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ABSTRACT
This paper presents a viewpoint on an emerging dichotomy
in data science: applications in which predictions of data-
driven algorithms are used to support people in making con-
sequential decisions that can have a profound effect on other
people’s lives and applications in which data-driven algo-
rithms act autonomously in settings of low consequence and
large scale. An example of the first type of application is
prison sentencing and of the second type is selecting news
stories to appear on a person’s web portal home page. It is
argued that the two types of applications require data, al-
gorithms and models with vastly different properties along
several dimensions, including privacy, equitability, robust-
ness, interpretability, causality, and openness. Furthermore,
it is argued that the second type of application cannot al-
ways be used as a surrogate to develop methods for the first
type of application. To contribute to the development of
methods for the first type of application, one must really be
working on the first type of application.
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General Terms
Algorithms, Human Factors

Keywords
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1. INTRODUCTION
Although perhaps overly hyped, it cannot be denied that
developments in big data, analytics, and data science are
transforming industries across all sectors. As this field pro-
gresses, a dichotomy of application domains is emerging. On
one hand, we have applications such as medical diagnosis
[22], loan approval [32] and prison sentencing [9] in which
data-driven predictions are used to support people in mak-
ing consequential decisions that can have a profound effect
on people. On the other hand, we have applications in which
data-driven algorithms automatically take actions without
having people in the decision-making loop, usually on a large
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scale and for decisions of a less consequential nature; exam-
ples include streaming services deciding on the compression
level of video packets to transmit to subscribers every few
seconds [19, 25], web portals deciding which news story to
show on top [1], and inside speech recognition systems [29].
For ease of reference, let the applications of consequence to
people with human decision makers in the loop be Type A
applications and the others be Type B.

Summarizing these two types of applications, Rayid Ghani,
the chief data scientist for the Obama presidential campaign,
recently said that [45] “the power of data science is typically
harnessed in a spectrum with the following two extremes:
helping humans in discovering new knowledge that can be
used to inform decision making, or through automated pre-
dictive models that are plugged into operational systems and
operate autonomously.”

In this paper, it is argued that Type A and Type B applica-
tions of data science are fundamentally different from each
other with different desiderata for data, processing, mod-
els, and analysis. As such, it is also argued that to really
advance techniques for Type A applications, one must truly
be working on Type A applications; Type B applications are
often not suitable surrogates or sandboxes in which to test
methods intended for Type A applications. This perspec-
tive is in conflict with the one, e.g., espoused by Claudia
Perlich, the chief scientist of the computational advertising
firm Dstillery, who has said that advertising [3] “is really
the ultimate opportunity to try different things and find
out what works in data science and what doesn’t. . . . I find
that I can disseminate some of the things that I learn and
help bring my findings to medicine and other life-touching
fields.” In the remainder of the paper, taking a cue from
John Wycliffe and Abraham Lincoln, various aspects that
differentiate Type A applications from Type B applications
are discussed under three broad categories, nominally of the
people, for the people, and by the people.

2. DATA SCIENCE OF THE PEOPLE
In most Type A applications, the decisions to be made are
decisions on individual people. Consequently the data re-
quired is data of the people, i.e. each data point is an indi-
vidual person’s record. If the application is of consequence,
then usually at least some of the attributes in the required
data are sensitive, e.g. fields related to health status, per-
sonal finances and educational attainment. Maintaining pri-
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vacy and anonymity is the key concern when dealing with
sensitive data of the people [16].

It is precisely because Type A applications are of conse-
quence that privacy laws have been enacted in these do-
mains, e.g. the Health Insurance Portability and Account-
ability Act (HIPAA), the Gramm-Leach-Bliley Act (GLBA),
and the Family Educational Rights and Privacy Act (FERPA)
in the United States. Usually in Type B applications, there
is much less of an incentive to strictly protect privacy than
in Type A applications because of the lack of such laws.
Thus, although recognized as an issue, there are few exist-
ing methods and little research and development on privacy
protection for Type B workloads.

We recently studied a Type A problem of predicting health
care costs of people in a market that a provider does not
serve, which required us to use importance sampling to ac-
count for covariate shift [56]; a very similar problem occurs
in the Type B problem of targeted advertising [11]. However,
we had to consider anonymity because we were working on
the health care application, and to properly perform impor-
tance sampling, we had to develop a novel privacy-preserving
data transformation that preserves the probability distribu-
tion of the data. This example illustrates the fact that if we
had not been working on a Type A application, we would
not have been pushed to develop a new data science method.
Privacy is, by now, a well-studied topic in data science [2],
but there will continue to be new avenues for research that
will only be illuminated when developing solutions to real-
world Type A problems.

