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ABSTRACT

The use of machine learning (ML) in high-stakes societal decisions
has encouraged the consideration of fairness throughout the ML
lifecycle. Although data integration is one of the primary steps to
generate high-quality training data, most of the fairness literature
ignores this stage. In this work, we consider fairness in the integra-
tion component of data management, aiming to identify features
that improve prediction without adding any bias to the dataset.
We work under the causal fairness paradigm [45]. Without requir-
ing the underlying structural causal model a priori, we propose
an approach to identify a sub-collection of features that ensure
fairness of the dataset by performing conditional independence
tests between different subsets of features. We use group testing to
improve the complexity of the approach. We theoretically prove the
correctness of the proposed algorithm and show that sublinear con-
ditional independence tests are sufficient to identify these variables.
A detailed empirical evaluation is performed on real-world datasets
to demonstrate the efficacy and efficiency of our technique.
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1 INTRODUCTION

Algorithmic fairness is of great societal concern when supervised
classification models are used to support allocation decisions in
high-stake applications. There have been numerous recent advances
in statistically and causally defining group fairness between popu-
lations delineated by protected attributes and in the development
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Associational Causal
[7, 14, 26] [9, 24, 45]
[6, 8, 20, 27, 51] | [39, 43]

Pre/Post-processing
In-processing
Feature Selection

Discard biased attributes - This paper

Table 1: Different categories of fairness techniques.
of algorithms to mitigate unwanted bias [5].! Bias mitigation al-

gorithms are often categorized into pre-processing, in-processing,
and post-processing approaches. Pre-processing techniques mod-
ify the distribution of the training data, in-processing techniques
modify the objective function of the training procedure or consider
additional constraints in the learning phase, and post-processing
techniques modify the output predictions — all in service of im-
proving fairness metrics while upholding classification accuracy
[11]. Table 1 summarizes a representative set of prior bias mitiga-
tion algorithms. However, this categorization misses an important
stage in the lifecycle of machine learning practice: data collection,
engineering and management [25, 46]. Holstein et al. [21] report
that practitioners “typically look to their training datasets, not their
ML models, as the most important place to intervene to improve
fairness in their products”. Data integration, one of the first compo-
nents of data management, aims to join together information from
different sources that captures rich context and improves predictive
ability. With the phenomenal growth of digital data, ML practi-
tioners may procure features from millions of sources spanning
data lakes, knowledge graphs, etc [15, 37]. They typically gener-
ate exhaustive sets of features from all sources and then perform
subset selection [15, 32, 52]. Feature selection is a promising direc-
tion for fairness in ML as it does not require assumptions about
data distribution and is robust to distribution shifts [12], assum-
ing distribution shifts do not change the structural aspects of the
causal model. Some may argue that data integration is a part of pre-
processing but we make this distinction as data integration does
not involve modification of the data distribution and is considered
as the task of a data engineer as opposed to a data modeler.

Filtering methods for feature selection exploit the correlation of
features to identify a subset [19]. However, these techniques are
ignorant of sensitive attributes and fairness concerns. For example,
consider a dataset with features F; and F2 such that F; provides
slightly more improvement in accuracy than Fz; however, incorpo-
rating F; yields a classifier that reinforces discrimination against
protected groups whereas incorporating F» yields a classifier with
similar outcomes for different groups. Feature selection techniques
that are not discrimination-aware will prefer F; to Fa, but F is a
better feature to select from a societal perspective.

!We use the terms sensitive attribute and protected attribute interchangeably.
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To overcome the fairness limitations of standard feature selection
methods, we study the problem of fair feature selection, specifically
in the context of data integration when we are integrating new
tables of features with an existing training dataset (PK-FK joins)
or source selection or generating new features using transforma-
tions [12, 15, 30]. Our goal is to identify a subset of new features®
that can be integrated with the original dataset without worsening
its biases against protected groups. As an additional advantage, the
feature selection paradigm is known to be stable against changes
in data distribution as compared to prior techniques that modify
the output predictions or the data distribution to mitigate bias [47].
Following the framework of prior fair algorithms [9, 10, 45], we
assume access to protected/sensitive attributes which are used to
identify the feature subset that obeys fairness. The identification of
features that do not induce additional bias is tricky because of rela-
tionships between non-protected attributes and protected ones that
allow the reconstruction of information in the protected attributes
from one or more non-protected ones. For example, zip code can
reconstruct race information [22].

There are two main types of techniques to ensure fairness in data:
Associational and Causal (summarized in Table 1). Associational
techniques look for associative relationships between sensitive at-
tributes and the prediction outcome to mitigate unwanted biases.
However, these techniques are based on correlation between at-
tributes and fail to capture causal relationships. There has been a lot
of interest in studying causal frameworks [9, 10, 24, 28, 29, 31, 34,
43, 50, 53, 54] to achieve fairness. Due to their ability to distinguish
different discrimination mechanisms, we use causal fairness [36, 45]
as our fairness framework. Certain causal approaches assume ac-
cess to the underlying causal structure, which is unrealistic in
practice [9, 10, 24, 31, 34, 50, 54]. Importantly, we do not make the
assumption that we are given the causal graph (formally, the structure
of the causal bayesian network that generates the data) a priori.

