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Math Destruction by Cathy O’Neil, cata-
logs numerous examples of machine-
learning algorithms gone amok. In 
the conclusion, she places her work in 
the tradition of Progressive Era muck-
rakers Upton Sinclair and Ida Tarbell. 
Sinclair’s classic 1906 book, The Jungle, 
tackled the processed food industry. It 
helped spur the passage of the Federal 
Meat Inspection Act and the Pure Food 
and Drug Act, which together regulated 
that all foods must be cleanly prepared 
and free from adulteration. For com-
puter scientists and engineers, the his-
tory and evolution of processed food 
from inside the industry may be more 
instructive. 

Henry J. Heinz was the progenitor 

Decision making in high-stakes applications, such as educational assessment, 
credit, employment, healthcare, and criminal justice, is increasingly data-driven, 
and supported by machine-learning models. These models are also enabling 
cyber-physical systems such as self-driving automobiles. Machine-learning models 

either work to augment human abilitiesor act fully autonomously. In all cases, they have a 
profound effect on our lives. 

Advancements in the field of machine learning over the last few years have been 
nothing short of amazing. Nonetheless, even as these technologies become increasingly 
integrated into our lives, journalists, activists, and academics uncover characteristics 

that erode the trustworthiness of these 
systems.

For example, a machine-learning 
model that supports judges in pretrial 
detention decisions was reported to 
be biased against black defendants. 
Similarly, a model supporting resume 
screening for employment at a large 
technology company was reported to be 
biased against women. Machine-learn-
ing models for computer-aided diag-
nosis of disease from chest x-rays were 
shown to give importance to text con-
tained in the image, rather than details 
of the patients’ anatomy. Self-driving 
car fatalities have occurred in unusual 
confluences of conditions that the un-
derlying machine-learning algorithms 

had not been trained on.
In short, while each day brings a new 

story of a machine-learning algorithm 
achieving superhuman performance 
on some task, these marvelous results 
are only in the average case. The reli-
ability, safety, security, and transpar-
ency required for us to trust these algo-
rithms in all cases remains elusive. As 
a result, there is growing popular will 
to have more fairness, interpretability, 
robustness, and provenance in these 
systems.

They say “history doesn’t repeat it-
self, but it often rhymes.” We have seen 
the current state of affairs many times 
before with technologies that were new 
to their age. The 2016 book, Weapons of 
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behind many of the algorithms obtain-
ing superhuman performance. The 
goal of supervised machine learning is 
to find a mathematical function that 
takes data points composed of numeri-
cal, ordinal, or categorical features as 
input and predicts correct labels for 
those data points. For example, in 
credit scoring the features may be the 
income, education level, and occupa-
tion of an applicant; the label may be 
whether or not the applicant defaults 
on a given loan three years later. The 
algorithm finds the desired function by 
training on a large set of already labeled 
examples. And, although, the function 
is fit to the training data, it is applied 
to new unseen data points. It must,  

of one of the largest food companies in 
the world today. In the 1870s, at a time 
when food companies were adulterat-
ing their products with wood fibers 
and other fillers, Heinz started selling 
horseradish, relishes, and sauces made 
of natural and organic ingredients. 
Heinz offered these products in trans-
parent glass containers when others 
were using dark containers. His com-
pany innovated processes for sanitary 
food preparation, and was the first to 
offer factory tours that were open to the 
public. The H. J. Heinz Company lob-
bied for the passage of the aforemen-
tioned Pure Food and Drug Act, which 
became the precursor to regulations for 
food labels and tamper-resistant pack-

aging. These practices increased trust 
in, and adoption, of the products. They 
provided Heinz a competitive advan-
tage, but also advanced industry stan-
dards and benefitted society.

And now to the rhyme. What is the 
current state of machine learning, and 
how do we make it more trustworthy? 
What are the analogs to natural ingredi-
ents, sanitary preparation, and tamper-
resistant packages? What are machine 
learning’s transparent containers, fac-
tory tours, and food labels? 

GETTING THE RIGHT INGREDIENT MIX
Let’s begin by considering supervised 
machine learning—the most common 
form of machine learning, and the one 
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equal decisions and outcomes among 
individuals and groups. Like other be-
haviors that are not aligned with the 
values of society, unfairness diminish-
es trust. Since algorithms are endowed 
with the values of their creators, striv-
ing for equality requires diverse deploy-
ment teams with broad sets of values to 
choose among attributes to be consid-
ered as features and labels, hypothesis 
classes, and fitness criteria. 

