such as hate speech and pro-
fanity, and the body of work related to each form is vast and diverse, spanning multiple
interconnected disciplines, this survey uses the form of cyberbullying as a representative for
the illustrations.

4.1 Protecting

The protecting dimension aims to cover or shield humans (especially the most vulnerable or
at-risk) from harm, injury, and negative impact of AI systems, in order to intervene. This
can be the protection of users’ personal data and their interactions with AI systems. Two
typical examples are privacy preserving and data dignity.

4.1.1 Privacy-Preserving

The capability of deep learning models has been greatly improved by the emerging pow-
erful infrastructures such as clouds and collaborative learning for model training. The
fuel of this power, however, comes from data, particularly sensitive data. This has raised
growing privacy concerns such as illegitimate use of private data and the disclosure of sen-
sitive data (Boulemtafes, Derhab, & Challal, 2020; Beigi & Liu, 2020). Existing threats
against privacy are typically from attacks such as the adversarial examples we discussed
in Sec. 3.4.2. Specifically, there are direct information exposure (e.g., untrusted clouds),
which is caused by direct intentional or unintentional data breaches, and indirect (inferred)
information exposure (e.g., parameter inference), which is caused by direct access to the
model or output. Existing privacy-preserving mechanisms can be classified into three cat-
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egories, namely, private data aggregation methods, private training, and private inference
(Mirshghallah, Taram, Vepakomma, Singh, Raskar, & Esmaeilzadeh, 2020).

Data aggregation methods are either context-free or context-aware. A context-free ap-
proach such as differential privacy (Dwork, 2008), is unaware of the context or what the data
will be used for. Context-aware approach such as information-theoretic privacy (Schaefer,
Boche, Khisti, & Poor, 2017), on the other hand, is aware of the context in which the data
will be used. A näıve technique for privacy protection is to remove identifiers from data,
such as name, address, and zip code. It has been used for protecting patients’ informa-
tion while processing their medical records, but the results are unsatisfying (Sweeney, 2002;
Narayanan & Shmatikov, 2008; Homer, Szelinger, Redman, Duggan, Tembe, Muehling,
Pearson, Stephan, Nelson, & Craig, 2008). The k-Anonymity method can prevent informa-
tion from re-identification by showing at least k samples with exact same set of attributes
for given combination of attributes that the adversary has access to (Sweeney, 2002). The
most commonly used data aggregation method is differential privacy, which aims to estimate
the effect of removing an individual from the dataset and keep the effect of the inclusion of
one’s data small. Some notable work includes the Laplace mechanism (Dwork, McSherry,
Nissim, & Smith, 2006), differential privacy with Advanced Composition (Dwork, Roth,
et al., 2014), and local differential privacy (Kairouz, Oh, & Viswanath, 2014; Erlingsson,
Pihur, & Korolova, 2014).

Information-theoretic privacy is a context-aware approach that explicitly models the
dataset statistics. By contrast, context-free methods assume worse-case dataset statistics
and adversaries. This line of research was studied by Diaz, Wang, Calmon, and Sankar
(2019), Pinceti, Kosut, and Sankar (2019), and Varodayan and Khisti (2011). The sec-
ond type of privacy-preserving mechanism works during the training phase. Established
work in private training is mostly used to guarantee differential privacy or semantic se-
curity and encryption (Goldwasser & Micali, 1984). The two most common methods for
encryption are homomorphic encryption (Gentry, 2009) and secure multi-party computa-
tion (Makri, Rotaru, Smart, & Vercauteren, 2019). The third type of privacy-preserving
mechanism works during the inference phase. It aims at the trained systems that are de-
ployed to offer inference-as-a-service (Mirshghallah et al., 2020). Most methods in private
inference are similar to those in private training, except for the information-theoretic pri-
vacy (Malekzadeh, Clegg, Cavallaro, & Haddadi, 2019, 2018, 2020). It is typically used to
offer information-theoretic mathematical or empirical evidence of how these methods oper-
ate to improve privacy. There is also work using differential privacy (Wang, Zhang, Bao,
Zhu, Cao, & Yu, 2018a), homomorphic encryption (Gilad-Bachrach, Dowlin, Laine, Lauter,
Naehrig, & Wernsing, 2016; Chabanne, de Wargny, Milgram, Morel, & Prouff, 2017), and
secure multi-party computation (Liu, Juuti, Lu, & Asokan, 2017).

4.1.2 Data Dignity

Beyond privacy preserving, what is more urgent to accomplish is data dignity. It allows
users to have absolute control to how their data is being used and they are paid accordingly
(Getoor, 2019). Data dignity encompasses the following aspects (Grover, 2020):

• To help users objectively determine the benefits and risks associated with their digital
presence and personal data.

20



Socially Responsible AI Algorithms: Issues, Purposes, and Challenges

• To let users control how their data will be used and the purpose of using the data.

• To allow users to negotiate the terms of using their data.

