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ABSTRACT
Commensurate with the rise in algorithmic bias research, myriad
algorithmic bias mitigation strategies have been proposed in the
literature. Nonetheless, many voice concerns about the lack of trans-
parency that accompanies mitigation methods and the paucity of
mitigation methods that satisfy protocol and data limitations of
practitioners. Influence functions from robust statistics provide a
novel opportunity to overcome both issues. Previous work demon-
strates the power of influence functions to improve fairness out-
comes. This work proposes a novel family of fairness solutions,
coined influential fairness (IF), that is human-understandable and
also agnostic to the underlying machine learning model and choice
of fairness metric. We conduct an investigation of practitioner
profiles and design mitigation methods for practitioners whose
limitations discourage them from utilizing existing bias mitigation
methods.
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1 INTRODUCTION
Algorithmic bias is a persistent obstacle in the realm of machine
learning (ML), impacting nearly every industry where it is applied.
Concerns have arisen with respect to image recognition and object
detection [20, 112], health assessment [40, 80, 90], advertisement
systems [21, 42, 69, 109], and others [5, 19, 78]. Fairness research
focuses on both the detection and the mitigation of bias in machine
learning algorithms. The bulk of these contributions have been in
the last decade; across the landscape of this research, there is an
incredibly large collection of mitigation methods catering to diverse
use cases, tutorials for utilizing mitigation methods, and toolkits
that easily integrate into existing ML pipelines [89]. Furthermore,
institutions are encouraging the production of fair machine learn-
ing tools now more than ever [51]. Despite the prolific number
of research works, there is a severe lack of application of fairness
technologies in practice [48, 88, 98, 105]. Practitioners require expla-
nations of unfairness, transparent mitigation methods, and methods
that are sensitive to their limitations as practitioners who abide by
protocols and regulations established by their employer or by their
own accord.

Influence functions from robust statistics [30] have been trans-
formative for transparent and explainable ML. Using the Hessian
matrix and the loss gradient, one can compute the influence that
each training point has on a test outcome. This strategy has been
shown to increase transparency, explain model behaviors, and iden-
tify adversarial examples [62]. Furthermore, recent work by [92]
has shown that influence functions can also be used with group
fairness objectives. This work aims to demonstrate the extent of
that finding and employ the properties of influence functions to
induce more transparency in fair machine learning pipelines.

This work introduces a new avenue of fair AI research coined
influential fairness (IF). IF aims to add explainability, transparency,
and contextualization to the procedure of bias mitigation via fair-
ness influence functions. Furthermore, it aims to provide a diverse
array of solutions to fit the diverse needs of practitioners across
applications. Through the formulation of practitioner profiles, we
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delineate four types of practitioners that emerge in fairness liter-
ature. Utilizing these profiles, we design mitigation methods that
satisfy the user needs required by these practitioners. Our proposed
mitigation methods take complex functions from robust statistics
and transform them into simple add, remove, or transform strategies
that encourage human-in-the-loop implementation. We propose
four mitigation methods and provide additional implementation
options to align with the limitations of our practitioner profiles.
We demonstrate the effectiveness of our proposed strategies by
testing their performance on benchmarked fairness datasets with
several group fairness objectives. Our research contributions are as
follows:

• A novel formulation of profiles that organize the diverse
needs and limitations of practitioners.

• New mitigation methods utilizing group fairness influence
functions, designed with transparency and practitioner limi-
tations in mind, by allowing practitioners complete control
of the type and number of modifications to their data.

• A novel evaluation of black-box and glass-box estimates of
fairness influence functions to assist practitioner profiles
with only black-box access to models.

• Lastly, a mapping of our curated methods to the practitioner
profiles that best match their limitations.

We provide a software implementation of our methods on Github.1

2 BACKGROUND AND RELATEDWORK
2.1 Bias Mitigation
The real harms [33] from algorithmic bias have motivated the
growth of trustworthy AI research, which focuses on optimizing
algorithms through accountability, transparency, explainability, fair-
ness, privacy, etc. [103]. When investigating the important tenets of
machine learning using the ethics guidelines of 84 institutions, [51]
identified 11 unique tenets that often emerged in these documents.
The most prominent of these tenets were fairness and transparency.

Fairness research is composed of socio-technical solutions to
unwanted bias [97]; a variety of bias mitigation methods have
emerged. Non-exhaustively surveying techniques by task type,
domain, and intervention time point, there have been mitigation
strategies for regression [3, 39], classification [2, 114], and ranking
[17, 95, 117]. Some mitigation methods depend on the problem do-
main, such as natural language processing [13, 15, 18] and computer
vision [56, 108, 113]. Also, many mitigation methods depend on
when the practitioner intends to implement the fairness interven-
tion, whether it be in the planning phase of a project, a.k.a. pre-
processing [37, 53, 54, 67], during the implementation of the model,
a.k.a. in-processing [38, 55, 66, 120, 121], or in the post-processing
phase [47, 59, 84, 85]. Furthermore, mitigation methods have been
built especially for specific notions of fairness [24], such as individ-
ual fairness [72, 84, 93], group fairness [47, 54], or counterfactual
fairness [34, 67].

Despite the diverse selection of mitigation strategies that exist,
there is a lack of application by practitioners [48, 88, 98, 105]. Many
practitioners voice a concern with the transparency of mitigation

1https://github.com/bricha2/InfluentialFairness

methods that modify the model in a statistically-complex and seem-
ingly black-box fashion [48, 88, 105]. Furthermore, many toolkits
make generalizations about the needs and the freedoms of prac-
titioners. When interviewed, practitioners preferred methods to
evaluate their datasets and methods that provide recommendations
for data collection, instead of non-transparent, complex methods of
mitigation [88, 105]. Despite the research that encourages new data
collection processes to minimize fairness disparity [28], few works
have given curated feedback on data collection. Finally, many prac-
titioners are limited in some respect: either they have institutional
regulations preventing their use of certain strategies [9] or they
have limited access to new data or sensitive features [48].

