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ABSTRACT

False discovery rate (FDR) control is highly desirable in sev-
eral high-dimensional estimation problems. While solving
such problems, it is observed that traditional approaches such
as the Lasso select a high number of false positives, which in-
crease with higher noise and correlation levels in the dataset.
Stability selection is a procedure which uses randomization
with the Lasso to reduce the number of false positives. It is
known that concave regularizers such as the minimax concave
penalty (MCP) have a higher resistance to false positives than
the Lasso in the presence of such noise and correlation. The
benefits with respect to false positive control for developing
an approach integrating stability selection with concave reg-
ularizers has not been studied in the literature so far. This
motivates us to develop a novel upper bound on false discov-
ery rate control obtained through this stability selection with
minimax concave penalty approach.

Index Terms— sparse regression, concave penalties,
false discovery rate control, stability selection, interpretabil-

1ty.

1. INTRODUCTION

The standard linear regression problem has the following
form:

y=Xp+e, (1

where y € R" is a response variable, X € R™*? is a fea-
ture matrix, 8 € RP is a coefficient vector, and ¢ € R" is
a noise vector which has zero mean and sub-Gaussian noise
such that ¢ ~ N(0,0%1,,«,,). The sub-Gaussian property is
more explicitly defined as follows.

Definition 1. A vector ¢ is sub-Gaussian with noise level & if
forallt >0
P(|u’e| > 5t) < exp(—t?/2) )

Sor all vector u with ||u|l2 = 1.
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Table 1. Notation

Name Description
n number of instances
P number of features
X R™*P feature vector matrix
Y R™ response variable
B RP regression coefficient vector
A scalar regularization parameter
A vector of regularization parameters
g [0,1]7*1A] selection probability matrix
Thr cut-off parameter
0% scalar concavity parameter
h(Bj; A;~y) | family of concave penalty functions

The following class of regularized linear regression prob-
lems is studied in this paper:

B = argminL(B; A; ), 3)
BERP
where
1 P
). _ 2 o)
L(B; X y) = 5 -lly — XBI3 + ;hwj, X, @
B = (f1,--.,0p). and h(S;; A;y) is a concave penalty func-

tion consisting of parameters A and . A complete description
of the properties of this family of penalties can be found in
Section 3.

In Table 1, we present some of the main notations used
in this paper. In addition, the following terms are used fre-
quently throughout this paper. S = supp(8)={j : 5; # 0}.
The complement of S is referred to as S or N which refers
to the noise variables. S refers to the final set of variables
selected after varying the regularization parameter from A, 4
t0 Amin-

1.1. Motivation for Concave Penalties

Supervised feature selection [1, 2, 3] from high-dimensional
data involves using sparsity inducing norms in a classification
or regression framework to extract relevant variables. Gen-
erally, most popularly used sparsity inducing norms are con-
vex functions which create an optimization problem that can
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Fig. 1. Penalty plots for Lasso and MCP to show the stabiliz-
ing effect which results in lower bias for MCP.

be solved efficiently. However, recent advances in the liter-
ature [4, 5, 6] have indicated that non-convex penalties are
more effective at extracting the true set of relevant features.
However, solving these problems is non-trivial, for example,
the £yo-norm regularized least squares which is also called the
best subset selection problem is NP-hard [7]. Due to the com-
putational difficulty associated with solving it, a convex sur-
rogate such as the /;-norm regularized least squares problem
(Lasso) is solved. However, Lasso is known to overpenalize
coefficients which results in biased estimates for true vari-
ables with significant non-zero coefficient values.

Concave penalties are proven to handle such bias effec-
tively and are also easier to solve than ¢y problems [8]. In
particular, folded concave penalties such as the minimax con-
cave penalty (MCP) have a stabilizing effect where the value
of the penalty becomes constant after a certain range of 3 val-
ues which controls the penalization effectively [9]. This is
illustrated in Figure 1.

Theoretical results indicate that for a noise level with
standard deviation ¢ and universal amount of penalization

Auniv = 04/ QlflJ, MCP is said to have a selection consis-
tency property [10], which implies that the set of selected
variables is identical to the set of true nonzero regression
coefficients with high probability. However, estimating noise
level precisely from real-world data is a non-trivial task which

makes it difficult to set Ayniv.

Our proposed stability selection with concave penalties
approach handles this problem by defining a range of permis-
sible regularization parameters. This is easier to define and
makes the framework less parameter dependent.
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2. FALSE DISCOVERY RATE CONTROL

Effective FDR control [11] helps in improving model consis-
tency and interpretation. In this section, we derive an upper
bound on the expected number of false positives with our ap-
proach. This analysis is very important from a practitioner’s
perspective, as he or she can tune the number of features to be
selected at a specified false positive error rate or vice versa.
‘We now discuss the details of our theoretical analysis.