• To give users complete right and autonomy to be found, analyzed, or forgotten, apart
from the fundamental right over their data.

There are business models such as the Microsoft Data Bank designed to give users the
control of their data and those shared by the Art of Research (Hart, 2019) about how
people can buy and sell their personal data.

4.2 Informing

The informing dimension aims to deliver the facts or information to users, particularly the
potential negative results, in a timely way. We illustrate it with a focus on the discussions
of detecting disinformation, cyberbullying, and bias.

4.2.1 Disinformation Detection

Disinformation is false information that is deliberately created and spread to deceive people,
a social group, organization, or country (Pacepa & Rychlak, 2013). The online information
ecosystem is never short of disinformation and misinformation, and the growing concerns
have been raised recently. Tackling disinformation is rather challenging mainly because
(1) disinformation exists almost in all domains; (2) it is ever-changing with new problems,
challenges, and threats emerging every day; (3) it entails the joint efforts of interdisciplinary
research – computer science, social science, politics, policy making, and psychology, cogni-
tive science (Bhattacharjee, Shu, Gao, & Liu, 2020). Accurate and efficient identification
of disinformation is the core to combat disinformation. Existing prominent approaches for
disinformation detection primarily rely on news content, social context, user comments,
fact-checking tools, and explainable and cross-domain detection.

Early work on disinformation detection has been focused on hand-crafted features ex-
tracted from text, such as lexical and syntactic features (Feng, Banerjee, & Choi, 2012; Ott,
Choi, Cardie, & Hancock, 2011). Apart from text, online platforms also provide abundant
social information that can be leveraged to enrich the textual features, e.g., number of re-
tweets and likes on Twitter. Informed by theories in social science and network science,
another line of work exploits social network information to improve the detection perfor-
mance. Common features are social context (Shu, Wang, & Liu, 2019), user profile (Shu,
Wang, & Liu, 2018), user engagement (Shu, Mahudeswaran, Wang, Lee, & Liu, 2020), and
relationships among news articles, readers, and publishers (Della Vedova, Tacchini, Moret,
Ballarin, DiPierro, & de Alfaro, 2018). A unique function of online platforms is that they
allow users to interact through comments. Recent work has shown that user comments can
provide weak supervision signal for identifying the authenticity of news articles, which en-
ables early detection of disinformation (Shu, Zheng, Li, Mukherjee, Awadallah, Ruston, &
Liu, 2020). When the user comments are unavailable, it is possible to learn users’ response
to news articles and then generate user responses (Qian, Gong, Sharma, & Liu, 2018).
Fact-checking can be achieved manually or automatically. Manual fact-checking relies on
domain experts or crowdsourced knowledge from users. Automatic fact-checking uses struc-
ture knowledge bases such as knowledge graph to verify the authenticity of news articles,
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see, e.g., (Ciampaglia, Shiralkar, Rocha, Bollen, Menczer, & Flammini, 2015). Beyond
within-domain detection, other tasks such as cross-domain detection (Janicka, Pszona, &
Wawer, 2019), explanation (Shu, Cui, Wang, Lee, & Liu, 2019), and causal understanding
of fake news dissemination (Cheng, Guo, Shu, & Liu, 2021) have also been discussed in
literature.

4.2.2 Cyberbullying Detection

Cyberbullying differs from other forms of abusive language in that it is not an one-off
incident but “aggressively intentional acts carried out by a group or an individual using
electronic forms of contact, repeatedly or over time against victims who cannot easily defend
themselves” (Smith, Mahdavi, Carvalho, Fisher, Russell, & Tippett, 2008). The increasingly
reported number of cyberbullying cases on social media and the resulting detrimental impact
have raised great concerns in society. Cyberbullying detection is regularly figured as a binary
classification problem. While it shares some similarities with document classification, it
should be noted that cyberbullying identification is inherently more complicated than simply
identifying oppressive content (Salawu, He, & Lumsden, 2017).