This work proposes four add/remove strategies and a relabeling
strategy. While such methods exist in the literature [25, 32, 37, 43,
49, 50, 54, 55, 73, 99], our proposed strategies allow practitioners
complete control of the number of modifications to their data. Fur-
thermore, each method is singular in the type of modification to
maximize transparency (e.g., adding and removing points are not
being done at the same time, as is done in [54]).

2.2 Influence Functions
Influence functions [30, 44] have a rich history and have been used
to study the effect of a single training point on themodel parameters.
Recent work [62] has shown that this machinery can be extended
to estimate the influence of a training instance on the loss incurred
by a model on new unseen test instance. Consider a supervised
learning task that maps the input spaceX to the output spaceY. We
are given 𝑁 training points, 𝑧1, ..., 𝑧𝑁 , where 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ) ∈ X × Y.
For a point 𝑧 and a set of parameters 𝜃 in the space of the parameters
Θ, let the loss associated with a training instance 𝑧 be 𝐿(𝑧, 𝜃 ) and,
therefore, let the objective be as follows:

𝜃∗ = argmin
𝜃 ∈Θ

1
𝑁

𝑁∑︁
𝑖=1

𝐿(𝑧𝑖 , 𝜃 ), (1)

to find an optimal set of parameters 𝜃∗.
By measuring the change in parameters, after upweighting a

training instance 𝑧 by some small 𝜖 , one can estimate the influence
of that instance on the optimal model parameters. Under certain
conditions [30], this influence can be estimated by taking the prod-
uct of the loss gradient and Hessian matrix:

𝐼 (𝑧) =
𝑑𝜃∗𝑧,𝜖
𝑑𝜖

|𝜖=0 = −𝐻−1
𝜃 ∗ ▽𝜃𝐿(𝑧, 𝜃∗), (2)

where 𝐻 is the second derivative of loss with respect to the model
parameters and ▽𝜃𝐿(𝑧, 𝜃∗) is the loss gradient with respect to the
parameters for the upweighted training instance.

Using the derivation in [62], the resulting influence of a point 𝑧
on the loss of a test point 𝑧𝑡𝑒𝑠𝑡 is approximated as:

𝐼 (𝑧, 𝑧𝑡𝑒𝑠𝑡 ) = −▽𝜃𝐿(𝑧𝑡𝑒𝑠𝑡 , 𝜃∗)⊤𝐻−1
𝜃 ∗ ▽𝜃𝐿(𝑧, 𝜃∗). (3)

This assumes, however, that the loss function is strictly convex in
the model parameters 𝜃 and the Hessian 𝐻𝜃 is a positive-definite
matrix. In addition to the derivation, [62] demonstrated how influ-
ence functions could be employed to increase model transparency,
explain model behavior, and identify adversarial samples.

Influence functions have been used across a number of works,
many focusing on adding transparency to a diverse set of ML
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tasks such as causal inference models [4], NLP models [18, 45],
multi-stage models [27], latent factor models [29], information dif-
fusion networks [35], recommendation systems [119], and unsuper-
vised tasks [100]. Outside of transparency, influence functions have
been shown to prevent data poisoning [63, 101], increase model
performance via relabeling [65] or data imputation [77], prevent
data memorization [16], generate robustness scores for predictions
[74, 96], and help identify harmful data [62, 92, 118]. Many works
have built upon [62] optimizing influence function computations to
include complex models, larger datasets, or generally faster compu-
tations [10, 12, 41, 61, 94, 122]. Furthermore, many works have pro-
vided alternative estimators of influence [6, 18, 46, 58, 60, 87, 107].

2.3 Influence Functions for Bias Mitigation
Influence functions are promising in algorithmic fairness, as they
afford an opportunity to provide example-based explanations and
build transparent mitigation methods. Nonetheless, to date, only
a few works have studied the use of group fairness metrics as the
objective in the influence function computation. Yu et al. [119] used
influence functions to mitigate data distribution-based bias in rec-
ommendation systems. While their work used influence functions
to mitigate data bias from feedback loops that stem from reinforce-
ment learning, it did not focus on group-based metrics. Brunet et al.
[18] proposed a novel method for estimating fairness influences in
natural language processing (NLP) tasks using differential bias of
word associations as an objective function. Again, their objective
functions differs from the proposed work. Furthermore, the work
herein goes a step further to investigate the use of the derived
influence functions as a mitigation strategy.

Sattigeri et al. [92] proposed a post-hoc mitigation strategy that
uses an infinitesimal jackknife-based approach to selectively sample
points to remove and modify the model without refitting. Specifi-
cally, they consider several incarnations of group fairness metrics,
denoted as𝑀 (𝐷𝑣𝑎𝑙 , 𝜃

∗) and define the fairness influence score as,

𝐼𝑀 (𝑧, 𝐷𝑣𝑎𝑙 ) = −▽𝜃𝑀 (𝐷𝑣𝑎𝑙 , 𝜃
∗)⊤𝐻−1

𝜃 ∗ ▽𝜃𝐿(𝑧, 𝜃∗). (4)

where, 𝐷𝑣𝑎𝑙 is a held-out set and 𝑧 is a training instance. The pro-
posed work investigates these fairness influence functions in a
broader scope, identifying the best practices for employing influen-
tial fairness and proposing several alternative mitigation methods
besides selective removal. While Sattigeri et al. [92] utilized group
fairness influence functions to mitigate bias, removing samples
holds assumptions that practitioners have no protocols prohibiting
such action and that the original model had enough data to balance
the removal.