We propose an algorithm SeqSel to identify all new features
that when added to the original dataset still ensure causal fairness.
Our algorithm takes as input a dataset D comprising an outcome
variable, sensitive features, admissible features, and a collection
of features that are neither admissible nor sensitive. A feature is
considered admissible if the protected variables are allowed to affect
the outcome through it. For example, consider a credit card appli-
cation system that contains gender and race as sensitive attributes,
expected monthly usage as an admissible attribute (it may have a
sensitive attribute as one of its parent but it is permissible for the
sensitive attribute to influence the outcome through this variable),
and age and education level as variables which are neither sensitive
nor admissible. A set of features X is considered to ensure causal
fairness if after adding these features one could increase accuracy of
a subsequently trained classifier on this new dataset without worry-
ing about causal fairness metrics, i.e. in effect the subset of features
when added does not introduce any tradeoff between fairness and
accuracy and they are safe to subsequent attempts at building a
purely predictive classifier. Our approach operates in two phases
focused towards performing conditional independence tests with
respect to the sensitive attributes and the target variable. These

2Qur algorithms do not assume that all features are presented a priori and works in
case new features are added incrementally.

tests help identify variables that (1) do not capture information
about sensitive attributes, or (2) ensure fairness even if they capture
some information about sensitive attributes. We theoretically prove
that both types of these variables ensure causal fairness and analyze
the conditions to identify all such variables.

The naive SeqSel algorithm performs a number of conditional
independence tests that grows linearly in the number of features in
the dataset. One of the major shortcomings of extant conditional
independence testing methods is that they generate spurious corre-
lations between variables if too many tests are performed [49]. To
overcome this limitation and reduce the chances of getting spurious
results, we propose a more efficient algorithm, GrpSel, that uses
graphoid axioms to show that group testing can reduce the number
of tests to the logarithm of the number of features and additionally
improves the overall efficiency of the pipeline.

Our primary contributions are:

e We formalize the problem of fairness in data integration and
feature selection setting using causal fairness.

e We provide an algorithm that performs conditional indepen-
dence tests to identify the variables that do not worsen the
fairness of the dataset.

e We prove theoretical guarantees that the variables identified
by our algorithm ensure fairness and identify a closed form
expression for variables that cannot be added.

e We propose an improved algorithm that leverages ideas of
group testing to reduce the chances of getting spurious cor-
relations and has sub-linear complexity.

e We show empirical benefits of our techniques on synthetic
and real-world datasets.

The paper represents a principled use to address an important
problem that has not been addressed before: fair data integration.

2 PRELIMINARIES

In this section, we review the background on algorithmic fairness
and models of causality. We denote variables (also known as dataset
attributes or features) by uppercase letters like X, S, A, correspond-
ing values in lower case like x, s, a, and sets of attributes or values
in bold (X or x).

2.1 Algorithmic Fairness

The area of algorithmic fairness aims to ensure unbiased output
for different sub-groups identified by specific set of attributes (also
known as protected or sensitive attributes). For example, a loan pre-
diction software should not discriminate against female applicants
(gender is the protected attribute). The literature on algorithmic
fairness considers a set of protected attributes S = {Sy,. .., S|S|},
a target variable Y and a prediction algorithm f : V. — Y where
V denotes the set of input attributes and the output of f is called
the prediction output or an outcome. Typically, ML tasks train a
classifier on a dataset D (comprising of attributes V and target Y)
which is assumed to be distributed according to a distribution Pr. In
order to measure the fairness of f with respect to S, two different
types of metrics have been studied: Associational and Causal.

Associational fairness methods capture statistical variabilities in
the behavior of the prediction algorithm for different groups of indi-
viduals. For example, equalized odds requires that the false positive



and true positive rate of different sub-groups identified by the sen-
sitive attributes is the same. Other associational fairness measures
include Demographic parity, conditional statistical parity, and pre-
dictive parity [6-8, 20, 27, 51]. Even though associational methods
of quantifying fairness are very popular, all these methods fail to
distinguish between causal influence and spurious correlations be-
tween different input attributes of the prediction algorithm [45]. To
this end, recent methods have proposed to capture the causal depen-
dence of the outcome on the protected attribute. Before describing
these methods, we present a background on causal graphs.

2.2 Causal DAGs

Probabilistic Causal DAG. A causal DAG over a set of variables V
is a directed acyclic graph G that captures functional dependencies
between these variables. A variable X is considered to cause X iff
X1 — Xj in the causal DAG G. Each variable in the causal graph
G is functionally determined by its parents and some unobserved
exogenous variables. The causal graph is used as a compact rep-
resentation to denote the dependence between different variables.
Two variables X and Y are independent when conditioned on Z
if Pr(Y = y|X = x,Z = z) = Pr(Y = y|X = x) and is denoted
by X L Y|pZ. To test this condition, we consider a conditional
independence (CI) test [49] that returns if X and Y are independent
conditioned on Z. An orthogonal line of work has studied different
techniques to efficiently test this condition [49]. The joint probabil-
ity distribution of a set of variables V can be decomposed similar
to that of bayesian networks,

Pr(v) = [ | Pr(XIPa(x)), 1)
Xev

where Pa(X) denotes the set of parents of X in the graph G.
d-separation and Faithfulness One of the common questions
that are answered using causal DAGs is whether X 1 Y|Z, i.e. a set
of variables X is independent of Y, conditioned on Z. d-separation
between three sets of variables X, Y, Z, denoted by X L Y|;Z, is a
sufficient graphical criterion that syntactically captures observed
conditional independencies. X and Y are said to be d-separated
given Z, if all paths between X and Y are blocked by Z (Please
refer to the full version [16] for a formal definition of blocking
and d-separation). Probability distribution of a dataset D is said
to be markov compatible [41] if d-separation implies CI with re-
spect to the probability distribution Pr. If the converse also holds
(X LY|prZ = X L Y|4Z), the probability distribution Pr is con-
sidered faithful to the causal graph G [42]. We assume throughout
this work that Pr is markov compatible and faithful to G. As CI and
d-separation are equivalent under these assumptions, we ignore
the sub-script Pr or d in subsequent discussions. Faithfulness is a
standard assumption in causal inference, which ensures that all CI
observed in the dataset correspond to d-separations in the corre-
sponding causal graph [35, 41, 42]. Graphoid axioms [35, 41, 44]
are the popular set of properties that are used to infer conditional
independence. We list two axioms that are relevant for this study.