Distinct characteristics of cyberbullying such as power imbalance and repetition of ag-
gressive acts are central to marking a message or a social media session (Cheng, Silva, Hall,
& Liu, 2020b) as cyberbullying. Several major challenges in cyberbullying detection have
been discussed in literature such as the formulation of the unique bullying characteristics,
e.g., repetition, data annotation, and severe class imbalance. Depending on the employed
features, established work can be classified into four categories: content-based, sentiment-
based, user-based, and network-based methods. Features extracted from social media con-
tent are lexical items such as keywords, Bag of Words, pronoun and punctuation. Empirical
evaluations have shown that textual features are the most informative predictors for cyber-
bullying detection (Cheng, Shu, Wu, Silva, Hall, & Liu, 2020a). For instance, using number
of offensive terms as content features is effective in detecting offensive and cursing behav-
ior (Dinakar, Jones, Havasi, Lieberman, & Picard, 2012; Dadvar, Trieschnigg, Ordelman,
& de Jong, 2013; Kontostathis, Reynolds, Garron, & Edwards, 2013); Computing content
similarity between tweets from different users can help capture users’ personality traits and
peer influence, two important factors of cyberbullying occurrences (Cheng, Li, Silva, Hall,
& Liu, 2019a). Sentiment-based features typically include key-words, phrases and emojis,
and they are often combined with content-based features (Dani, Li, & Liu, 2017). A notable
work (Xu, Jun, Zhu, & Bellmore, 2012) identified seven types of emotions in tweets such
as anger, empathy, and fear. User-based features are typical characteristics of users, e.g.,
personality (e.g., hostility), demographics (e.g., age), and user activity (e.g., active users
(Balakrishnan, 2015)). Hostility and neuroticism are found to be strongly related to cyber-
bullying behavior (Biel, Aran, & Gatica-Perez, 2011; Mishna, Khoury-Kassabri, Gadalla,
& Daciuk, 2012). Further, gender and age are indicative of cyberbullying in certain cases
(Al-garadi, Varathan, & Ravana, 2016). Network-based features measure the sociability
of online users, e.g., number of friends, followers, and network embeddedness (Cheng, Li,
Silva, Hall, & Liu, 2019b; Huang, Singh, & Atrey, 2014). In addition, a number of methods
seek to capture the temporal dynamics to characterize the repetition of cyberbullying, such
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as (Cheng, Guo, Silva, Hall, & Liu, 2019; Chen & Li, 2020; Ge, Cheng, & Liu, 2021; Cheng,
Guo, Silva, Hall, & Liu, 2021).

4.2.3 Bias Detection

Compared to the well-defined notions of fairness, bias detection is much less studied and
the solution is not as straightforward as it may seem (Fu, Huang, & Singh, 2020). The
challenges arise from various perspectives. First, the data and algorithms used to make a
decision are often not available to policy makers or enforcement agents. Second, algorithms
are becoming increasingly complex and the uninterpretability limits an investigator’s ability
to identify systematic discrimination through analysis of algorithms. Rather, they have to
examine the output from algorithms to check for anomalous results, increasing the difficulty
and uncertainty of the task.

Data exploratory analysis is a simple but effective tool to detect data bias. In this initial
step of data analysis, we can use basic data statistics and visual exploration to understand
what is in a dataset and the characteristics of the data. For algorithmic bias, one of the
earliest methods is to compare the selection rate of different groups. Discrimination is highly
possible if the selection rate for one group is sufficiently lower than that for other groups. For
example, the US Equal Employment Opportunity Commission (EEOC) advocates the “four-
fifths rule” or “80% rule” (Feldman, Friedler, Moeller, Scheidegger, & Venkatasubramanian,
2015) to identify a disparate impact. Suppose Y denotes a binary class (e.g., hire or not),
A is the protected attribute (e.g., gender), a dataset presents disparate impact if

Pr(Y = 1|A = 0)

Pr(Y = 1|A = 1)
≤ τ = 0.8. (3)

However, statistical disparity does not necessarily indicate discrimination. If one group has
disproportionately more qualified members, we may expect the differences between groups
in the results.

A more frequently used approach is regression analysis (Ayres, 2010), which is per-
formed to examine the likelihood of favorable (or adverse) decisions across groups based
on sensitive attributes. A significant, non-zero coefficient of the sensitive attributes given
a correctly specified regression signals the presence of discrimination. However, we cannot
guarantee to observe all the factors the decision maker considers. Therefore, instead of
using rate at which decisions are made (e.g., the loan approval rates), bias detection can be
based on the success rate of the decisions (e.g., the payback rate of the approved applicants
(Becker, 1993)), i.e., the outcome test. Another less popular statistical approach for bias
detection is benchmarking. The major challenge of benchmarking analysis is identifying
the distribution of the sensitive attributes of the benchmark population where sensitive
attributes are unlikely to influence the identification of being at-risk. Some solutions can
be seen in (McConnell & Scheidegger, 2001; Lange, Blackman, & Johnson, 2001). Re-
cently, AI researchers have developed tools to automatically detect bias. For instance,
drawing on techniques in natural language processing and moral foundation theories, the
tool by Mokhberian, Abeliuk, Cummings, and Lerman (2020) can understand structure
and nuances of content consistently showing up on left-leaning and right-leaning news sites,
aiming to help consumers better prepare for unfamiliar news source. In earlier efforts, an
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international research group launched a non-profit organization Project Implicit6 in 1998
aimed at detecting implicit social bias.

4.3 Preventing/Mitigating

If both of the first two dimensions fail, we may rely on the last dimension to prevent/mitigate
the negative impact of socially indifferent AI algorithms on the end-users. We continue the
discussions about disinformation, cyberbullying, and bias, with a focus on the prevention
and mitigation strategies.

