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ABSTRACT

Recent advances in deep learning have led to breakthroughs in the
development of automated skin disease classification. As we observe
an increasing interest in these models in the dermatology space, it is
crucial to address aspects such as the robustness towards input data
distribution shifts. Current models tend to make incorrect inferences
for test samples from different hardware devices and clinical settings
or unknown disease samples, which are out-of-distribution (OOD)
from the training samples. To this end, we propose a simple yet
effective approach that detects these OOD samples prior to making
any decision. The detection is performed via scanning in the latent
space representation (e.g., activations of the inner layers of any pre-
trained skin disease classifier). The input samples are also perturbed
to maximise divergence of OOD samples. We validate our OOD
detection approach in two use cases: 1) identify samples collected
from different protocols, and 2) detect samples from unknown dis-
ease classes. Our experiments yield competitive performance across
multiple datasets for both use cases. As most skin datasets are re-
ported to suffer from bias in skin tone distribution, we further evalu-
ate the fairness of these OOD detectors across different skin tones.

Index Terms— Subset scanning, Skin disease classification,
Out-of-distribution sample detection

1. INTRODUCTION

Skin disease remains a global health challenge, with skin cancer be-
ing the most common cancer worldwide [1]. Following the recent
success of deep learning (DL) in various computer vision problems,
convolutional neural networks (CNNs) have been employed for skin
disease classification. As we observe increasing interest in DL for
dermatology [2, 3], it is imperative to address transparency, robust-
ness, and fairness of these solutions [4, 5, 6]. While many existing
DL techniques [7, 8] achieve high performance on publicly avail-
able datasets [1, ?, 9, 10], they utilize ensembles of multiple mod-
els aimed at maximising performance with limited consideration to
shifts in the input data [8, 11, 7]. This might result in incorrectly
classifying new samples with high confidence though these samples
might be from previously unknown classes. Thus, it is necessary
to detect out-of-distribution (OOD) samples prior to making deci-
sions in order to achieve principled transfer of knowledge from in-
distribution (ID) training samples to OOD test samples, thereby ex-
tending the usability of the models to previously unseen scenarios.

We propose a simple yet effective approach that scans over the
activations of the inner layers of any pre-trained skin disease clas-
sifier to detect OOD samples. Input data is perturbed beforehand
with our proposed ODINlow, a modification of ODIN [12], which
improve the OOD detection performance in earlier layers of the net-
work. In our framework, we define two different OOD use cases:

Table 1. OOD sample detectors for skin disease classification.
[8] [11] [7] [14] [15] [16] [17] [18] ours

Ensemble 3 3 3 7 7 3 7 7 7
Post-Training Detection 7 7 7 7 3 3 3 3 3
New Protocol Detection 7 7 7 7 7 7 3 3 3
New Disease Detection 3 3 3 3 3 3 3 7 3
Algorithmic Fairness 7 7 7 7 7 7 7 7 3

protocol variations (e.g., different hardware devices, lighting set-
tings and not compliant with clinical protocol); and unknown dis-
ease types (e.g., samples from new disease type that was not ob-
served during training). Without requiring any prior knowledge of
the OOD samples, our proposed approach performs comparably or
better compared to the existing OOD detectors, Softmax Score [13]
and ODIN [12], for both use cases. We further explored how our pro-
posed and existing OOD detectors perform across skin tones to eval-
uate fairness. We show that the current OOD detectors show higher
performance in detecting darker skin tones as OOD samples than
those of lighter skin tones, which is likely impacted by the imbal-
anced training datasets that heavily lack samples of dark skin tones.