LEMMA 1 (THEOREM 1 [35]). Consider a dataset D with a causal
graph G, where the data distribution Pr is faithful to the graph G.

(1) Decomposition axiom:IfALB,C|Z,then A1B|Z and ALC|Z
(2) Composition axiom: If ALB|Z and ALC|Z, then ALB,C|Z

ProoF. We use the notion of d-separation to prove these results.

Decomposition axiom: If ALB, C|Z, then all paths from A to any of B
or C are blocked given Z. Therefore, any path from Ato BC BUC
is also blocked given Z. Therefore, AL B|Z. Symmetrically, the same
argument proves that A1 C|Z. Therefore, ALB,C|Z. O

do-operator. Pearl [41] defined intervention as a modification of
the state of attributes to a specific value and observe its effect. An
intervention on an attribute X « x is equivalent to assigning a
value x to the variable X in a modified causal graph G’, where G’ is
same as G except that all incoming edges of X have been removed.
According to Pearl [41], do-operator is equivalent to the graphical
interpretation of an intervention. An intervention do(X) = x is
equivalent to conditioning X = x if X has no ancestors in G.

2.3 Causal Fairness

There has been a lot of recent interest in studying the causal impact
of protected attributes on the prediction variable. Causal measures
capture the causal dependence of the prediction variable on the
sensitive attributes and aim to minimize such effects at different
population levels.

Admissible Attributes. In an ideal setting, the prediction attribute
and the protected attributes should be d-separated in the causal
graph whenever we intervene on the protected attributes. How-
ever, it is a very restrictive and impractical requirement [45]. To
improve the usefulness of this definition, a subset of the attributes
are labelled admissible, through which protected attribute is al-
lowed to impact the prediction attribute. For example, applicant’s
choice of loan type or loan duration in a banking application. The
set of admissible attributes also help to understand the impact of
different attributes on the prediction accuracy and fairness. The
specification of attributes as admissible is application-dependent
and are considered as an input to the problem.

One of the recent causal fairness definitions, interventional fair-
ness [45] is the strongest notion of fairness that is testable over
the input dataset and correctly captures group level fairness. It
assumes that the input attributes V consist of admissible attributes
A, through which the sensitive attributes are allowed to influence
the prediction output. The fairness definition in [45] was designed
to study datasets and focused on the target attribute Y. We extend
this definition to analyze fairness of ML classifiers by analyzing the
effect of sensitive attributes on Y’, the prediction output.

DEFINITION 1 (CAUSAL FAIRNESS). For a given set of admissible
variables, A, a classifier is considered fair if for any collection of
values a of A and output Y’, the following holds: Pr(Y’ = y|do(S) =
s,do(A = a)) = Pr(Y’ = y|do(S) = s’,do(A = a)) for all values of
A SandY’.

ExAaMPLE 1. Consider a loan prediction software [1] that consid-
ers demographic attributes along with credit information and loan
preferences. Among input attributes, race and gender are considered
protected and loan preferences like loan type and duration are gener-
ally considered admissible because any bias due to sensitive attributes
is allowed to affect the outcome only if it is through individual’s pref-
erences. Other attributes like age, zip-code, income, education, etc are
considered neither admissible nor inadmissible.

In this dataset, some features like zip-code have been identified
as proxy features which are causally dependent on race. Using any



of these proxy features for classifier training can inject bias into
the system. According to Definition 1, the protected attributes S
are independent of Y’ conditioned on A in the intervened graph
(incoming edges of S and A are removed), say G’. In other words, S
and Y’ are d-separated conditioned on A in G’. For more insights
about the definition of causal fairness, we refer the reader to [45].
Recent work has also studied causal fairness in settings where the
protected attribute is unobserved [17].

Testing causal fairness. Causal fairness is an interventional defini-
tion that is represented using do operators. A straightforward way
to test this definition is to leverage a fully specified causal graph
(graph structure and equations) to estimate the post-intervention
probability values. However, fully specified causal graphs are not
available in practice and this definition can not be tested as is.
Instead, we present a sufficient condition to test for causal fairness.

LEmMA 2. If conditional-mutual information between the classifier
output Y’ and protected attributes S is zero when conditioned on the
admissible set A, i.e, [(Y’,S|A = a) = 0 then Y’ is causally fair.

3 PROBLEM STATEMENT

In this section, we define the problem of feature selection to en-
sure interventional fairness and provide high level intuition of the
involved challenges.

Consider a dataset D comprising of a disjoint set of two types
of features (i) Sensitive S = {S1, ..., S|s} and (ii) Admissible A =
{A1,.. .,A|A|} along with a target variable Y. Let X = {Xj,..., X}
denote the collection of n features that are neither admissible nor
sensitive and can be added to D by performing a join between
the input dataset and different datasets from different sources or
by feature transformation over a subset of the features. Let V =
A USUXUY denote the exhaustive list of available variables and
Y’ denote the learnt target variable which has been trained over
a subset T C V. Now, we present the definition of causally fair
features that can be added to the original dataset.

DEFINITION 2 (CAUSALLY FAIR FEATURES). For a given set of ad-
missible variables, A, we say a collection of features D = AU T is
causally fair if the bayes optimal predictor Y’, trained on D satisfies
causal fairness with respect to sensitive attributes S.

The goal is to identify the largest subset T C V such that the
variable Y’, trained using these variables is fair.

ProOBLEM 1. Given a dataset D = {A,S,Y} and a collection of
variables X, identify the largest subset T C X such that the features
D’ = AUT is causally-fair.