Another restriction of practitioners is the lack of access to train-
ing data or the model internals. We investigate if the fairness in-
fluence definition in [107] is a useful proxy for estimating fairness
influence on the model parameters in such a black-box setting.
Specifically, the definition of Wang et al. [107] aims to measure the
change in fairness metric as measured on a new, unseen-by-the-
model set when a point in this same new set is slightly upweighted.
We call this approach a black-box estimator of fairness influence.
Unlike the training instance fairness influence estimator in (4), these
black-box estimators admit simpler analytical expressions. For ex-
ample, the influence of a validation instance 𝑧𝑣𝑎𝑙 on the statistical
parity (SP) fairness metric value computed on the whole validation

set can be computed as follows,

𝐼𝑀=𝑆𝑃 (𝑧𝑣𝑎𝑙 , 𝐷𝑣𝑎𝑙 ) = −ℎ(𝑧𝑣𝑎𝑙 ;𝜃∗) + 𝜇0 (5)

where ℎ represents the trained model and 𝜇0 is the positive out-
come rate of the unprivileged group. See Proposition 4 in [107] for
black-box influence function expressions for other metrics. Wang
et al. [107] then proceed to create a counterfactual distribution that
renders the current model fair. This is then used to learn an optimal
transport based pre-processor that transforms the features of a test
instance to match the fair counterfactual distribution. In contrast,
in this work, we restrict to a setting where we cannot alter feature
values. We do investigate however whether the black-box fairness
influence estimates of [107] can reduce the disparity of the original
model. In summary, we aim to investigate mitigation methods based
on several studied limitations of practitioners.

3 PRACTITIONER PROFILES
The first major contribution of this work is a novel mapping and
delineation of practitioner profiles in the context of fairness. User-
centered design has stressed for several decades the importance of
persona or profile creations to assist in the design of inclusive tech-
nologies [86, 106]. For the scope of this work, we define practitioner
as an individual actively engaged in the evaluation and mitigation
of fairness in ML. We define four distinct practitioner roles.

The Free-Range Practitioner. This practitioner has glass-box
access to their model, the training data used to train the model, and
external data that can be incorporated into their model. Further-
more, they have few regulatory protocols limiting their ability to
modify the data and the models (remove bad data, update model,
control over data collection, etc.). There are no assumptions needed
with respect to the free-range practitioner. Most existing solutions
assume that most practitioners are free-range. Such a practitioner
can do any type of modification because they are limited neither
by protocols nor data.

The Protocol Practitioner. This practitioner also has glass-
box access to their model, the training data, and external data.
However, they also follow strict protocols that prohibit certain
types of modifications to the model. These protocols can be based
on personal philosophy or they could be limitations put in place by
the practitioner’s corporate or government regulations [81, 88, 98].
Transparency is especially important for this practitioner. They
have stakeholders that they must explain modifications to, so it is
critical they understand the functionality of their mitigationmethod
[57, 105]. Furthermore, they have regulations that disallow for the
relabeling of points, the deletion of data, or often even the use of
sensitive attributes [81]. This practitioner is most likely to utilize
methods that allow them to collect better data instead of making
modifications to existing data [88, 105].

The Data-Limited Practitioner. This practitioner also has
glass-box access to their model and the training data. They have
freedoms with respect to manipulating the data and the model, but
they have no access to new data, perhaps due to the cost or imprac-
ticality of data collection [8, 28]. A special category of data-limited
practitioners are those without access to sensitive attributes [70].
Several works propose viable solutions for this type of limitation
[31, 104, 116, 123]. The data-limited practitioner requires bias miti-
gation methods that utilize the data that the practitioner does have.
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Figure 1: Visual depiction of methodology and experimentation done in the proposed work. Ground Truth scores computed via
methodology proposed in [92] and estimations of Black-box scores done as in [107].

Their reliance on data might discourage them from removing data.
Existing bias mitigation methods that this user is the most likely to
engage with include data augmentation or data synthesis.

The Auditing Practitioner. This practitioner has only black-
box access to the model and access to external data. They can run
data through the model and get outcomes, but they cannot see
the internal mechanisms of the model. They also do not have ac-
cess to the data used to train the model. Auditing practitioners
can be further delineated into cooperative and independent. Co-
operative practitioners are those who work in collaboration with
the practitioners with access to the model internals and training
data. In contrast, independent practitioners do not work in collab-
oration with practitioners with access. Auditing practitioners are
rarely considered in fairness research despite the fact that many
fairness practitioners are auditing practitioners. Fairness auditing
interrogates proprietary software [1, 5, 14, 68, 75, 82, 102]. These

practitioners aim to improve upon existing black-box models, de-
spite their lack of access to the internal components. They are likely
to use data pre-processing strategies or post-hoc strategies that do
not require access to the original model.

In addition to aligning with these roles, the assumptions of this
work align with the general requests made by practitioners in pre-
vious studies [28, 48, 88, 98, 105]: we aim to minimize modifications
to the model, have a good fairness-accuracy trade-off, and optimize
fairness outcomes. Furthermore, in concert with human-in-the-loop
fairness [115], the proposed strategies are transparent and allow
human intervention and easy manipulation.

4 IF MITIGATION METHODS
In this section, we introduce the family of proposed IF bias mitiga-
tion methods. A visual depiction of the different variations is given
in Figure 1. The details are provided throughout the remainder of
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this section. At the end of the section, we discuss which proposed
variations are amenable to which practitioner profiles.