OVERCOMING MISMATCH ISSUES
The best way to overcome data set shift, 
data poisoning, and bias is to acquire 
and train on data that is matched to the 
desired distribution. If this is not pos-
sible—good, clean, labeled, i.i.d. data is 
a hard commodity to get hold of —then 
we can turn to the machine learning 
equivalent of sanitary (and sanitizing) 
food processing. Domain adaptation 
and transfer learning are a general 
category of techniques that transform 
a training data set, or a model learned 
from it, to match a desired distribution. 
One way is to give different weights 
to different training data points. An 
extreme version of the weighting ap-
proach is discarding some data points 
altogether by setting their weights to 
zero. Many defenses against data poi-
soning attacks adopt this approach 
by discarding anomalous data points. 
Another way is by generating new i.i.d. 
data points from the desired distribu-
tion; we can use the given training set 
to help learn the generation process. 

To perform domain adaptation and 
transfer learning, we need to know the 
desired distribution or its properties. 
When the desired distribution is un-
certain, we can change the criteria by 
which we define the best fit of the pre-
dictor function. Robust formulations 
have criteria that yield predictors whose 
performance does not degrade severely 
in the face of distribution mismatch. 
As an example, we may choose to select 
a predictor function that maximizes 
the minimum accuracy across differ-
ent distributions, rather than one that 
maximizes the average accuracy only 
for the given training data set. Adapt-
ing to data set shift has been a topic of  
machine-learning research for many 
years, and advances continue to be 
made. Adversarial robustness and al-
gorithmic fairness are currently hot re-

therefore, generalize to predict well on 
these new points. 

In its basic form, the fitting is done 
to optimize a criterion such as average 
accuracy. To encourage generalization, 
the set of mathematical functions is 
restricted. Different machine-learning 
algorithms, such as neural networks, 
decision trees, and support vector ma-
chines, have different restricted sets of 
functions. These are called hypothesis 
classes. A key assumption underlying 
these algorithms is that the train-
ing data points are—and all new data 
points will be—sampled independent-
ly from the same probability distribu-
tion. This is known as the independent 
and identically distributed (i.i.d.) as-
sumption.

Returning to our food analogy, let 
us view the training data as the in-
gredients and ask if they are natural, 
untampered, and organic. The big-
gest problem in deploying machine- 
learning systems is the training data 
distribution does not always match the 
desired distribution.

Robustness to data set shift. The 
probability distribution governing the 
data may change over time, resulting in 
the training data distribution drifting 
away from the data distribution. Or, it 
may be difficult to obtain sufficient la-
beled training data to correctly model 
the current data distribution. These 
situations are known as data set shift: It 
is as if we have ingredients that are not 
a reflection of the natural state of the 
world as it exists during deployment. 
Models trained on mismatched data 
usually have severely degraded predic-
tion accuracy and lead to mistrust be-
cause promised performance numbers 
are not achieved when the systems are 
deployed. 

Protection from data poisoning. 
Data set shift is an inadvertent phe-
nomenon. A deliberate data poisoning 

attack, however, can yield even worse 
performance degradation. This in-
volves adversaries imperceptibly inject-
ing just a few carefully designed data 
points into the training data. A more 
sophisticated data poisoning attack 
involves creating a so-called backdoor. 
Data points are added to the train-
ing set so the fitted predictor function 
will output the attacker’s desired label 
for a given set of features. This label is 
not what would be expected from an 
unadulterated data set and can be ex-
ploited maliciously. Fortunately, we 
have not witnessed such an event yet. 
But if it were to happen, an attack on a 
machine-learning system via tampered 
data would cause distrust—not to men-
tion damage—at a massive scale. In 
1982, Tylenol poisoned with cyanide 
caused seven deaths in Chicago. As a 
result, the company’s share in the over-
the-counter painkiller market dropped 
from 35 to 8 percent. The potential for 
something similar happening to ma-
chine learning today is very real. 

Fairness. The third factor that may 
dissipate people’s trust in machine-
learning algorithms is bias. The desired 
training data distribution is not always 
the one that reflects reality, if the pres-
ent reality puts certain individuals at 
a systematic disadvantage. The sorts 
of biases and prejudices described at 
the beginning of the article—against 
blacks in criminal justice and women 
in employment—already present in 
decisions made by judges and hiring 
managers that get reflected in training 
data and are subsequently baked into 
machine-learning models. If practicing 
computer scientists have the “audacity 
of equality”—to borrow a phrase from 
the commentator Hasan Minhaj—then 
training data should not capture what 
is, but what could be. There are several 
mathematical definitions of algorith-
mic fairness for different notions of un-

Table 1. The different kinds of data set shift encountered in practice.

Covariate shift Distribution of features is different

Prior probability shift Distribution of labels is different

Concept drift Distribution of labels given features is different

Confounding shift Distribution of labels given a variable that 
influences both features and labels is different.
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will come regulation, and an ecosystem 
of third-party testing and verification 
laboratories. 