4.3.1 Disinformation Prevention/Mitigation

Preventing the generation/spread of disinformation and mitigating its negative impact is
an urgent task because disinformation typically spread faster (Vosoughi, Roy, & Aral, 2018)
than normal information due to the catchy news content and the ranking algorithms oper-
ating behind the online news platforms. To increase user engagement, social recommender
systems are designed to recommend popular posts and trending content. Therefore, disin-
formation often gains more visibility. An effective approach for disinformation mitigation
is to govern this visibility of news, e.g., recommendation and ranking based algorithms.
Mitigation also relates to early detection.

Network intervention can slow down the spread of disinformation by influencing the
exposed users in a social network. For example, we can launch a counter-cascade that
consists of fact-checked version of false news articles. This is commonly referred to as the
influence limitation or minimization problem (Bhattacharjee et al., 2020). Given a network
with accessible counter-cascade, the goal is to find a (minimum) set of nodes in this network
such that the effect of the original cascade can be minimized. A variety of approximation
algorithms (Budak, Agrawal, & El Abbadi, 2011; Nguyen, Yan, Thai, & Eidenbenz, 2012)
have been proposed to solve the NP-hard problem and the variants. When applied to
disinformation mitigation, they seek to inoculate as many nodes as possible in a short
period of time. It is possible to extend the two cascades into tasks with multiple cascades,
where we can further consider the different priorities of these cascades, i.e., each cascade
influences the node in the network differently (Tong, Du, & Wu, 2018). The second method
for disinformation mitigation is content flagging: social media platforms allow users to ‘flag’
or ‘report’ a news content if they find it offensive, harmful, and/or false. Big social media
companies such as Facebook hired professional moderators to manually investigate and/or
remove these content. However, considering the millions of news generated/spread every
minute (Marr, 2021), it is impractical for these moderators to manually review all the news.
The solution comes to the crowd wisdom – users can choose to ‘flag’ the content if it violates
the community guidelines of the platform. Some platforms can further provide feedback for
these users about if their fact-check is correct or not. User behavior is an effective predictor
for disinformation detection (Cheng et al., 2021), therefore, the third prevention method
leverages the differences between user behaviors to identify susceptible or gullible users. For
example, it is shown in (Rajabi, Shehu, & Purohit, 2019) that groups of vulnerable Twitter
users can be identified in fake news consumption. Other studies (Guess, Nagler, & Tucker,
2019) also suggest that older people are more likely to spread disinformation.

6. https://implicit.harvard.edu/implicit
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4.3.2 Cyberbullying Prevention/Mitigation

In contrast to the large amount of work in cyberbullying detection, efforts for its preven-
tion and mitigation have been a few. Some research suggests that prevention/mitigation
strategies are defined at different levels (Smith et al., 2008). At technological level, we can
consider providing parental control service, firewall blocking service, online services rules,
text-message control, and mobile parental control, e.g., KnowBullying and BullyBlocker
(Silva, Rich, & Hall, 2016). Another effective tool is psychological approach, such as talk-
ing and listening to cyber-victims, providing counseling services, encouraging victims to
make new relations and join social clubs. At education level, we are responsible to edu-
cate end-users, help improve their technical and cognitive skills. At administrative level,
it is important for organizations and government to develop policies to regulate using free
service and enhance workplace environment. Therefore, the goal of cyberbullying preven-
tion/mitigation can only be accomplished with interdisciplinary collaborations, e.g., psy-
chology, public health, computer science, and other behavioral and social sciences (Kraft &
Wang, 2009). One example is that computer and social scientists attempted to understand
behavior of users in realistic environments by designing social media site for experimenta-
tion such as controlled study and post-study survey (DiFranzo, Taylor, Kazerooni, Wherry,
& Bazarova, 2018; Ashktorab, 2017).

Existing solutions to preventing cyberbullying can report/control/warn about message
content (e.g., Dinakar et al., 2012; Vishwamitra, Zhang, Tong, Hu, Luo, Kowalski, & Mazer,
2017), provide support for victims (e.g., Vishwamitra et al., 2017), and educate both victims
and bullies (e.g., Dinakar et al., 2012). A variety of anti-bully apps are also available
to promote well-being of users. For example, NoMoreBullyingMe App provides online
meditation techniques to support victims; “Honestly” App (Shaul, 2015) encourages users to
share positive responses with each other (e.g., sing a song). However, current cyberbullying
prevention strategies often do not work as desired because of the complexity and nuance
with which adolescents bully others online (Ashktorab & Vitak, 2016).