The goal of our problem is to identify all features that can be
considered for training a classifier without worsening the fairness
of the dataset D. Note that D contains only features S U A to begin
with, so there is no fairness violation as sensitive attributes are
allowed to influence Y’ through A and S are not used for training.
We make the following assumptions about the causal graph:

AssUMPTION 1 (FAITHFULNESS ASSUMPTION). The causal graph
G on 'V is faithful to the observational distribution on V.

This assumption implies that if two variables A and B are con-
nected in the causal graph, the data cannot result in any spurious
conditional independency of the form (A L B|C) for any subset

C c V\ {A, B}. Faithfulness assumption is one of the most common
assumptions in causality and fairness literature [9, 10, 24, 28, 29, 31,
34, 43, 45, 50, 53, 54], which is crucial to model the input dataset.

Classifier Training. A new variable Y’ (prediction variable) is
generated by learning a predictor over the selected subset of fea-
tures (A U T), and this predictor is the Bayes optimal classifier with
Pr[Y’|A U T] derived from the observational distribution P(V). It
is equivalent to adding Y’ as a new node in the causal graph which
is a children of all features that impact the classifier output. We
make Assumption 2 to ensure that one would apply the same Bayes
optimal predictor that has been learnt from observational data to
all datasets irrespective of the intervention. This assumption is
crucial to decouple fairness of feature selection from the training
procedure and to theoretically analyze the quality of bias removal
in feature selection. Training the classifier by performing feature
engineering over the identified features satisfies this assumption.

ASSUMPTION 2. For evaluating the fairness criterion in Definition
2 using hypothetical interventional distributions, we assume that the
mechanism generating Y’ is the same as P[Y’|A U T] where P(-) is
the observational distribution.

Problem intuition: According to the definition of causal fair-
ness, the output distribution of the prediction algorithm should not
change when the value of sensitive variables is changed whenever
we intervene on A. According to do-calculus, intervention on (A)
is equivalent to removal of its incoming edges and conditioning on
A. If all paths from the sensitive variables to the learnt target Y’
that go through the variables considered by f are blocked after an
intervention on the admissible variables, then the features consid-
ered by f are causally-fair. We first show that the maximal set of
features that ensure causal fairness is unique.

LEmMA 3. Consider two different set of attributes X1 and Xg such
that X1 # Xa. If a classifier trained on X1 and X3 separately is
causally fair, then a classifier trained on X3 U Xy is also causally fair.

ProoF. Let Y] and Y, denote the output variable of the classifier
trained on X and Xz. Let G’ denote a modified causal graph where
incoming edges of S and A are removed. According to the definition
of causal fairness, all paths from the sensitive atrributes to Y are
blocked in G’, i.e. SLY/|g'A. Since, Y/ is a child of attributes in X,
all paths from S to the parents of Y| are blocked, i.e., Pa(Y;) LS|’ A.
We get the same condition for Xj3. Let Y’ = f(X; U X2). We first
simplify the LHS of causal fairness definition as follows.

Pr(Y’ = y|do(S) =s,do(A) = a)
= > (Pr(Y = ylPa(Y') = ¢,do(S) =5,do(A) =a)x
Pa(Y’)=c
Pr(Pa(Y’) = c|do(S) =s,do(A) = a))
= Z Pr(Y’ = y|Pa(Y’) = ¢) Pr(Pa(Y’) = c|do(S) =s,do(A) = a)
Pa(Y’)=c
= Z Pr(Y' = y|Pa(Y’) =c)Prgr(Pa(Y’) =c|S=s,A=a)
Pa(Y’)=c
Since, Y’ is trained over X; and X3, Pa(Y’) C X; U Xj. There-
fore, Pa(Y’)Ls/S|A, implying Prg/(Pa(Y’) = ¢|S = s,A = a) =
Prg(Pa(Y’) = ¢|A = a). Following the same simplification on RHS
of Definition 2, we get that X1 U X3 are causally fair. ]
Using Lemma 3, we prove that problem 1 has a unique solution.

LEMMA 4. Problem 1 has a unique solution T*.
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Figure 1: Example causal graphs that demonstrate different types of variables.

Proor. Suppose, Problem 1 does not have a unique solution. Let
T; and T3 be two different maximal sets of features that ensure
causal fairness. Using Lemma 3, T U T3 also ensure causal fairness.
Since Tq # Ty, |T1 U T2| > |Ty], |T2|. This is a contradiction, as T
and T, are maximal sets. Therefore, the assumption that Problem 1
does not have a unique solution is wrong. ]

4 SOLUTION APPROACH

In this section, we first present key properties using an example
and generalize them to discuss our algorithm, SeqSel. Section 4.2
analyzes the different steps of Algorithm 1 to guarantee causal
fairness of identified features and Theorem 1 presents a close-form
expression to identify maximal set of causally-fair features.

4.1 Algorithm

One naive solution to ensure fairness is to consider only the admis-
sible variables A for prediction and not add any other feature to
the dataset D. This would satisfy the fairness condition but achieve
poor prediction performance as there may be a variable X € X
that is highly correlated with the target variable Y. Another ex-
treme solution is to consider all the variables of X for prediction.
This approach would yield high predictive performance but can
have arbitrarily poor fairness. We propose SeqSel (Algorithm 1)
which considers the collection of variables A, S and X to identify
the largest subset of X which when considered along with A ensure
causal fairness of the learnt variable Y’. SeqSel algorithm performs
CI tests over the observed data without explicit knowledge of the
underlying causal graph. We use causal graphs only to illustrate
the intuition behind the different components of our algorithm.

Figure 1 presents different example causal graphs, to understand
the solution approach and identify CI tests that can be performed
without inferring the complete causal graph. These graphs contain
sensitive variables S, admissible variables A, target variable Y along
with other subsidiary variables X;’s.