A different issue that arises when working with and mak-
ing decisions based on data of the people is fairness and
discrimination. Just as there are sensitive attributes when
considering privacy, there are different attributes in data of
the people, such as race and gender, against which we would
like predictive models to be equitable (in certain settings).
As examples, we might want a loan approval classification
algorithm to have similar acceptance rates for male and fe-
male applicants, and a data-driven model that aids in prison
sentencing decisions to present similar predictions for black
and white convicts. In such problems, which typically arise
only in Type A applications, we may be willing to sacrifice
generalization accuracy for equitability.

Human decision makers are known to be discriminatory due
to bounded rationality [52], but algorithms can be too, for
the following reason. The näıve approach of simply not
including the protected attributes like race and gender as
features in a predictive model fails to recognize that other
included features may be highly correlated with them [28].
The legal standard known as disparate impact says that a
decision-making process, even if it is not explicitly discrim-
inatory at face value, is illegal if it has a disproportionately
adverse effect on members of a protected class, and this is
quite possible when using features correlated with attributes
defining protected groups [7]. We note, however, that dis-
parate impact is only illegal in Type A applications such as
housing and employment, not in Type B applications like
video streaming quality of service. Disparate impact can be
stated mathematically in the language of detection theory
based on the so-called 80% rule [21], and prevented using

newly-developed data science methods [26, 21]. (There are
even interesting mathematical connections between privacy
and equitability [27, 43].)

The study of discrimination due to data analytics has only
arisen because of interactions between machine learning re-
searchers and the law and policy communities. It is another
illustration of an area of study and advancement in data sci-
ence that would not have been imagined simply by working
on Type B applications (where we do not typically have any
quality criterion other than accuracy); working with subject
matter experts in Type A applications led to this area.

Let us consider a third issue when offering predictions based
on data of the people: robustness. When we defined Type
A applications in Section 1, we said that the decisions be-
ing made about people can have a profound effect on their
lives, but that this is not the case with Type B applications.
Moreover, in Type B applications, we have the opportunity
to make millions or billions of predictions, but in Type A ap-
plications, we often only get one shot to make a prediction
per person. For example, whereas severely mispredicting the
level of engagement a person will have with a news article
is undesirable, severely mispredicting the response a person
will have to a medical treatment can be catastrophic.

Together, these considerations imply that while average or
expected error across all of the millions or billions of predic-
tions is a sensible criterion for a decision rule in Type B ap-
plications, alternatives optimizing worst-case error, known
as robust formulations, make more sense for Type A appli-
cations. The main robustness considered in classification is
against uncertainty in the class frequencies or relative costs
of different types of errors [37, 17], but robustness against
other uncertainties are also considered [49, 57]. When pre-
dictive models trained under expected error make gross mis-
takes, they are usually on people with rare characteristics;
there are learning approaches to deal with rare classes [48],
but there is little work on data points with rare features
[58, 5]. (Robust regression methods prevent outliers from
having outsized impact on estimation procedures, but this
is not the type of robustness of interest here.)

Software packages for and real-world applications of learn-
ing decision functions that are robust to uncertainties in
future data are not prevalent, but there is clearly a need in
Type A applications because every prediction matters and
worst-case perfomance matters. There is little need for such
robustness if it sacrifices average performance in Type B
applications. This is a topic that has not yet transitioned
from theory to widespread practical use in data science. If
and when it does, the advance will come as a result of the
interplay between theory and Type A application.

3. DATA SCIENCE FOR THE PEOPLE
In Section 2, we examined differences between Type A and
Type B applications that manifest because the data sam-
ples on which decisions are made represent people. In this
section, we switch gears and examine differences between
Type A and Type B applications that manifest because of
the consumer of the predictions. In Type A applications,
models are learned for the people to look at, understand,



and use to aid their decision making, but there is no person
in the loop in Type B applications.

For people to use the predictions of an analytics model in
their decision making, they must trust the model. To trust
a model, they must understand how it makes its predictions,
i.e. the model should be interpretable for the people [23, 41].
The model cannot be a black box that acts in ways that seem
mysterious to the user.