2. RELATED WORK

Our review of existing OOD detection methods is grouped into pre-
training [8, 11, 7, 14] and post-training [15, 16, 17], based on where
the detection step is applied. Pre-training detection approaches
have prior knowledge of the OOD samples and incorporate it during
their training phases. Many of these approaches utilize ensembles
of existing CNNs (and their variants) to detect OOD samples [8,
11, 7, 14]. Ahmed et al. [8] and Bagchi et al. [14] applied one-
class learning where each class was iteratively discarded as an OOD
class in a one-vs-all cross-validation strategy, and the OOD samples
were detected by taking the prediction average of all the models. En-
semble employed by Zhang et al. [7] consisted of both multi-class
and binary classifiers for OOD detection. Gessert et al. [11] uti-
lized an extra skin dataset of OOD samples to train an ensemble
of CNNs. Post-training detection approaches do not require any
prior knowledge of the OOD samples during training [15, 16, 17,
18]. Pacheco et al. [16] detected OOD samples using Shannon en-
tropy [19] and cosine similarity metrics on their CNN’s probability
outputs. Combalia et al. [15] detected OOD samples using Monte-
Carlo Dropout [20] and test data augmentationto estimate uncer-
tainty such as entropy and variance in their predictions. Pacheco et
al. [17] extended Gram-OOD [21] with layer-specific normalization
of Gram Matrices to detect OOD samples. Zaida et al. [18] simulate
OOD samples from in-distribution (ID) samples for training, and use
K-reciprocal nearest neighbour during inference for OOD detection.
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Table 1 summarizes notable OOD detectors in dermatology.
Most detectors employed pre-training approaches, which require
prior OOD knowledge, and used ensembles of CNNs, which could
easily result in model complexity. We propose a simple, post-
training detector that can be applied to any pre-trained network.

3. PROPOSED FRAMEWORK

We propose a weakly-supervised OOD detector (Figure 1) to iden-
tify skin images from different collections protocols and of unknown
skin disease types, based on subset scanning [22] and ODIN [12].
We further evaluate algorithmic fairness of the proposed work across
skin tones. We describe our proposed approach in detail next.

Subset scanning for OOD sample detection Given a pre-trained
network C for skin disease classification, we apply subset scan-
ning [22] on the activations in the intermediate layers of C to de-
tect a subset S of OOD samples (see Algorithm 1). Subset scanning
searches for the most anomalous subset S∗ = argmaxS F (S) in
each layer, where the anomalousness is quantified by a scoring func-
tion F (·), such as a log-likelihood ratio statistic. When searching
for this subset, an exhaustive search across all possible subsets is
computationally infeasible as the number of subsets (2N ) increases
exponentially with the number of nodes (N ) in a layer. Instead, we
utilize a scoring function that satisfies the Linear Time Subset Scan-
ning [23] property, which guarantees that the highest-scoring subset
of nodes in a layer are identified within ≈ N searches instead of
2N searches. Following the literature on pattern detection [24, 22],
we utilize non-parametric scan statistics (NPSS) [24] as our scoring
function as it makes minimal assumptions on the underlying distri-
bution of node activations.

We apply subset scanning on set of layers CY of C. For each
layer Cy ∈ CY , we form a distribution of expected activations at
each node using the known ID samples Xz , which were used during
training and can also be referred as background data. Comparing this
expected distribution to the node activations of each test or evalua-
tion sample Xi, we can obtain p-values pij for each ith test sample
and jth node of layer Cy . We can then quantify the anomalousness
of the p-values by finding the subset of nodes that maximize diver-
gence of the test sample activations from the expected. This yields
|CY | anomalous scores S∗

(Cy)
for each test sample. We expect OOD

samples to yield higher anomalous scores S than ID samples, and
detect OOD samples with simple thresholding. Note that the OOD
detection is performed in an unsupervised fashion without any prior
knowledge of the OOD samples.

ODIN and ODINlow Perturbations We also evaluated the im-
pact of adding small perturbations, ODINlow and ODIN [12], to
each test sample prior to subset scanning. ODIN involves two steps,
input pre-processing and temperature scaling. In the first step, Xi
is pre-processed by adding a small perturbation computed by back-
propagating the gradient of the training loss with respect to Xi and
weighted by parameter ε. This pre-processed Xi is then fed into the
network, and temperature scaling with parameter τ is applied in the
final softmax layer Cs. The two hyperparemters, ε and τ , are chosen
so that the OOD detection performance of Softmax Score [13], the
maximum value of the softmax layer output, is optimized. We modi-
fied ODIN and propose ODINlow with parameters τlow and εlow that
leads to the lowest Softmax Score performance. As subset scanning
is applied on the the inner layers of the network, using ODINlow
helps improve OOD detection in the earlier layers of the network.