(1) In all three figures, variables like X; have unblocked paths
from S to Xj but all these paths are blocked by the admissi-
ble set. Therefore, these variables do not capture any new
information about the protected variables. In general, such
variables can be identified by checking if X is conditionally
independent of S given A, ie. (X1 L S|A).

(2) Variables like X3 in Figure 1(b) are independent of the sensi-
tive attributes and can be identified easily by performing CI
test between variable X and S.

(3) Variable like X3 in Figure 1(c) is not independent of S; but is
independent of S; given Aj. X3 ensures causal fairness and
can be identified by testing X3 L S|Aj.

(4) X2 in Figure 1(b) and 1(c) is not independent of S; even with
an intervention on A and captures sensitive information.
However, X, is independent of Y given A.

Algorithm 1 SeqSel

1: Input: Variables A, S, X, Y
2: Cp «— ¢

3: for X € X do

4 if 3A C A such that(X L S|A) then
5: C;y «— CLU{X}
6

7

8

9.

> First phase
> CI test condition

: Cye— ¢
X(—X\Cl
: for X € X do
if (X L Y|AUC,) then
10: Cy; «— CoU {X}
1: return C; U Cy

> Second phase

—_

The different types of variables considered in points 1-3 above
do not capture any sensitive information after intervening on A
or any subset of A. We denote these variables by Cy, identified
by testing CI of X with S given any subset of A. Therefore, all
paths from S — X — Y are blocked for all these variables. The
variables that capture sensitive information but are independent
of Y given all the selected features C; U A also do not impact the
bayes-optimal classifier. This shows that all the variables discussed
above ensure causal fairness. Any variable that is not independent
of S and Y even after intervening on A is biased and is not safe
to be added. X in Figure 1(a) is one such example. Consider a
variation in Figure 1(b) by adding an edge X3 — Xj. Even then X
is a valid feature to ensure causal fairness. However, X7 L S1]|A;
and therefore, the above mentioend CI conditions do not capture
such variables. Specifically, if a variable X has a blocked path from
S which forms a collider at the admissible attribute A, then above
mentioned CI tests do not capture X in the set of fair features. We
discuss this condition more formally in Theorem 1.

REMARK 1. In Figure 1(a), Xo - X because there does not exist
any path from S to X1 which is unblocked given A.

REMARK 2. IfCy is conditionally independent of Y given A, Cy, it
may not contribute towards the predictive power of the Bayes opti-
mal classifier trained on these variables. However, for most practical
purposes the classifier trained can leverage Cy for better prediction.



Algorithm 1 captures these intuitions to perform CI tests in two
phases. The first phase (lines 3-5) identifies all variables that do not
get affected by sensitive attributes, in the presence of admissible
attributes A or any subset of A. All these variables do not capture
any extra information about sensitive attributes and are safe to be
added to the dataset D. The rest of the variables, X \ Cy, capture
information about sensitive attributes which can worsen fairness of
the dataset. The second phase (lines 6-10) identifies the subset such
that the target variable is not affected by their sensitive information
in the presence of admissible attributes. We call this algorithm
SeqgSel as it sequentially performs CI tests to select features.

4.2 Theoretical Analysis

In this section, we show that the variables identified by SeqSel
ensure causal fairness. We consider the original causal graph G
along with a new variable Y’ that refers to the prediction variable
trained using the variables A along with the variables returned by
Algorithm 1. We first show that the variables C; and C; identified by
Algorithm 1 maintain causal fairness. For this analysis, we assume
that the target variable Y does not have a child.

LeEMMA 5. Consider a dataset D with admissible variables A and
sensitive S and a collection of variables C1. If JA C A such that
(C1 L S|A) then A U Cq is causally fair.

Proor. Given (C; L S|A) for some A C, the variable X does
not capture any information about the sensitive variables. Hence
all paths from S to the target Y that pass through X are blocked.
Mathematically, we consider a causal graph along with Y’ and

evaluate the distribution under the intervention of A and S as
follows.

Pr(Y’|do(S),do(A)] = Z Pr[Y’|Cy,do(S),do(A)]Pr[Cy|do(S),do(A)]
Cq
Using Lemma 9 from the full version [16]
= Z Pr[Y’|Cy,do(S),do(A)]Pr[C;|do(A)]
Cy
Using Lemma 10 from the full version
= ZPr[Y'|C1,do(A)]Pr[C1|da(A)] =Pr[Y'|do(A)]
&1
This shows that any intervention on S does not affect the variable
Y’, thereby ensuring causal fairness of the considered features. O

The following lemma justifies the addition of C; to the dataset
D without affecting its causal fairness.

LEmMMA 6. Consider a dataset D with admissible variables A and
sensitiveS, a set of variables Cy satisfying (C; L S|A) and a collection
of variables Cy with (Cz L S|A), if (C2 L Y|A,Cy) then AUC,UCy
is causally fair.

Proor. We simplify the causal fairness condition as follows:
Pr(Y’|do(S),do(A)]

= > (PrIY'IC1.Cs.do(S),do(A)] X PrICy, Caldo(S), do(4) )
C1.Cs

Using Lemma 10 from the full version [16]

= Z (Pr[Y'\Cl,Cz,do(A)]><Pr[Cz\Cl,do(S),do(A)]Pr[CI|do(S),do(A)]

C1.Cy
Since Y’is independent of C, given A and C;

= > (PrIY'ICi do(4)1PrIC,IC1, do(S), do(A)] x PrICyldo($), do(A)])

C1.Cy

P——

Summing Pr[C;|Cy,do(S),do(A)] over C,

= ZPr[Y/\CI,do(A)]Pr[Cl |do(S),do(A)] = Pr(Y’|do(A)]
C1

This condition shows that A U C; U C5 ensure causal-fairness. O

This shows that the features C; and C, ensure causal fairness of
the dataset. Using these results, we identify a closed form expres-
sion to identify all variables that ensure causal fairness. Note that
whenever the trained classifier is not bayes optimal, C; still ensure
causal fairness but the effectiveness of Cy crucially relies on the
optimality of the trained classifier.