Many of the older methods in the artificial intelligence lit-
erature, including decision lists and decision trees are inter-
pretable [12, 14, 38, 39]. In contrast, newer developments
such as ensemble methods, kernel methods, and deep neu-
ral networks are not interpretable. The older interpretable
model learning algorithms are generally greedy or heuris-
tic in nature and usually have inferior predictive perfor-
mance to the newer uninterpretable approaches. However,
recent work is revisiting the problem of interpretable learn-
ing through principled optimization formulations and achiev-
ing predictive performance approaching that of uninterpret-
able methods [40, 24, 18, 10, 34, 30, 55, 33, 50, 20].

We recently studied a Type A problem of predicting which
IBM employees will voluntarily resign from the company,
which required us to develop a classification algorithm to
be placed within a larger decision-making system involving
human decision makers [47]. In this problem, after several it-
erations with the business users, we decided on interpretable
classification rule sets because of the trust and justification
reasons mentioned earlier. In fact, this real-world problem
was a key motivator for us to pursue the interpretable learn-
ing algorithm proposed in [34]. The choice of classifier taken
in this project contrasts with the uninterpretable random
forest classifier we used for a (social good) satellite image
analysis problem in which the classifications were used au-
tonomously without a human in the loop [51]. Together,
these examples illustrate that Type A problems have unique
requirements in terms of model interpretability that do not
arise in Type B problems, and without the impetus from
Type A applications, new data science approaches such as
[34] would not be developed.

Causality is another issue that comes up when a predic-
tive model is for people to consume and act upon. Typi-
cally in Type B applications, as long as a feature adds pre-
dictive value in generalization, regardless of whether it has
any causal relationship with the outcome, it is included in a
model [4]. However, in Type A applications, the user of the
analytics wants to gain understanding into phenomena of
interest, especially an understanding of what inputs or fea-
tures cause the outcome being studied [36]. Causality allows
one to understand what levers can be pulled to change the
outcome, e.g. in the employee voluntary attrition problem,
if lack of job promotion can be shown to cause resignation
then promotions are a way to retain employees.

Precisely because of this understanding that comes with
causal modeling is classical causal inference so popular in
Type A applications in social sciences, epidemiology, pub-
lic health, etc. The randomized controlled trial is the gold
standard experimental design for causal inference, but is of-
ten difficult to carry out in those fields. Therefore, a body

of techniques has been developed to try to tease out causal
effects from various other experimental designs.

Randomized controlled trials known as A/B testing are used
extensively in Type B applications [31], but, with a handful
of exceptions [15, 6], there is not much active development
of new causal inference techniques spurred by Type B appli-
cations. In contrast, there continue to be new data science
methods developed for Type A applications, most recently
incorporating ideas from high-dimensional machine learning,
because causality is so critical to many Type A applications
that it has to be a part of the inference objective no mat-
ter what [8, 4]. Thus again, we see Type A applications
pushing data science in a different direction than Type B
applications.

4. DATA SCIENCE BY THE PEOPLE
In Section 2, the general public constituted the data points
and in Section 3, people making decisions were the con-
sumers and users of data-driven models. In this final body
section, devoted to data science by the people, we examine
the role of the general public in applying data science meth-
ods in Type A and Type B problems.

First, we consider the question of why the general public
would even want to conduct data science. Model inter-
pretability, as discussed in Section 3, lends transparency,
trust, and adoption to machine learning methods in Type A
applications, but there is no greater transparency and way
to develop trust than to have someone carry out the entire
process himself or herself. Even if people do not actually
do so, knowing that they could, gives a great sense of trust.
Such openness allows for the possibility of audit and ac-
countability that is necessary in many consequential Type
A applications. On the other hand, Type B applications are
less likely to require the possibility of audit because of their
lower consequence, lower criteria for fairness, and lower need
for robustness. Moreover, the set of potential users is more
diverse in Type A applications.

Data science cannot be done without data, but data is an
invaluable resource that most organizations keep locked up.
The open data movement, however, is changing the equation
by unlocking data and making it freely available to use, reuse
and redistribute by the people. Due to executive mandates
starting about six years ago, governments around the world
—national and municipal—are leading the opening up of
data through web portals they have established [44, 46].