4.1 High-Level Approach
In IF, we propose the following basic approach represented as pseu-
docode in Algorithm 1. Given a trained model, we evaluate its
disparity according to a given group fairness metric 𝑀 (line 4 in
Algorithm 1) and then either exactly compute or estimate the in-
fluence function for 𝑀 (line 5). Training data points with a large
negative influence value are termed proponents and those with a
large positive influence value are termed opponents; collectively we
term training data points with large absolute value of influence as
significant points (denoted★ in Algorithm 1). Identifying thresholds
for significance is further discussed in Section 4.3.2. To mitigate bias
measured by𝑀 , we employ a strategy (line 7), which may involve
adding, removing, and/or relabeling the significant points, either
in a single pass or iteratively. If iteratively, the underlying machine
learning model is retrained on every iteration.

Algorithm 1: General approach for iterative IF. Single-step
IF is the same algorithm without the do-while loop, only
its internal steps.
Data: 𝑡𝑟𝑎𝑖𝑛, 𝑒𝑣𝑎𝑙
Input: disp(M, 𝑠𝑢𝑏𝑠𝑒𝑡 ) disparity function that measures disparity for a

given metric M on a subset 𝑠𝑢𝑏𝑠𝑒𝑡 ; calcInf(𝑠𝑢𝑏𝑠𝑒𝑡 ) influential
fairness score calculating function for a given 𝑠𝑢𝑏𝑠𝑒𝑡 ; strat(★)
mitigation function that takes in significant points★ and applies to
𝑡𝑟𝑎𝑖𝑛; 𝑡ℎ𝑟𝑒𝑠ℎ threshold for allowable disparity;𝑚𝑜𝑑_𝑙𝑖𝑚𝑖𝑡 integer
threshold for permitted number of modifications;

Result: Bias-mitigated model.
1 Initialization ;
2 do
3 Train model with 𝑡𝑟𝑎𝑖𝑛 subset ;
4 𝑑 = disp(M, 𝑒𝑣𝑎𝑙 ) ;
5 calcInf() ;
6 Identify significant points★ (either proponents or opponents) using

knee approach;
7 𝑚𝑜𝑑 , 𝑡𝑟𝑎𝑖𝑛 = strat(★) ;
8 while abs(𝑑)>𝑡ℎ𝑟𝑒𝑠ℎ or len(★)> 0 or𝑚𝑜𝑑 <𝑚𝑜𝑑_𝑙𝑖𝑚𝑖𝑡 ;

In one of the prior influence function works [62], the authors
describe negative points that contribute to test loss as ‘harmful’ and
positive points that reduce test loss as ‘helpful’. Ref. [87] changed
the language from ‘helpful’ and ‘harmful’ to ‘proponents’ and ‘op-
ponents’, respectively. We adopt the language proposed by [87],
except since our objective is to minimize disparity (in contrast to
maximizing accuracy), our negative points are our ‘proponents’
for reducing disparity and our positive points are our ‘opponents’
which contribute to disparity.

To satisfy the diverse use cases of bias mitigation methods, there
must be a high level of flexibility available to practitioners. The
basic approach in Algorithm 1 allows for several layers of flexibility
as described next.

4.2 Specific Strategies
The first choice is that of different modification strategies (line 7
in Algorithm 1). For this we propose (1) removal & duplication, (2)
nearest inverted neighbor duplication, (3) relabeling opponents, and
(4) addition.

Removal & Duplication. The first strategy is to remove op-
ponents from the training data since these increase disparity. For
proponents, the equivalent strategy is to duplicate them (i.e., have
two copies in the training data). The removal of biased data via
group-based fairness influence functions is also demonstrated in
[92], but their implementation does not provide practitioners the
freedom to customize the extent of their mitigation, as all the pro-
posed methods do.

Nearest Inverted Neighbor (NIN) Duplication. Since the
removal of opponents may not be an option for data-limited or
protocol-limited practitioners, we propose a second kind of dupli-
cation as an alternative to removal. We call this proposed strategy
nearest inverted neighbor duplication, depicted in the bottom-right
corner of Figure 1. It duplicates the training point closest to an
opponent but with the opposite label to counteract the impact of
the opponent. The duplicated training point is not necessarily a
proponent or opponent itself. To identify nearest inverted neigh-
bors efficiently, we build two k-d trees, one for all samples in 𝑡𝑟𝑎𝑖𝑛
with the favorable outcome (label) and the second for all samples
with the unfavorable outcome. For each opponent, we use the k-d
tree for the opposite outcome class to find the sample that is closest.
In the context of unseen data, nearest neighbors can also be added
from the 𝑛𝑒𝑤 subset.

Relabeling Opponents. Influence functions also provide an
opportunity to identify points that are mislabeled [62, 87]. Previous
works have demonstrated the strength of relabeling to remove bias
[22, 32, 54, 73]. By identifying points that contribute to bias and
changing their label, these methods improve disparity outcomes.
Under the assumption that opponents may be mislabeled samples,
in this method, the labels of the most significant opponents are
flipped.

Addition. The final proposed mitigation method is a selective
sampling strategy that requires external labeled data. Furthermore,
it requires an influence estimator (see 4.3.3) to estimate the influence
of these new, external points that have not been seen by the model.
Using an influence estimator, proponents from the new data are
identified and then added to the training data before the model
is retrained. This step most resembles duplication, but it does not
require the proponents to already exist in the training data. Since
samples are coming from an external source and haven’t been used
to train the model, ground truth scores cannot be formulated for
this data. Our objective, therefore, is to identify the estimators that
most improve outcomes.