THEOREM 1. Consider a dataset D with admissible variables A,
sensitive S, a set of variables X with a target Y. A variable X € X is
safe to be added along with T U A, where T C C1 U Ca U A without
violating causal fairness iff (i) (X L S|A) for some A C A or (ii)
(X LY|C',A), where (C' L S|A) or (iii) X is not a descendant of S
in G4, where G is same as G with incoming edges of A removed.

Proor. Using Lemma 5 and 6, we can observe that all the vari-
ables C1 U Cy such that (C; L S|A), where A C A and (Cy L
Y|Cy, A) are safe to be added without worsening the fairness of the
dataset. Now consider a variable X, which is not a descendant of S
in Gz. All paths from S to X are blocked when we intervene on A
as all incoming edges of A are removed. Therefore it is safe to add
X without affecting causal fairness of the dataset.

To show the converse, when X £ S|A,VAC Aand X L Y|C',A
and X is a descendant of S in G4, then we show that X can worsen
the fairness. We can observe the following properties about X:

e (S L X|A) implies there exists a path from S to X that is
unblocked given A.

e (X L Y|A,C’) implies that X is predicitve of Y given the
features T C Cy U Cy. Therefore, there will be a direct edge
from X to the learned variable Y’.

If the paths from S to X are unblocked in G4 then S to X is
unblocked when we intervene on A. In this case, the path from
S — X — Y’ is unblocked and therefore X is a biased variable that
violates causal fairness of the dataset. m]

SeqSel captures variables that can be identified by performing
CI tests. However, the last condition of Theorem 1 requires inter-
vention to identify other variables. Devising a set of CI tests to
identify these variables is an interesting question for future work.

REMARK 3. PC-algorithm [48], one of the most popular causal
discovery techniques learn the causal graph structure from the data.
However, these techniques are known to work under specific modelling
assumptions of the data and are highly inefficient. The number of
CI tests required by such techniques is generally exponential in the
number of input attributes.

Complexity: Algorithm 1 tests conditional independence (CI) of
each variable with S and Y. In the worst case, it requires O(2 1Al n) CI
tests to identify all the variables that do not worsen the fairness of D.
In most realistic scenarios, |A| is a small constant, yielding overall
complexity of O(n), where n is the number of features. Existing
CI testing techniques can generate spurious correlations between
independent variables for large values of n. In the next section, we



propose a group testing formulation that reduces this complexity
to O(log n) tests, thereby improving its accuracy.

4.3 Group Testing

Group testing is an old technique that efficiently performs tests
on a logarithmic number of groups of items rather than testing
each item separately. It has not been used in causal inference to
identify independent variables. We use graphoid axioms to show
the following two results for any collection of variables X and
Z justifying the correctness of group testing in our framework.

Algorithm 2 GrpSel

1: Input: Variables A, S, X, Y

2: C; « first_phase((A,S,X1,Y)

3: Cy « final_candidates((A,S,X;,Y,Cq)
4: return C; U Cy

Algorithm 3 first_phase

1: Input: Variables A, S, X, Y

2: Cp (75

3: if 3A C A such that (X L S|A) then

4: Ci «X

5: else

6: X1, Xy « random_partition(X)

7: C; « first_phase(A,S,X1,Y)

8: C; « Cp U first_phase(A,S,X;,Y)
9: return C;

Algorithm 4 final_candidates

1: Input: Variables A, S, X, Y, C;
2: Cy «— ¢

3: if (X 1L Y|A,C;) then

4 C, «— X

5: else
6
7
8
9.

Xj, X2 « random_partition(X)
C, « final_candidates(A,S, X1, Y,Cy)
Cy « Cy U final_candidates(A, S, X;, Y, Cy)

: return C;

LemMmA 7. If3X; € XsuchthatX; L X;|Z then (X7 L X\{X1}|2)
for some variables X1 and Z.

LemMA 8. If (X L X\ X1|Z) then 3X; € X\ {X1} such that
(X1 L Xi|Z) for some Z.

These results yield the following two properties that make Algo-
rithm 1 more efficient.

o If (X1 L X5,X3|Z) then Xy L X2|Z or X3 L X3|Z
o If (X1 L X5,X3|Z) then Xy L X3|Z and X2 L X3|Z

Algorithm 2 presents an improved version of SeqSel that uses
group testing to remove all the variables that do not satisfy the
CI statements shown in Theorem 1. We call this approach GrpSel.
GrpSel operates in two phases, aiming to capture variables Cq
and Cy, respectively. The first phase (Algorithm 3) identifies the
variables which do not capture any new information about sensitive
variables given A C A. It tests the CI between S and X given

A C A If the variables are conditionally independent, then all
the variables X are identified to maintain causal fairness. On the
other hand, if the variables are conditionally dependent, the set X is
partitioned into two equal partitions and first_phase algorithm
is called recursively for both the partitions. Algorithm 4, performs
the second phase to identify the variables which are independent
of the target variable Y given A and C;. This algorithm operates
similarly to first_phase with a different CI test.

Complexity. Algorithm 3 requires a total of 21Alk log n tests to
identify all variables X that satisfy (S L X]|A), where k is the
number of variables that do not satisfy the condition. The second
phase requires k” log k tests to identify the variables that satisfy CI
with Y where k’ is the number of variables that do not satisfy the
condition. Therefore, GrpSel has better complexity when the total
number of biased variables k is o(n/log n).

5 EXPERIMENTS

In this section, we empirically evaluate our technique along with
baselines on real-world and synthetic datasets. We answer the
following research questions. Q1 Are SeqSel and GrpSel able to
ensure causal fairness of the trained classifier? Q2 How does the
quality of classifier trained using different feature selection algo-
rithms compare in terms of fairness and accuracy? Q3 Is GrpSel
effective in reducing the number of required CI tests?