Social good. The final element of 
trust is intended use, which is one of the 
items in the fact sheet. Characteristics 
of trustworthy people include kindness, 
selflessness, and benevolence. Heinz 
was committed to the good of others 
and his ketchup’s mission was to be a 
“blessed relief for mothers, and other 
women in the household.” When ma-
chine learning is used to uplift human-
ity, a trust for the technology is further 
developed. A burgeoning AI-for-social-
good movement has produced a port-
folio of machine-learning projects that 
help reduce poverty, hunger, inequality, 
injustice, ill health, and other causes of 
human suffering. Moreover, in partner-
ing with non-profits, social enterprises, 
and international agencies to address 
specific problems, computer scientists 
and engineers encounter unique prob-
lem settings that naturally lead to ma-
chine learning innovations along the 
other elements of trust. 

CONCLUSION
Machine learning is increasingly affect-
ing our daily lives. In order to make it 
trustworthy, computer scientists need 
to consider measures beyond aver-
age predictive accuracy. Robustness to 
data set shift, robustness to poisoning, 
fairness, interpretability, end-to-end 
service-level provenance and transpar-
ency, and application for social good 
are not just condiments, but are essen-
tial to ushering in a world in which ma-
chine learning is a non-maleficent and 
beneficent partner that humanity can 
count on. 
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search topics; our team at IBM Research 
has recently released open-source tool-
kits for both [1, 2].

Interpretability. A machine-learning 
model may very well be accurate, reli-
able, fair, and robust but people won’t 
trust it unless they have a way of know-
ing that this is true. Certain hypothesis 
classes admit predictor functions with 
millions of coefficients composed in 
complicated ways that do not allow peo-
ple to understand how the labels are be-
ing predicted. Such models are known 
as black boxes and are the equivalent of 
opaque ketchup bottles we cannot peer 
into. Deep neural networks are one ex-
ample of black-box models. The coun-
terpoint to black-box machine learn-
ing is interpretable machine learning. 
Interpretable hypothesis classes only 
contain simpler functions like decision 
trees and Boolean rule sets that people 
can more easily understand. Through 
this understanding, it can easily be de-
termined whether the model has picked 
up on some quirks of the training data 
set that will not generalize robustly, 
whether the model contains any back-
doors, and whether the model is ex-
plicitly and unwantedly discriminating 
against certain people.

If we have features that describe the 
prediction task well, interpretable func-
tions tend to have equivalent, if not su-
perior, accuracy to black-box functions. 
While doing so, their transparency 
imbues much more trust than black  
boxes. Post-hoc explanation of black-box 
models, although currently a popular 
research topic and useful for other pur-
poses, does not create trust in nearly the 
same capacity. The main idea behind 
post-hoc explanations is to first fit a 
black-box model to data, and then either 
fit simpler and more interpretable mod-
els around each individual data point, or 
perform sensitivity analysis of the black 
box. The reason post-hoc explanations 
do not provide the same level of trust is 
because the predictions continue to be 
made by the black box. Thus, explana-
tions are sometimes inconsistent with 
the prediction, most often precisely 
where there is a lack of robustness. 

System-level transparency. Inter-
pretable machine learning provides 
transparency at the function level. But 
just as clear bottles are not enough for 
overall trust, system-level transpar-

ency—akin to factory tours and stan-
dardized food labels—is also needed 
for machine-learning systems and ser-
vices. Our team at IBM Research has re-
cently proposed and demonstrated the 
use of fact sheets for machine learning 
and artificial intelligence (AI) services 
that report the intended usage, ethical 
concerns, and development team in a 
standardized way. A fact sheet also re-
ports the lineage of the data sets and 
models used, the provenance of model 
development and training, results of 
accuracy and reliability tests, results of 
tests for robustness to data set shift and 
adversarial attacks, and results of fair-
ness tests, all standardized. When vol-
untarily released by machine-learning 
service providers, a fact sheet may be 
called a supplier’s declaration of con-
formity (SDoC), the technical term used 
in many industries and sectors for such 
documentation.

We envision the evolution of the 
SDoC for AI services to proceed as fol-
lows. A convening of corporations, stan-
dards bodies, and professional and civil 
society organizations will create stan-
dardized tests and testing protocols 
for AI services. Providers will then use 
these standards to populate and release 
SDoCs to be competitive in the market. 
Much of the SDoC computation will 
become automated as part of training, 
testing, and adaptation pipelines. The 
resulting living documentation will be 
automatically posted to distributed im-
mutable ledgers. These can be support-
ed by blockchain technologies, which 
are already being used for trust and 
transparency across the food supply 
chain, from growers to retailers. Then 

Machine-learning 
models either work 
to augment human 
abilities, or act fully 
autonomously. In 
all cases, they have 
a profound effect on 
our lives. 