While the simple procedures of reweighing and relabeling have
been seen in bias mitigation literature, the collaboration of these
methods with group fairness-based influence functions is entirely
novel. Additionally, previous methods approximated samples to
reweigh or relabel, based on proximity to the decision boundary
or class distribution [50, 54]. Furthermore, the proposed methods
provide practitioners the flexibility of choosing their depth of per-
turbation, which, to the extent of our knowledge, is entirely novel
in fairness literature.

4.3 Additional Considerations
4.3.1 Single-Step vs. Iterative Modifications. A second deci-
sion is whether to implement just one round of mitigation or an
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iterative application of mitigation. The choice of whether practi-
tioners prefer a single step or iterative mitigation has an impact
not only on the training costs (which scale with the number of
iterations as seen in Algorithm 1), but also on the performance of
the final model (evaluated in Section 6) and the transparency of the
method. The last is because single-step mitigation methods allow
practitioners to more easily keep track of modified points.

4.3.2 Modification Subset Size. For some practitioners, it may
be desirable to limit the number of training points modified. In
addition, since there exists a small-modification assumption in first-
order approximations [12, 92], the influence of a modification of a
large group of points will likely incur a large approximation error.
Thus, a subset of the most influential points (★ in Algorithm 1)
should be chosen to maximize the impact of the mitigation meth-
ods while minimizing the number of points modified, which also
controls the approximation error. This consideration applies regard-
less of whether the practitioner is using a single-step or iterative
modification. The subset can be chosen through either its size (the
“top 𝑘”) or a significance threshold. Sattigeri et al. [92] chose a 𝑘 that
optimized fairness outcomes on a validation set. In this work, we
identify the optimal 𝑘 using the knee of the mean influence curve,
specifically using the Kneedle approach proposed by [91].

4.3.3 Ground Truth Scores vs. Influential Estimators. The
computation of ground-truth influential fairness scores requires
access to the training data. This can limit the application of influence
based bias mitigation strategies. Therefore, in this work, we also
investigate two methods for estimating these influence scores that
partly or wholly eliminate the need to have access to training data:
glass-box predictors trained on ground truth scores, and a black-box
fairness influence estimator, defined by [107].

Glass-Box Fairness Influence Predictors State-of-the-art pre-
dictors, such as gradient boosting and k-nearest neighbors, have
been used across a variety of works [26, 52, 79] for their predictive
power. We use these models to predict influential fairness scores.
An influence score predictor well-trained on ground truth scores
can then be utilized on new, unseen data without further access to
training data.

Black-Box Fairness Influence Estimators Black-box estima-
tions of influential points are calculated without access to any
training data at all and using black-box access to the model. The
use of black-box estimations of influential points can greatly reduce
compute resources especially with complex models built with large
data sets and it can provide external parties an opportunity to audit
existing models. A method to effectively estimate influential points
in a black-box manner could be promising to the influential fairness
research space.

Towards this goal, the approach introduced by Wang et al. [107]
comes closest to being completely model agnostic and hence viable
as a black box influence estimator. As described in Section 2.3, Wang
et al. [107]’s influence score is applicable only to an instance that is
part of the test set used to measure the fairness metric and reflects
this instance’s contribution to the fairness metric value. In Section
6, we empirically investigate if these test distribution specific scores
can be used to train the training data influence scores.

Table 1: Mitigation methods and the profiles they are associ-
ated with.

Free-Range Protocol Data-Limited Auditor
Removal ✓

Duplication ✓ ✓ ✓

Relabeling ✓ ✓

NIN Duplication ✓ ✓ ✓

Addition ✓ ✓ ✓

4.4 Practitioner-Mitigation Associations
Table 1 maps the proposed mitigation methods to the practitioner
profiles most likely to use them. Given that protocol and data limi-
tations may differ, this mapping may not work for all practitioners.
For the free-range practitioner, all of our mitigation methods are
viable solutions. This practitioner may choose to utilize the solution
with the best overall outcomes. (In the empirical results of Section
6, we find this to be the removal of opponents.) For the protocol
practitioner, the glass-box or ground-truth implementations of the
addition or duplication strategies are all viable solutions. For the
data-limited practitioner, the ground-truth addition, duplication, or
relabeling strategies would allow them to augment or transform
their datasets without losing data. Lastly, the auditing practitioner
would require a mitigation method that assumes no access to the
original model. For a cooperative auditor, a glass-box influence
predictor could be used in combination with the addition method.
Otherwise, the independent auditor would need a black-box esti-
mator.

5 EXPERIMENTAL SETUP
5.1 Datasets
In order to test the bounds of our methodology, we will test our pro-
cedures on three benchmarked fairness datasets [8, 71, 76, 83]: the
Law School Admissions Council (Law), the Correctional Offender
Management Profiling for Alternative Sanctions (COMPAS), and the
Adult dataset. Each dataset also has a binary classification task.
For each dataset, we chose a sensitive attribute and binarized it
into privileged and non-privileged populations. Datasets received
similar pre-processing steps: samples with missing values were re-
moved, protected attributes were removed prior to training, and bi-
nary and categorical data were discretized without redundancy. Law
was first used by [111] and contains performance records for over
20,000 law students. For this dataset, students are split into groups
based on whether or not they classify as an Under-represented
Minority (URM). COMPAS was first studied in [5] and contains the
recidivism decision made by the software for 6,900 offenders in
Broward County, Florida. The data is divided by race, with sam-
ples being classified as White or Non-White. The Adult dataset
[64], otherwise referenced as the Census Income dataset, consists
of demographic data from 1994. It is publicly available in the UCI
machine learning repository [36].2 With 45,222 samples across 10
attributes, this dataset is intended to be used to build predictors
for whether an individual makes over 50,000 U.S. dollars in income.