4.3.3 Bias Mitigation

Prior approaches for bias mitigation focus on either designing fair machine learning al-
gorithms or theorizing on the social and ethical aspects of machine learning discrimina-
tion (Caton & Haas, 2020). From the technical aspect, approaches to fairness typically
can be categorized into pre-processing (prior to modelling), in-processing (at the point of
modelling), and post-processing (after modelling). One condition to use pre-processing ap-
proaches is that the algorithm is allowed to modify the training data (Bellamy, Dey, Hind,
Hoffman, Houde, Kannan, Lohia, Martino, Mehta, Mojsilović, et al., 2019). We can then
transform the data to remove the discrimination (d’Alessandro, O’Neil, & LaGatta, 2017).
In-processing approaches eliminate bias by modifying algorithms during the training pro-
cess (d’Alessandro et al., 2017). We can either incorporate fairness notion into the objective
function or impose fairness constraint (Bellamy et al., 2019; Berk, Heidari, Jabbari, Joseph,
Kearns, Morgenstern, Neel, & Roth, 2017). When neither training data nor model can be
modified, we can use post-processing approaches to reassign the predicted labels based on a
defined function and a holdout set which was not used in the model training phase (Bellamy
et al., 2019; Berk et al., 2017). Most of these approaches are built on the notion of protected
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or sensitive variables that define the (un)privileged groups. Commonly used protected vari-
ables are age, gender, marital status, race, and disabilities. A shared characteristic of these
groups is they are disproportionately (less) more likely to be positively classified. Fair-
ness measures are important to quantify fairness in the development of fairness approaches.
However, creating generalized notions of fairness quantification is a challenging task (Caton
& Haas, 2020). Depending on the protected target, fairness metrics are usually designed for
individual fairness (e.g., every one is treated equally), group fairness (e.g., different groups
such as women vs men are treated equally), or subgroup fairness. Drawing on theories in
causal inference, individual fairness also includes counterfactual fairness which describes
that a decision is fair towards an individual if the result was same when s/he had taken a
different sensitive attribute (Kusner et al., 2017).

Recent years have witnessed immense progress of fair machine learning – a variety of
methods have been proposed to address bias and discrimination over different applications.
We focus on two mainstream methods: fair classification and fair regression. A review of
machine learning fairness can be referred to (Mehrabi et al., 2019; Caton & Haas, 2020).

(1) Fair Classification. For a (binary) classifier with sensitive variable S, the target variable
Y , and the classification score R, general fairness desiderata have three “non-discrimination”
criteria: Independence, i.e., R |= S; Separation, i.e., R |= S|Y ; and Sufficiency, i.e., Y |= S|R.
Fair machine learning algorithms need to adopt/create specific fairness definitions that
fit into context (Goel, Yaghini, & Faltings, 2018; Kamishima, Akaho, Asoh, & Sakuma,
2012; Krasanakis, Spyromitros-Xioufis, Papadopoulos, & Kompatsiaris, 2018; Menon &
Williamson, 2018; Calders & Verwer, 2010). Common methods in fair classification include
blinding (Calmon, Wei, Vinzamuri, Ramamurthy, & Varshney, 2017; Hardt, Price, & Sre-
bro, 2016), causal methods (Galhotra, Brun, & Meliou, 2017; Johnson, Foster, & Stine,
2016), transformation (Feldman et al., 2015; Dwork, Hardt, Pitassi, Reingold, & Zemel,
2012; Wei, Ramamurthy, & Calmon, 2020), sampling and subgroup analysis (Celis, Desh-
pande, Kathuria, & Vishnoi, 2016; Dwork, Immorlica, Kalai, & Leiserson, 2018), adversarial
learning (Feng, Yang, Lyu, Tan, Sun, & Wang, 2019; Xu et al., 2019; Sattigeri, Hoffman,
Chenthamarakshan, & Varshney, 2019), reweighing (Jiang & Nachum, 2020; Calders &
Verwer, 2010), and regularization and constraint optimization (Kamishima et al., 2012;
Bechavod & Ligett, 2017; Cheng, Mosallanezhad, Silva, Hall, & Liu, 2021).

(2) Fair Regression. The goal of fair regression is to jointly minimize the difference between
true and predicted values and ensure fairness. It follows the general formulation of fair clas-
sification but with continuous rather than binary/categorical target variable. Accordingly,
the fairness definition, metrics, and the basic algorithms are adapted from classification
to regression. For example, it is suggested using statistical parity and bounded-group-loss
metrics to measure fairness in regression (Agarwal, Dud́ık, & Wu, 2019). Bias in linear re-
gression is considered as the effects of a sensitive attribute on the target variable through the
mean difference between groups and AUC metrics (Calders, Karim, Kamiran, Ali, & Zhang,
2013). One commonly used approach in fair regression is regularization, e.g., (Kamishima
et al., 2012; Berk et al., 2017).