5.1 Setup
Datasets. We consider the following datasets.

o Medical Expenditure (MEPS) [2]: predict total number of hos-
pital visits from patient medical information (Healthcare
utilization is sometimes used as a proxy for allocating home
care). We consider two variations denoted by MEPS(1) and
MEPS(2). MEPS(1) considers ‘Arthritis diagnosis’ as admissi-
ble and MEPS(2) considers ‘Arthritis diagnosis’ and ‘Mental
health’ as admissible. Race is considered sensitive. Contains
7915 training and 3100 test records.

German Credit [1] applications. The account status is con-
sidered admissible and person’s age is used as a sensitive
attribute. Contains 800 training and 200 test records.

o Compas [23]: predict criminal recidivism from features such
as the severity of the original crime. The number of prior
convictions, age and severity of charge degree are taken as
admissible and race as sensitive. Contains 7200 samples.
Adult [3]: predict income of individuals. Gender is considered
sensitive and hours per week, occupation, age, education are
considered admissible. Contains 48k individuals.

Synthetic: a synthetically constructed dataset where a feature
is constructed to be highly correlated to a sensitive feature
with probability p. This dataset is used for understanding
the effect of number of features and the fraction of noisy
features on the complexity of our techniques.

Baselines. We consider the following baselines to identify a
subset of features for the training task.
(1) A: uses the variables in the admissible set.
(2) ALL: uses all features present in the dataset.
(3) Hamlet [33]: uses heuristics to identify features which do
not add value to the data set and can be ignored.



GrpSel (O SeqSel A  Hamlet

0.95

All SPred

0.9 0.9

Accuracy
Accuracy

0.85 0.85

av

0 0.1 0.2 0.3 0.4
Abs. odds difference
(a) MEPS(1)

0.5 08 0 0.1 0.2 0.3 0.4

Abs. odds difference
(b) MEPS(2)

0.8

0.5

Accuracy

A A Capuchin ¥ FairPC O
9
0.84
0.8 .
0.75 v g o
- 3 o072
o'S g
07 0.66 ’
A © 0.6
0855 0.2 0.4 0 0.1 0.2 0.3 0.4
Abs. odds difference Abs. odds difference
(c) German (d) Compas

Figure 2: Classifier fairness and accuracy on MEPS, German, and Compas datasets.
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(4) SPred: learn a classifier using an exhaustive set of features to
predict the sensitive attribute. Based on feature importance,
we remove the highly predictive features.

(5) Capuchin [45]: state-of-the-art in-processing technique that
ensures causal fairness by adding or removing tuples.

(6) Fair-PC: learns the causal graph using PC algorithm [48]
and uses it to infer features that ensure causal fairness.

Experiment Setup. We evaluate accuracy and fairness of the
trained classifier on the test set. To evaluate fairness, we measure
conditional mutual information (CMI) and absolute odds difference
calculated as the difference in false positive rate and true positive
rate between the privileged and unprivileged groups. We consider
the CMI and group fairness metric as a proxy because zero CMI
implies causal fairness which further implies group fairness and
can be easily evaluated from observed data [45]. We use RCIT [49]
package in R for CI tests and logistic regression as the classifier.

5.2 Solution Quality

Figure 2 compares the accuracy of the classifier trained with the
features identified by our baselines along with its fairness. ALL
learns the most accurate classifier as compared to all other tech-
niques. However, it achieves the highest odds difference and hence
worst fairness with respect to the sensitive attribute of the dataset.
A maintains high fairness but achieves quite low accuracy as com-
pared to SeqSel and GrpSel. Hamlet does not identify features
that are highly correlated with sensitive attributes and does not
improve its fairness. SPred identifies a few features that capture
sensitive information but is unable to identify all such features.
Hence, it does not improve the fairness of the classifier as com-
pared to GrpSel. Capuchin and FairPC are able to improve fairness
as compared to ALL but performs worse than GrpSel and SeqSel.
However, accuracy of the learnt classifier is lower for FairPC than
Capuchin, SeqSel, and GrpSel. SeqSel and GrpSel maintain high
fairness with respect to various metrics of fairness without much
loss in accuracy. We calculated feature importance of identified at-
tributes and identified that a number of attributes identified in the

second phase of our algorithm have non-zero feature importance
and contribute towards classifier prediction.

For MEPS and German datasets, GrpSel and SeqSel are able to
identify features that mitigate the bias and do not lose much in
classifier accuracy. However, all other techniques have higher bias
against the protected attribute on Compas. In this case, we observe
that the admissible feature is correlated to the sensitive attribute,
affecting the fairness of the trained classifier. We empirically swept
the p-value threshold from 0.01 to 0.05, and results are stable and
do not impact its performance. As an example, the accuracy of the
trained classifier was 0.83-0.84 on MEPS and within 0.73-0.76 on
German on varying the thresholds. We observed similar behavior
on changing the classifier from logistic regression to random forest.

Table 2 compares the conditional mutual information between
the learnt variable Y’ (according to GrpSel) and target Y with S
given A.3 Across all datasets, Y is independent of S even though the
original target variable Y was unfair. This experiment validates the
efficacy of our techniques to identify features that ensure fairness
and get rid of the biased features.

CMI Number of tests ]
| Dataset | CMI(S,Y'JA) [ CMI(S,Y[A) [ | | Seasel | Grpsel |
MEPS(1) 0.0 0.015 MEPS(1) 343 247
MEDPS(2) 0.0 0.014 MEPS(2) 420 390
German 0.002 0.018 German 525 81
Compas 0.0 0.01 Compas 257 83
Adult 0.01 0.03 Adult 125 23

Table 2: Conditional Mutual Information [38] and number
of CI tests required for each dataset
Model Selection. We tested these pipelines by training other ML
algorithms like random forest and Adaboost classifier. Across all
datasets, we observe that SeqSel and GrpSel maintain fairness of
the trained classifier while maintaining high accuracy.