2https://archive.ics.uci.edu/ml/datasets/adult
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Figure 2: Comparison of four models generated for each
dataset: Logistic Regression (LR), Random Forest (RF),
Single Vector Machine (SVM), and Multilayer Perceptron
(MLP).

Figure 3: Disparities across the fairness objectives for LR
models trained for each dataset. Highlighted metrics of
interest for each dataset are: FPR for Compas, FDR for
Law, and SP for Adult.

It is often used in algorithmic bias research to investigate gender,
race, and/or age disparities.

5.2 Logistic Regression Models
For each dataset, we will produce a Logistic Regression (LR) model
from the training subset using an Adam optimizer and an L2 regu-
larization term. Previous work has demonstrated the strength of
linear models when computing influence due to their small size in
relation to alternative, more complex models [11, 61, 62]. By using
an LR model, we can calculate exact Hessians instead of needing
to estimate them due to the computational costs of larger models.
Therefore, in this work, our ground truth scores represents exact
influence scores and not approximations, removing any influence
estimation error. Furthermore, we will be using a ridge regression
because it preserves the convexity of the loss function. In Figure 2,
we also demonstrate that LR is competitive with respect to accuracy
compared to other potential models where IF can be computation-
ally expensive or intractable to estimate accurately.

Table 2: Disparity metric function definitions for all metrics
used in the proposed work. 𝑌 represents labels, 𝑌 is predicted
labels, and 𝐺 is the sensitive attribute.

Metric Function
Statistical Parity 𝑀𝑆𝑃 = 𝑃 (𝑌 |𝐺 = 0) − 𝑃 (𝑌 |𝐺 = 1)
FDR Difference 𝑀𝐹𝐷𝑅 = 𝑃 (𝑌 = 0 |𝐺 = 0, 𝑌 = 1) − 𝑃 (𝑌 = 0 |𝐺 = 1, 𝑌 = 1)
FNR Difference 𝑀𝐹𝑁𝑅 = 𝑃 (𝑌 = 0 |𝐺 = 0, 𝑌 = 1) − 𝑃 (𝑌 = 0 |𝐺 = 1, 𝑌 = 1)
FPR Difference 𝑀𝐹𝑃𝑅 = 𝑃 (𝑌 = 1 |𝐺 = 0, 𝑌 = 0) − 𝑃 (𝑌 = 1 |𝐺 = 1, 𝑌 = 0)

5.3 Fairness Objective Functions
There exists a multitude of fairness metrics in literature. For this
work, we will focus on four metrics of fairness: Statistical Parity
(SP) difference, False Discovery Rate (FDR) difference, False Positive
Rate (FPR) difference, and False Negative Rate (FNR) difference. For
the equations in Table 2, Y = {0, 1} is the space for both the labels
𝑌 and the predicted labels 𝑌 . Additionally, the sensitive attribute
𝐺 ∈ {0, 1}, where 1 is the privileged group.

Fairness disparities for LRmodels trained for each dataset utilized
for fairness influence function computation were computed using
the 𝑒𝑣𝑎𝑙 subset shown in Figure 1. Each disparity metric resulted
in its own list of influential scores. Scores for unmitigated models
for each dataset can be seen in Figure 3.

6 EXPERIMENTAL RESULTS
6.1 Validating Fairness Influence Functions
Prior to building mitigation methods, we validate our fairness in-
fluence functions. The standard method is to examine the change
in outcomes as opponents (with values above 0) and proponents
(with values below 0), ranked in order of decreasing magnitude, are
removed [12, 18, 46, 92]. We conducted this study for both propo-
nents and opponents, iteratively removing samples in decreasing
magnitude until all proponents or opponents are removed, respec-
tively. As expected, there was a rise in disparity as proponents were
removed and a decrease in disparity as opponents were removed.
Furthermore, there was a slow drop in accuracy as the first few
points were removed that quickly accelerated due to lack of data.
The results of this experiment are depicted in Figure 4.

6.2 Single-Step vs. Iterative Modifications
We first discuss the results of choosing different modification sub-
set size for both single-step and iterative modifications. In the first
row of Figure 5, we demonstrate the impact on disparity and ac-
curacy when the top 𝑖% of points are removed before the model is
refit and influence is recomputed. Across datasets and metrics, the
optimal 𝑖 differed substantially, making the selection of 𝑖 another
optimization problem. Interestingly, we observe that the knee strat-
egy is able to achieve a nearly optimal outcome with fewer samples
and this trend was common across the metrics and datasets. The
middle row of Figure 5 depicts a search approach to a single-step
implementation, where (similar to the removal validation) samples
are perturbed in small increments using a ground truth mitigation
method until disparity threshold is reached or the modification
limit is reached. The last row of Figure 5 depicts the difference in
performance of models trained with a single vs iterative approach.
As can be seen, the choice between single and iterative application
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Figure 4: Removal of proponents vs removal of opponents, FDR for COMPAS (left), SP for Adult (middle), and FPR for Law (right).
The bottom row shows the mean influence scores of points removed thus far.

is highly use-case dependent. Oftentimes, the single-step approach
requires fewer perturbations and higher accuracy, but the final dis-
parity is less consistently close to zero. Nonetheless, it may require
a number of experiments to identify a good threshold for signifi-
cance for influential points. Too few points modified and the model
performance will remain unchanged, too many points modified and
performance will change drastically.