Apart from fair machine learning, algorithm operators are encouraged to share enough
details about how research is carried out to allow others to replicate it. This is a leap for
mitigating bias as it helps end-users with different technical background to understand how
the algorithm works before making any decision. It is also suggested that AI technologists
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Ethical Responsibilities

• Causal Learning
• Context Matters
• Responsible Model Release and

Governance
• AI Defenses
• AI Ethics Principles and Policies

• Understanding Why
• Long-Term Effect
• Human in the Loop
• Responsible AI Gap in Industry
• Interdisciplinary Research
• SRAs for Social Good

Philanthropic and Ethical Responsibilities

Figure 8: Primary challenges and open problems we confront in developing SRAs. Some
challenges relate to SRAs’ internal mechanisms that fulfill AI’s ethical responsi-
bilities whilst others relate to SRAs’ roles to which both ethical and philanthropic
responsibilities are the keys.

and researchers develop a bias impact statement as a self-regulatory practice. It can help
probe and avert any potential biases that are injected into or resultant from algorithmic de-
cision (Lee, Resnick, & Barton, 2019). Some example questions in the statement are “What
will the automated decision do?”, “How will potential bias be detected?”, and “What are
the operator incentives”. In algorithm design, researchers are also responsible to encourage
the role of diversity within the team, training data, and the level of cultural sensitivity. The
“diversity-in-design” mechanism aims to take deliberate and transparent actions to address
the upfront cultural biases and stereotypes. Furthermore, we might also consider updat-
ing nondiscrimination and other civil rights laws to interpret and redress online disparate
impacts (Lee et al., 2019). An example of such consideration is to unambiguously define
the thresholds and parameters for the disparate treatments of protected groups before the
algorithm design.

5. Open Problems and Challenges

This survey reveals that the current understanding of SRAs is insufficient and future efforts
are in great need. Here, we describe several primary challenges, as summarized in Figure
8, in an attempt to broaden the discussions on future directions and potential solutions.

Causal Learning. The correlation fallacy causes AI algorithms to meet with fundamental
obstacles in order to commit social responsibility. These obstacles are robustness, explain-
ability, and cause-effect connections (Pearl, 2019). The era of big data has changed the
ways of learning causality, and meanwhile, causal learning becomes an indispensable ingre-
dient for AI systems to achieve human-level intelligence. There are a number of benefits to
incorporate causality in the next-generation of AI. For example, teaching AI algorithms to
understand “why” can help them transfer their knowledge to different but similar domains.
Early efforts in SRAs attempted to employ causal learning concept and methods such as
intervention, counterfactual, do-calculus, propensity scoring to address fairness (e.g., coun-
terfactual fairness) and interpretability (causal interpretability) issues. They have shown
prominent results in these tasks.

Context Matters. Context is the core to SRAs due to its inherently elaborate nature,
e.g., the “Transparency Paradox”. Understanding and quantifying the relationships among
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the various principles (some are tradeoffs and some are not), e.g., fairness, transparency,
and safety, have to be placed in specific context. One such context is the social context.
Existing SRAs (e.g., fair machine learning), once introduced into a new social context,
may render current technical interventions ineffective, inaccurate, and even dangerously
misguided (Selbst, Boyd, Friedler, Venkatasubramanian, & Vertesi, 2019). A recent study
(Sühr, Hilgard, & Lakkaraju, 2020) found that while fair ranking algorithms such as Det-
Greedy (Geyik, Ambler, & Kenthapadi, 2019) help increase the exposure of minority candi-
dates, their effectiveness is limited by the job contexts in which employers have a preference
to particular genders. How to properly integrate social context into SRAs is still an open
problem. Algorithmic context (e.g., supervised learning, unsupervised learning, and rein-
forcement learning) is also extremely important when designing SRAs for the given data.
A typical example is the feedback loop problem in predictive policing (Ensign, Friedler,
Neville, Scheidegger, & Venkatasubramanian, 2018). A subtle algorithmic choice can have
huge ramifications on the results. Consequently, we need to understand the algorithmic con-
text to make the right algorithmic choices when designing socially responsible AI systems.
Designing context-aware SRAs is the key to achieving Social Responsibility of AI.

Responsible Model Release and Governance. Nontransparent model reporting is
one of the main causes of AI indifferent behaviors. As a critical step to clarify the in-
tended use cases of AI systems and the contexts for which they are well suited, responsible
model release and governance has been receiving growing attentions from both industry and
academia. One role of SRAs is to bring together the tools, solutions, practices, and people
to govern the built AI systems across its life cycle (Dobrin, 2020). At this early stage,
some research results suggested that released models be accompanied by documentation
detailing various characteristics of the systems, e.g., what it does, how it works, and why
it matters. For example, the AI FactSheets (Arnold, Bellamy, Hind, Houde, Mehta, Mo-
jsilović, Nair, Ramamurthy, Olteanu, Piorkowski, et al., 2019) advocates to use a factsheet
completed and voluntarily released by AI developers to increase the transparency of their
services. A similar concept is model cards (Mitchell, Wu, Zaldivar, Barnes, Vasserman,
Hutchinson, Spitzer, Raji, & Gebru, 2019), short documents that provide benchmarked
evaluation for the trained AI models in a variety of conditions, e.g., different cultural or
demographic groups. Typically, a model card should include the model details, intended
use, evaluation metrics, training/evaluation data, ethical considerations, and caveats and
recommendations. To help increase transparency, manage risk, and build trust in AI, AI
technologists and researchers are responsible to address various challenges faced in creating
useful AI release documentation (Hind, Houde, Martino, Mojsilovic, Piorkowski, Richards,
& Varshney, 2020) and develop effective AI governance tools.