5.3 Synthetic Data

In this experiment, we tested the causal fairness metric by simu-
lating interventions presented in Definition 2 and compared with
ground truth. We evaluate GrpSel and SeqSel on multiple syn-
thetic datasets generated using causal graphs of varied sizes (1000,
3000 and 5000). Across all datasets, we observed that SeqSel and
GrpSel identified majority of the variables that ensure causal fair-
ness. However, other baselines were not able to identify all the
biased features, thereby leading to biased datasets.

Complexity. The total number of CI tests required by SeqSel
and GrpSel are shown in Table 2. GrpSel requires fewer tests than
SeqSel across all datasets. Since all these datasets contain fewer

3Some mutual information values were slightly negative and were truncated to 0 as
suggested by Mukherjee et al. [38].
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vs. p, the percentage of biased variables.

than 1000 features, the improvement is not very significant. To
understand the difference in complexity of the two techniques, we
perform an extensive simulation study by varying the total number
of features and the fraction of biased variables.

Figure 5 compares the total number of CI tests required to iden-
tify variables that ensure causal fairness. With the increase in total
number of features (n), the number of tests required by SeqSel
grows linearly. However, the growth of GrpSel is sub-linear and
requires fewer tests than SeqSel for larger n. This result is co-
herent with our theoretical analysis of O(n) tests for SeqSel and
O(klogn) for GrpSel, where k is the number of biased variables
and n is the total number of features in the dataset.

Effect of p. Figure 4 compares GrpSel and SeqSel as a function

of the total fraction of biased variables in the dataset. SeqSel’s
complexity is driven by the total number of features irrespective
of the number of biased features. However, the tests required by
GrpSel are dependent linearly on p. This experiment confirms the
benefit of using group testing when the total number of biased
variables are fewer than (logn)/n.
Advantages of Group-testing We now evaluate the benefits of
using group-testing based technique for feature selection. We gen-
erated a synthetic dataset containing 1000 records and increased the
number of features (denoted by t) from 100 to 1000 in increments of
100. We tested the correctness of GrpSel’s output with the ground-
truth calculated from the causal graph. We observed that around 5
attributes that are independent of S are dropped by SeqSel when
t = 500. The spuriousness increases to ~ 47 features when ¢ = 1000.
On the other hand, GrpSel did not return any spurious correlation
for t < 900 features and returned less than 5 spurious features
when t = 1000. This experiment demonstrates that group-testing
can reduce the chances of getting a spurious output.

5.4 Robustness

In this experiment, we changed the test data by modifying the
effect of sensitive attribute on the target variable through specific
attributes (by changing edge weights of the causal graph). This
data distribution shift did not affect the performance of GrpSel or
SeqgSel and both techniques achieved 0 absolute odds difference.
In contrast, prior pre-processing techniques led to an increase in
absolute odds difference of upto 15%. The evaluation demonstrated
the weakness of pre-processing techniques to generalize to settings
beyond the data distribution of the repaired training dataset. Prior
work has referred to it as over-fitting with respect to fairness [12].
Running time. Figure 3(b) compares the running time of CI test
run using RCIT package for varying size of the conditioning set.
This experiment shows that the running time increases linearly

vs. n for a fixed number of biased variables.

with increasing set size but the gradient is very slow. For example,
the running time for the adult dataset increases from 8 sec to less
than 10 sec when the conditioning set size increases from 1 to 256.
Therefore, performing a CI test with groups of features is effective.
Among all techniques, we observe that GrpSel and SeqSel ex-
ecute within 10 minutes for all real-world datasets, and it takes
around 1 minute to train a classifier. Therefore, our techniques
learns a fair classifier in less than 11 minutes across all datasets.

6 RELATED WORK

To the best of our knowledge, there is very little related work on
discrimination-aware or fair feature selection. One of the recent
papers on feature construction and exploration [12] has studied
the problem of constructing new features that can help improve
prediction without affecting fairness. Grgi¢-Hlaca et al. [18] use
human moral judgements of different properties of features (voli-
tionality, reliability, privacy, and relevance) as the starting point for
feature selection. Although they cite causal fairness definitions as
the basis for feature relevance, they do not use the data to quantify
this relevance. Salimi et al. [45] consider causal fairness to change
the input data distribution as opposed to identification of a small
set of features that ensure causal fairness. Dutta et al. [13] start
with the causal fairness perspective as well and also use tools from
information theory, but use partial information decomposition to
partition the information contained in the features into exempt
and non-exempt portions; the goal is not feature subset selection,
but gaining insight into different types of discrimination. Nabi and
Shpitser [39] considered causal pathways to identify discrimination
and then train a fair classifier assuming full knowledge of the un-
derlying causal graph. Zhang et al. [55] consider causal definitions
of fairness and devise algorithms that repair the dataset to ensure
fairness. Noriega Campero et al. [40] and its followup [4] exam-
ine an active feature acquisition paradigm from the perspective of
fairness but do not study the causal notion of fairness.

7 CONCLUSION

In this paper, we have tackled the problem of data integration —
joining additional features to an initially given dataset — while not
introducing additional unwanted bias against protected groups. We
have utilized the formalism of causal fairness and do-calculus
to develop an algorithm for adding variables that is theoretically-
guaranteed not to make fairness worse. We have enhanced this
algorithm using group testing to make it more efficient (the first
use of group testing in such a setting) and shown its efficacy on
several datasets. The extension of our techniques for active learning
or online setting are interesting questions for future work.
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