Although there are several instances of Type A applications
that rely solely on data internal to an organization or entity,
many Type A applications rely on the type of government
data, appropriately anonymized, that is now available on
open data portals, sometimes in combination with internal
data. In our health provider example, we could use either
a provider’s member cost data or open government medi-
cal cost survey data in combination with open government
demographic data to solve the problem of interest. Open
government data tends not to be useful in Type B applica-
tions.

Beyond governments, few other organizations currently re-
lease their internal data with all of the requirements needed



to be labeled as open data. Data philanthropy is an emerg-
ing trend for corporations to make their data available for
general use; the data sets opened in this way tend to have
a social good angle and are done so in one shot rather
than in continually maintained portals, e.g. Orange releasing
anonymized mobile phone call detail records in Africa and
Bitly releasing data on clicks to their URL shortener [35].
Other corporate data sets are opened, suitably anonymized
and again on a one time basis, for competitions and chal-
lenges. Also, academics often release small-scale and large-
scale data sets used in machine learning and data mining
research. Both Type A and Type B applications can benefit
from such data, but these avenues are less developed and
codified than open government data.

In terms of software, there are best-of-breed open source
packages available for a wide variety of data science algo-
rithms applicable to Type A problems, Type B problems, or
both. As discussed earlier in the section, there is a greater
need for non-expert general public users to be able to run
the software in Type A applications, so there is greater need
for ease of use in Type A applications: another form of con-
sumability. More generally, the data science algorithms in
Type A applications tend to be embedded within complex
sociotechnical systems, whereas the data science algorithms
in Type B applications tend to be embedded within complex
technical-only systems. The sociotechnical aspect of Type A
applications introduces additional requirements for software
and algorithms beyond what is currently available in those
open source packages and what is needed for Type B ap-
plications. This is another point of differentiation between
Type A and Type B for future development.

Finally, the recent years have seen the lowering of the barrier
of entry to data science by the people due to cloud services
that allow anyone to easily obtain sufficient computational
resources. However, the scale, especially in the size of data
sets, of Type B applications tends to result in a much higher
computational burden and need for distributed and other
advanced infrastructure requirements than Type A applica-
tions. Type B applications are more often in the truly big
data regime than Type A applications, and thus not so eas-
ily approached by the general public. Overall, in comparing
data science by the people for Type A and Type B applica-
tions in terms of data, software and computation, we see a
bifurcation with open data ecosystems and user experience
on the A side and truly big data on the B side.

5. CONCLUSION
In this viewpoint, we have examined two categories of data
science applications, which we have named Type A and Type
B. Type A applications are ones in which algorithmic out-
puts are used to support people in making decisions about
other people that are consequential to them. Type B appli-
cations are ones in which the outputs drive autonomous ma-
chine processing or actions without humans in the decision-
making loop that bear little consequence to people. We have
studied how these two applications differ along several di-
mensions grouped into the categories of the people, for the
people, and by the people: specifically privacy, discrimina-
tion, robustness, interpretability, causality, open data, and
criteria for algorithms and infrastructure. The differences in
the two types of applications are stark enough to have differ-

ent requirements for data, processing, analysis, and infras-
tructure. Because of the differences, advances in one type
of application will not necessarily transfer into advances in
the other.

We are not the first to study these issues; for example, the re-
cent Fairness, Accountability, and Transparency in Machine
Learning workshops have highlighted several issues in data
science of the people and for the people [54], and [13] has ex-
amined issues in data science by the people. As has also been
recognized by others, we believe the primary reason for this
emerging dichotomy is the recognition that to make impact
in certain applications of data science, the accuracy of the
results is not the only criterion that matters [53, 42]. There
are important tradeoffs to consider in terms of accuracy vs.
anonymity, accuracy vs. equitability, expected accuracy vs.
worst-case accuracy, accuracy vs. interpretability, predictive
accuracy vs. causal inference, and accuracy vs. integrability
into sociotechnical systems.

This emerging dichotomy presents an opportunity to con-
sider Type A applications and Type B applications sepa-
rately rather than as a single pursuit. With that recogni-
tion, people and organizations working on Type A applica-
tions can focus their research and development energies on
the myriad considerations besides pure accuracy described
in this paper and other considerations of a similar flavor.
Similarly, people and organizations working on Type B ap-
plications can maintain a singular focus on accuracy and the
technical systems that lead to improved accuracy.
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