AI Defenses. Developing AI systems that outwit malicious AI is still at an early stage
(Knight, 2020). Since we have not fully understood how AI systems work, they are not only
vulnerable to attack but also likely to fail in surprising ways (Yuan et al., 2019; Chakraborty
et al., 2018). As a result, it is critical and urgent to work on designing systems that are
provably robust to help ensure that the AI systems are not vulnerable to adversaries. At
least two capabilities an “AI firewall” needs to be equipped with: one capability is to
probe an AI algorithm for weaknesses (e.g., perturb the input of an AI system to make it
misbehave) and the other one is to automatically intercept potentially problematic inputs.
Some big tech companies have started building their own AI defenses to identify the weak
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spots, e.g., the “red team” in Facebook, the software framework released by Microsoft,
Nvidia, IBM, and 9 other companies. AI defenses reflect the fundamental weakness in
modern AI and make AI systems more robust and intelligent.

AI Ethics Principles and Policies. Current AI principles and policies for ethical prac-
tice have at least two common criticisms: (1) they are too vaguely formulated to prove to be
helpful in guiding practice; and (2) they are defined primarily by AI researchers and pow-
erful people with mainstream populations in mind (Young, Magassa, & Friedman, 2019).
For the first criticism, to help operationalize AI principles in practice and organizations
confront inevitable value trade-offs, it has been suggested to redefine AI principles based on
philosophical theories in applied ethics (Canca, 2020). Particularly, it categorizes published
AI principles (e.g., fairness, accountability, and transparency) into three widely used core
principles in applied ethics: autonomy, beneficence (avoiding harm and doing good), and
justice. The core principles “invoke those values that theories in moral and political philos-
ophy argue to be intrinsically valuable, meaning their value is not derived from something
else” (Canca, 2020). Existing AI principles are instrumental principles that “build on con-
cepts whose values are derived from their instrumental effect in protecting and promoting
intrinsic values” (Canca, 2020). Operationazable AI principles help effectively put ethical
AI in practice and reduce the responsible AI Gap in companies. To address the second
criticism, we need to best elicit the inputs and values of diverse voices from the Subjects of
SRAs, i.e., the minority and disadvantaged groups, and incorporate their perspectives into
the tech policy document design process. If we align values of AI systems through a panel
of people (who are compensated for doing this), they too can influence the system behavior,
and not just the powerful people or AI researchers.

Understanding Why. Many AI systems are designed and developed without fully un-
derstanding why : What do we wish the AI system do? This is often the reason that these
systems fail to represent the goals of the real tasks, a primary source of AI risks. The
problem can become more challenging when the AI system is animated through a number
of lines of code that lack nuance, creating a machine that does not align with our true
intentions. As the first step, understanding why clearly defines our social expectation of AI
systems and paves way for more specific questions such as “What is the problem? Who will
define it? and what are the right people to include?”. Answering why helps us effectively
abolish the development of socially indifferent AI systems in the first place and also helps
understand the kinds of deception an AI system may learn by itself.

Long-Term Effect. SRAs include social concepts such as fairness that can evolve over
time along with the constant changes of human values and social dynamics. This raises the
concerns about the commitment SRAs need to fulfill in the long term. For example, despite
the various types of fairness definitions, once introduced into the dimension of time, the
number of fairness definitions may be explosive. In addition, current fairness criteria may
be considered as unfair in the future. Fairness criteria are essentially designed to promote
long-term well-being. However, even a static fairness notion can fail to protect the target
groups when there is a feedback loop in the overall system (Liu, Dean, Rolf, Simchowitz,
& Hardt, 2018). How to build AI systems that can commit long-term responsibility is
extremely challenging and rarely studied thus far. Initial results of long-term fairness (Liu
et al., 2018; Hu & Chen, 2018) highlight the importance of measurement and temporal
modeling in the evaluation of fairness criteria.
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Humans in the Loop. While existing techniques in SRAs have indeed made significant
progress towards responsible AI systems, their usefulness can be limited in some settings
where the decisions made are actually poorer for every individual. For issues of fairness in
prediction, for example, many findings (e.g., Pfohl, Foryciarz, & Shah, 2020) have shown
the concerns about the fairness-performance trade-off: the imposition of fairness comes at
a cost to model performance. Predictions are less reliable and moreover, different notions
of fairness can make approaches to fairness conflict with one another. Having human in
the loop matters when it comes to contextualizing the objectives of SRAs, especially for
high-stake decisions. For instance, there are situations where the cut-off values of fairness
for two subgroups are different, and humans can help calibrate the differences.