6.3 Ground Truth Scores vs. Influential
Estimators

6.3.1 Glass-Box Fairness Influence Predictors. Firstly, we com-
pared three regressors for fairness influence prediction: gradient
boosting, linear, and k-nearest neighbors. We trained the regressors
on a portion of the ground truth points, and evaluated their perfor-
mance using the remaining points. Evaluation was done using a
rank-based criterion, Rank-Biased Overlap (RBO) [110]. Our pre-
vious results pointed to the importance of subset size, suggesting
that selecting the top 𝑘 or bottom 𝑘 points is more important than
precisely estimating the values of the points. Therefore, rank should
be prioritized over regression error. Table 3 in the supplementary
material shows that gradient boosting substantially outperformed
the other methods for predicting influence. Therefore, this model
type was used for subsequent analysis.

Next, to determine if fairness influence predictors are effective
tools to mitigate bias, we applied our proposed mitigation methods
using predicted influence scores. We predicted influence scores
on the 𝑛𝑒𝑤 subset and identified proponents and opponents there.
We then applied each mitigation method to the original training
data, finding matches in 𝑡𝑟𝑎𝑖𝑛 as needed for the proponents and
opponents in 𝑛𝑒𝑤 . Details for each method are in the Supplemen-
tary Material. The rightmost column of Figure 7 demonstrate the
performance of gradient boosting glass-box predictors. While gra-
dient boosting did not perform as consistently well as ground truth,
it was able to effectively reduce disparity and maintain accuracy
across the datasets and mitigation methods.

6.3.2 Black-Box Fairness Influence Estimators. To investigate
the impact of this estimator on the original model, we computed
influence scores on the 𝑛𝑒𝑤 subset and then applied the proposed
mitigationmethods to these estimations, in a similar manner as with
gradient boosting predictions (again details are in the Supplement).

Plots in the middle column of Figure 7 demonstrate the impact
of applying the proposed strategies to the original model using
the influential fairness black-box estimations. These experiments
were conducted using the same procedure presented in Algorithm
1. None of the proposed strategies seemed to have a continuously
positive impact on disparity. While this shows the seeming inability
of these black-box estimations to influence the original model, we
recall that the original intent in [107] was different, namely creating
counterfactual models that are more fair than the original.

6.4 Comparing with Other Baselines
Figure 6 shows how the different strategies with access to ground
truth influence scores perform when compared to a few baselines,
chosen because they also involve reweighing or relabeling. Such
existing alternatives include [23, 54, 66]. For this experimental com-
parison specifically, we conducted bias mitigation utilizing the
reweighing strategies proposed by [50, 54]. [54] proposed a pre-
processing reweighing strategy that assigns weights based on the
class and sensitive attribute pairing. The duplication and removal
strategies proposed here represent more transparent implementa-
tions of reweighing (weights of 2 or 0) and generally have better
outcomes with respect to fairness and accuracy, as seen in Fig. 6.
[50] proposed an in-processing reweighing strategy that assigns
weights to samples in an iterative manner. Unlike [54], it provides
solutions that are fairness metric-specific. We also conducted the
relabeling strategy that was proposed in [54] and implemented in
[7]. This relabeling strategy, also called data massaging, is a pre-
processing strategy that relabels the training data based on the
confidence of the model’s prediction, the sensitive attribute, and
the class label. Like the reweighing strategy proposed by [54], this
strategy is not metric-agnostic.

While the ranking of the proposed influential mitigation meth-
ods was highly dependent on the dataset, as demonstrated in the
second and third row of Figure 5, Figure 6 demonstrates how well
the collection of these methods performs compared to existing
strategies. Generally speaking, the purple markers representing
the proposed methods tend to lie to the left of the others (lower
disparity). In some cases, they dominate existing methods in terms
of having higher accuracy and lower disparity.
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Figure 5: Comparing implementation strategies for ground truth mitigation methods across datasets, fairness objectives, and
mitigation strategies. First row: Final performance of models modified using varying significance thresholds and an iterative
implementation. Second row: Final performance of models modified using either a search-based or a knee-based single-step
modification. Search-based implementation iteratively modifies original model with more significant points until disparity
threshold met. Third row: Final performance of models utilizing either a single-step or iterative knee-based implementation.
Columns align with datasets, from left to right: Adult, COMPAS, Law.

7 DISCUSSION
Practitioners routinely request more transparent mitigation meth-
ods that minimize disparity between groups, minimize modifica-
tions to the model, and also have a favorable fairness-accuracy
trade-off. Furthermore, they desire mitigation methods that are
simplistic and can be easily explained to stakeholders. The methods
proposed in this paper take complex concepts from robust statistics
and distill them into simple mitigation methods that either add data,
remove data, or relabel data. While each of these methods has been

demonstrated to reduce disparity, the magnitude of impact of their
application is highly context dependent.

When comparing a single-step versus an iterative approach to
modifying the original model, the results show that a single-step
implementation could be just as impactful as an iterative approach,
which is a novel finding to influential fairness. A single-step ap-
proach, as a post-hoc mitigation method, is substantially more
transparent than an in-processing technique that requires iterative
rebuilds of the model. Tracking the changes to the model becomes
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Figure 6: Performance betweenmodels modified using proposed mitigationmethods (a single-step implementation with ground
truth scores or, for addition only, gradient boosting predictions) compared to methods from pre-existing literature ([50, 54]).

substantially easier for practitioners. Furthermore, a single-step im-
plementation of the proposed strategies is substantially more time
efficient than existing mitigation methods that requires iterative
retraining. This advantage can be amplified with existing influ-
ence function-based strategies that avoid retraining altogether [92].
When investigating the strength of influential fairness estimators to
allow for the inclusion of external data and external practitioners,
the findings were promising with respect to new data. Gradient
boosting showed itself to be a great tool for learning influence and
applying lessons to new data. Across the mitigation strategies, this
glass-box predictor was able to improve disparate outcomes. On
the other hand, the black-box estimator struggled to find relevant
data for the original model. Nonetheless, [107] demonstrated how
such a method could be used to build an alternate, fair model.