Algorithm 1: Proposed OOD detector

input : Background Image: Xz ∈ DH0 , M = |DH0 |,
Evaluation Image: Xi, Training Dataset: Dtrain,
Significance level: αmax.

output: AUROC, F1 for Xi

1 C ← TrainSkinDiseaseClassifier (Dtrain);
2 X̂z, X̂i ← AddODINlow (Xz , Xi);
3 for Cy in C do
4 for j ← 0 to |Cy| do
5 AH0

zj ← ExtractActivation (Cy , X̂z);
6 Aij ← ExtractActivation (Cy ,X̂i);

7 pij =

∑
Xz∈DH0

I(Azj>=Aij)+1

M+1
;

8 psij ← SortAscending ({y < αmax ∀ y ⊆ pij});
9 for k ← 1 to |Cy| do

10 S(k) = {py ⊆ psij∀y ∈ {1, . . . , k}};
11 αk = max(S(k));
12 F (S(k))← NPSS (αk, k, k);

13 k∗(Cy) ← argmaxF (S(k));
14 α∗

(Cy)
= αk∗

(Cy)
;

15 S∗
(Cy)

= S(k∗
(Cy)

);

16 return OODPerformance (
∑
Cy
S∗
(Cy)

)

Algorithmic Fairness of OOD detectors across skin tone We
further evaluate algorithmic fairness of our OOD detector across skin
tones, estimated by adopting an existing framework [25]. To this
end, the non-diseased regions of a given skin image are segmented
using Mask R-CNN [26], and individual typology angle is computed
as a = arctan

(
Lµ−50

bµ

)
× 180◦

π
, where Lµ and bµ are the average

luminance and yellow values of non-diseased pixels. Using a, we
stratify the samples into three Fitzpatrick skin tone categories, Light
(a > 41◦), Intermediate (28◦ < a ≤ 41◦), and Dark (a ≤ 28◦).

4. DATASETS

We validate the proposed framework using two datasets: ISIC
2019 [1, 27, 9] for samples of unknown diseases; and SD-198 [10]
for samples from unknown collection protocols.

ISIC 2019 [1, 27, 9] dataset consists of 25, 331 dermoscopic im-
ages among eight diagnostic categories: Melanoma, Melanocytic ne-
vus, Basal cell carcinoma, Actinic keratosis, Benign keratosis, Der-
matofibroma, Vascular lesion, and Squamous cell carcinoma. As
its test set is not available publicly, we set aside Dermatofibroma
(DF) and Vascular lesion (VASC) samples during training, and uti-
lize them as OOD samples of unknown diseases during testing.

SD-198 [10] dataset contain 198 diseases from different types
of eczema, acne and cancer, totalling 6, 584 images. The images
are collected via various devices, mostly digital cameras and mobile
phones with higher levels of noise and varying illumination. We use
this dataset for OOD samples from unknown collection protocols.

5. EXPERIMENTAL SETUP

We adopt DenseNet-121 [28] pre-trained on ImageNet [29] for skin
disease classification and fine-tune it on ISIC 2019 [1] with seven

Authorized licensed use limited to: IBM. Downloaded on May 06,2022 at 19:31:59 UTC from IEEE Xplore.  Restrictions apply. 



SD-198        

ISIC 2019        

Skin image datasets

Skin disease classifier

Skin tone 
distribution extractor 

Apply subset scanning to each strata

Extract activations from   

  Stratify data         by Disease and Skin tone     

Optionally add ODINlow to each strata

Extract anomalous nodes and evaluate                     

OOD Pipeline

Fig. 1. Block diagram of the proposed approach with a trained model for skin disease classification C over mentioned datasets (D1, D2).

Table 2. OOD detection performance for samples of unknown col-
lection protocols, SD-198 [10]. Bold is best in each column.