Responsible AI Gap in Industry. The far-reaching effect of reputational damage and
employee disengagement result from AI misbehavior has forced company executives to begin
understanding the risks of poorly designed AI systems and the importance of SRAs. While
seeing many potential benefits of developing responsible AI systems such as increasing
market share and long-term profitability, companies lack the knowledge of how to cross the
“Responsible AI Gap” between principles and tangible actions (Mills, Baltassis, Santinelli,
Carlisi, Duranton, & Gallego, 2020). This is partly because companies view responsible
AI solely as risk-avoidance mechanism and overlook its financial rewards. To capture the
benefits of responsible AI in companies’ day-to-day business, companies need to go far
beyond SRAs and examine every aspect of the end-to-end AI systems. A recent article
(Mills et al., 2020) suggested six basic steps to bridge the gulf between responsible AI and
the reality: Empower responsible AI leadership, Develop principles, policies, and training,
Establish human and AI governance, Conduct Responsible AI reviews, Integrate tools and
methods, and Build and test a response plan. Even though the gap might be huge, small
efforts built over time can let SRAs achieve a transformational impact on the businesses.

Interdisciplinary Research. Current public dialog on SRAs has been focused on a narrow
subset of fields, blinding us to the opportunities presented by interdisciplinary research. It is
necessary to work with researchers from different disciplines whose contributions are sorely
needed, e.g., psychologist, social scientist, educators, and humanities. Non-profit organiza-
tions are both the beneficiaries and benefactors of SRAs. In partnering with non-profits and
social enterprises will not only unleash AI’s potential for benefiting societal well-being, but
also let AI technologists and researchers have the opportunity to encounter the real prob-
lems we are currently facing. A better understanding of what problems need to be solved
helps identify SRAs that need to be created. Moreover, as big tech companies bankroll
more work of academic researchers, much of ethics-based research gets concentrated in the
hands of a few companies that can afford it (Rivero, 2020). This is problematic because we
are over reliant on the same companies that are producing socially indifferent AI systems.
We need interdisciplinary and decentralized research to create SRAs and simultaneously
achieve the four levels in the pyramid of Social Responsibility of AI.

SRAs for Social Good. The last challenge regards the intended use of SRAs. When
SRAs are leveraged to uplift humanity, a trust in AI is further enhanced. There has been
a burgeoning of AI-for-social-good movement that produces AI algorithms to help reduce
poverty, hunger, inequality, injustice, climate change, ill health, and other causes of human
suffering (Varshney, 2019). Compared to deploying cutting-edge AI systems to solve these
critical issues, a more urgent question to examine is “What makes an AI project good” in or-
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der to prevent the detrimental consequences of AI. In addition to Protecting, Informing, and
Preventing, social good applications also relate closely to Fundraise and Greenlight (Siegel,
2020). Applying SRAs to target solicitations for donations largely helps with fundraising for
non-profits, charitable organizations, and universities. Greenlight describes how SRAs can
help allocate grants and other types of resources by predicting the success rates of project
proposals. It plays an important role in improving execution effectiveness of organizations.
Developing social good applications that leverage power of SRAs to benefit society is an
equally endeavor for AI technologists and researchers.

6. Conclusion

This survey examines multiple dimensions of research in Social Responsibility of AI, seek-
ing to broaden the current discussions primarily focused on decision-making algorithms that
perform scoring and classification tasks. We argue that having a full scope of AI to capture
the connections among all the major dimensions is the key to Socially Responsible AI Al-
gorithms (SRAs). This work starts with an inclusive definition of Social Responsibility of
AI, highlighting the principles (e.g., Fairness, Inclusiveness), means (e.g., SRAs), and ob-
jective (e.g., improving humanity). To better frame the Social Responsibility of AI, we also
introduce the pyramid with four-level responsibilities of AI systems: functional responsi-
bilities, legal responsibilities, ethical responsibilities, and philanthropic responsibilities. We
then focus our discussions on how to achieve Social Responsibility of AI via the proposed
framework SRAs. In the definition of SRAs, we emphasize that the functional and societal
aspects are integral parts of AI algorithms. Given that both the functional and legal respon-
sibilities are the usual focuses in AI research and development, we particularly investigate
the essentials to achieve AI’s ethical responsibilities: the subjects, causes, objectives, and
means. For the intended use (i.e., roles) of SRAs, we discuss the need of philanthropic and
ethical responsibilities for AI systems to protect and inform users, and prevent/mitigate the
negative impact. We conclude with several open problems and major challenges in SRAs.
At this pivotal moment in the development of AI, it is of vital importance to discuss AI
ethics and specify Social Responsibility of AI. Drawing from the theory of moral license
(List & Momeni, 2018) – when humans are good, we give ourselves moral license to be bad
– we argue that simply asking AI to do good is insufficient and inefficient, and more can be
done for AI technologists and researchers to develop socially responsible AI systems. We
hope this work can propel future research in various fields to tackle together the challenges
and steer a course towards a beneficial AI future.
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