A major contribution of the proposed work is the creation of
practitioner profiles. Four unique personas that emerged when
investigating the literature on practitioner feedback of fairness
research. Furthermore, we catered our proposed bias mitigation
methods to satisfy the needs of these practitioners. While each
of our mitigation methods were impactful when utilizing ground
truth scores, the implementation utilizing estimations of black-
box influence was not consistently impactful. Future work will
investigate computing accurate black-box estimations of influential
fairness scores.

Limitations. While this work introduces influential fairness
through three fairness benchmarked datasets, there is still much
work to be done in the demonstration of these mitigation methods.
Firstly, this work intentionally focuses on small models with easily
computed Hessians in order to establish ground truth scores. Many
works have demonstrated effective methods to approximate influ-
ence for large, complex models [10, 12, 41, 61, 94, 122], so future
work on utilizing these mitigation methods for more complex mod-
els is promising. This also holds true for applications of influential
fairness in diverse use cases. Previous work has also demonstrated
the strength of influence functions with multi-class labels [61, 62]
and non-tabular data [18, 45, 61, 62, 119]. In this investigation of
fairness influence functions, there must also be the evaluation of
fairness for multiple protected attributes. Future work will also
analyze the performance of the proposed strategies for such diverse
use cases.
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A ADDITIONAL DETAILS ON FAIRNESS
INFLUENCE PREDICTION AND BLACK-BOX
ESTIMATION

For both fairness influence prediction as well as black-box esti-
mation, influence score estimates are obtained for points in the
𝑛𝑒𝑤 subset. In the former case, they are predicted by the gradient
boosting predictor, while in the latter they are estimated via the
black-box method of [107]. From these estimated scores, signifi-
cant proponents and opponents in 𝑛𝑒𝑤 are identified, as was done
in 𝑡𝑟𝑎𝑖𝑛 with ground truth scores. Depending on the mitigation
strategy, the subsequent action is as follows:

• Addition: Add proponents from 𝑛𝑒𝑤 to 𝑡𝑟𝑎𝑖𝑛.
• Duplication: Duplicate points in 𝑡𝑟𝑎𝑖𝑛 that are the nearest
neighbors to the proponents in 𝑛𝑒𝑤 .

• Removal and relabeling: Remove or relabel points in 𝑡𝑟𝑎𝑖𝑛

that are the nearest neighbors to the opponents in 𝑛𝑒𝑤 .
• Nearest inverted neighbor duplication: Duplicate the points
in 𝑡𝑟𝑎𝑖𝑛 that are the nearest inverted neighbor to each oppo-
nent in 𝑛𝑒𝑤 . (Alternatively, the nearest inverted neighbor in
𝑛𝑒𝑤 could be found and added to 𝑡𝑟𝑎𝑖𝑛.)

The above procedures were chosen to mirror those with ground
truth scores and to compare predicted or black-box estimated scores
with ground truth scores in as fair a manner as possible. In addition,
they are motivated by the following real-world scenarios in which
model building and model auditing are performed by two different
parties. For fairness influence prediction, the model builder could
provide the influence predictor to the auditor to assist the latter in
the process of collecting more data, for the purposes of mitigating
bias and otherwise improving the model. Or the auditor could have
primary responsibility for bias mitigation and request the influence
predictor from the model builder. The auditor would then pass back
proponents or opponents from the 𝑛𝑒𝑤 subset along with requested
actions such as the ones listed above. For black-box estimation, this
last scenario also applies, with the difference being that the auditor
does not require any input from the model builder to estimate
influence scores and proponents/opponents for the 𝑛𝑒𝑤 subset.

B ADDITIONAL EXPERIMENTAL RESULTS
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Table 3: Rank-Biased Overlap between Glass-box predictions and ground truth scores.

Regressor Type
Metric Gradient Boost K-Neighbors Linear

EO 0.860 ± 0.032 0.509 ± 0.087 0.277 ± 0.139
FDR 0.902 ± 0.023 0.593 ± 0.081 0.087 ± 0.051
FPR 0.882 ± 0.033 0.422 ± 0.077 0.155 ± 0.066
SP 0.895 ± 0.008 0.419 ± 0.156 0.326 ± 0.095

Figure 7: Results for experiments conducted on the COMPAS dataset, focused on mitigating FDR. From left to right, columns
depict implementation of mitigation methods using ground truth scores, black-box influence estimators, and gradient boosting
influence predictors, respectively. First row demonstrates single-step implementation of proposed methods, while bottom
row depicts iterative experiments where influence scores are recomputed after each application of mitigation method with
significant points. Each line segment represents an iteration and the total iterations for each experiment is shown in parentheses
within the respective key. Results for other datasets can be seen in Suppl. Material.
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Figure 8: Results for experiments conducted on the Law dataset, focused on mitigating FPR. From left to right, columns depict
implementation of mitigation methods using ground truth scores, black-box influence estimators, and gradient boosting
influence predictors, respectively. First row demonstrate single-step implementation of proposed methods, while plots at the
bottom depict iterative experiments where influence scores are recomputed after mitigation method employed with significant
points. Each line segments represents an iteration and total iterations for each experiment is shown in parenthesis within the
respective key.
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Figure 9: Results for experiments conducted on the Adult dataset, focused on mitigating SP. From left to right, columns depict
implementation of mitigation methods using ground truth scores, black-box influence estimators, and gradient boosting
influence predictors, respectively. First row demonstrate single-step implementation of proposed methods, while plots at the
bottom depict iterative experiments where influence scores are recomputed after mitigation method employed with significant
points. Each line segments represents an iteration and total iterations for each experiment is shown in parenthesis within the
respective key.
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