Methods AUROC F1

Softmax Score [13] 74.4± 1.7 71.0± 1.1
ODIN [12] 74.5± 1.6 70.8± 1.1

SS (Cs) 68.2± 1.4 71.3± 0.5
SS (Cconv1 ) 41.6± 1.8 68.1± 0.2

SS (Cconv1 )+ODINlow 85.4± 0.6 81.9± 0.6
SS (Sum All Layers)+ODINlow 91.0± 0.8 86.9± 1.1

disease classes. Thus, we resize the last four fully connected lay-
ers to 512, 256, 128, and 7 nodes followed by a softmax. We use
Adam [30] optimization on weighted cross-entropy loss with a learn-
ing rate of 1e−4 and a batch size of 40. We apply subset scan-
ning across |CY | = 8 layers consisting of six convolutional lay-
ers (Cconv1 , ..., Cconv6), global pooling layer (Cgp), and softmax
layer (Cs). For ODINlow, we use τlow = 2 and εlow = 0.2, which
leads to the lowest Softmax Score performance (AUROC = 0.5) for
both OOD use cases. To validate the detection of unknown disease
samples, we use DF and VASC classes from ISIC-2019, consisting
of 253 and 225 samples, respectively. For samples with different
collection protocols, we extract ten sets of 260 samples from SD-
198 and report their aggregate performance. We employ Area Under
Receiver Operating Characteristic Curve (AUROC) and maximum
F1-score (F1) as our OOD detection performance metrics.

6. RESULTS

We first show the result of detecting OOD samples that are col-
lected with different protocols (SD-198 [10]) in Table 2. In the top
panel, we show the performance of the existing baselines, Softmax
Score [13] and ODIN [12]. The remaining panels shows the result
of our proposed approach - subset scanning (SS) with and without
ODINlow noise. We achieve the best performance using the sum of
subset scores across all layers S∗

(Cy)
with ODINlow (bolded).

Table 3 shows the performance of detecting OOD samples of
unknown diseases (DF and VASC) that are unseen during training.
Note that these OOD samples are from the same dataset as the train-
ing dataset. While Softmax Score [13] yields the best performance,
subset scanning on the softmax layer Cs shows comparable perfor-
mance. We see worse performances with ODINlow as these OOD
samples are from the same dataset as ID samples and adding noise
likely blurs the unique features present in each skin disease class.

Lastly, Figure 2 shows the change in AUROC of our proposed
work with the stratification of OOD samples based on skin tone.
While the samples of Light (blue) and Intermediate (magenta) skin
tones show consistent performances throughout the eight layers CY

Table 3. OOD detection performance for samples of unknown dis-
ease types, DF and VASC [1]. Bold is best in each column.

Methods AUROC F1

DF VASC DF VASC
Softmax Score [13] 80.9 73.2 76.5 70.5

ODIN [12] 72.3 65.3 70.3 67.4
SS (Cs) 80.8 70.8 75.7 72.3

SS (Cconv1 ) 50.9 62.5 65.8 68.7
SS (Cconv1 )+ODINlow 47.6 39.8 65.9 67.1

SS (Sum All Layers)+ODINlow 47.6 40.4 65.9 67.2

(a) SD-198 (b) DF (c) VASC

Fig. 2. Change in performance (AUROC) of our proposed OOD
detector across CY layers with stratification into three skin-tone cat-
egories, Light (blue), Intermediate (magenta), and Dark (cyan).

that we consider, we see varying performances for those of Dark
(cyan) skin tones. This instability of performance for Dark skinned
samples may be partially because the network is trained on a datasets
that heavily lacks samples of Dark skin tones. For instance, Dark
skinned samples constitute only around 3.9% of DF and VASC sam-
ples and around 13% of SD-198 samples. This could also encourage
OOD detectors to easily classify them to be out of distribution.

7. CONCLUSION

We propose a weakly-supervised method to detect OOD skin images
(collected in different protocols or from unknown disease types) us-
ing input perturbation and scanning of the activations in the inter-
mediate layers of any pre-trained classifier. Our proposed method
improves on the state-of-the-art for OOD samples that are collected
from a different protocol, and it achieves competitive performance
with the state-of-the-art in detecting samples of unknown diseases.
We further stratify these OOD samples based on skin tone and ob-
serve imbalanced detection performance for Dark samples. Thus,
future work aims to understand the reasons for such detection dispar-
ity across skin tones, e.g., lack of training representation or different
manifestation of skin diseases.
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