For any regularization parameter A € A, the selected set
A represents the set of features active in the model at param-
eter . For every set K C {1,2,...,p}, the probability of
being in the selected set SN is:

[T =P {K C SMD)}, )
where [P* represents the probability estimate.

For every variable &k = {1,2,...,p}, the selection proba-
bilities are given by flﬁ, A€ A Let S‘A=UA€AS'>‘, be the set
of selected variables if varying the regularization parameter A
in the set A. Let V' be the number of falsely selected variables
where V=[N N SA| = |Nx|. We now state the false positive
control theorem. The proof builds upon results presented in
Sec. 3.

Theorem 1. Assume that the distribution of {1 (kesrp k€

N} is exchangeable for all X € A. The expected number V
of false positives for our approach is then bounded for Ty, €

(5,1) by

X (a + 9/4>2|5|2

E(V) < ]

(6)

27Tth'r' -1

where o > 0.

Proof. Using the exchangeability assumption, we have that
forallk € N

P(k € S*) = E(|Na|)/|N|
=E(N N S5*)/|N].

(a+9/4>5|

IV
This result is independent of the sample size used to construct
S* for A € A. Using the second part of Lemma 4, it follows

that
<a+9/4) |S] ) 2

Using Corollary 1,

P(k e S <

[V

P{maxyea (IT"""%) > €} < ( :



forall0 < £ < 1land k € N. Using Lemma 3,

P{maxyen (I1}) > mynr }
< ]P[{maXAEA(ﬁ%mu”’)‘) +1}/2 > 7wy

= P[{maxyea (T > 27, — 1].

Using the equation above by setting & = 27y, — 1

a+9/4 15|\ 2
(Lo
Hence,

|V
E(V) =" P{maxyea(II}) > mnr }
keN

2
1 (a+9/4> |S|?
[N

1
27Tth'r‘ -1

27Tth7‘ -1

3. CONCAVE PENALTIES: THEORY

Let h(t; A; ) represent an arbitrary regularizer from this fam-
ily of penalties for a given scalar real valued variable ¢. We
then assume that the following conditions hold on the penalty
function:

1. h(0;X;v) =0
2. h(=t; A7) = h(t; A7)
3. h(t; A;) is nondecreasing in ¢ in [0, c0)

4. h(t; A\;7y) is subadditive with respect to ¢, h(z +
Yi A7) < M@ Asy) + h(y; Ay) Va,y > 0.

These have also been studied as good penalties among
non-convex functions with Lipschitz sparsity yielding proper-
ties in [12]. We now define the threshold level of the penalty
A* and the concavity parameter v* as follows:

N = infiso{t/2 + h(t; \;7)/t}
7" = maxgh(t A y) /(A7)

)

The value of this penalty evaluated for a specific regres-
sion coefficient vector § € RP

p
BB XVl =D (B A7)

Jj=1
harop(t; A;y) = min{\t — t2/2y, \2~/2}.

®
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Definition 2. We now define an upper bound that bounds a
general penalty from this family of penalties as given in (8)
via ¢1 penalty for sparse vectors

Aa, ks A;y) = sup{[[n(B; )11 : 1Bl < ak, [|B]lo = K}
©)

Proposition 1. Let \* and v* be as defined in (7). Then, the
following inequality holds

Ala, k; A y) < Ryt ()2 (10)
Proof. As h(t; \;~y) is concave in [0, c0) then by the Jensen’s
inequality A(a, k; A;7y) < kh(a; ;). Here we use the fact
that k represents the number of non-zero regression coeffi-
cients as per the definition of the ¢y norm. Now using the
definition of v* from (7), we know that the maximum value
of h(a; A; ) is (7*)(\*)2. Hence, A(a, k; A;y) < ky*(A*)2.
Here, we can use the fact that v+ ;o p = /2 by setting \*
A and refine this bound for MCP as Apcp(a, k; A;y) <
k(v/2)(N\)?. The v value for the MCP is generally set to 3
in practice which expresses the bound as function of A alone
if needed. O

Assumption 1. Let n € (0,1]. We say that the regulariza-
tion method in (3) satisfies the n-null-consistency condition
(n-NC) if the following equality holds:

azgéé}jn(llﬁ/n — XBI3/(2n) +11h(8; X 7)11)
= lle/nll3/(2n).
Lemma 1. If 3 is the global solution of (3), then I XT(y —

XB)/nllse < X*. Inparticular | XT ¢ /n) oo < n\* under the
n-NC condition given in Assumption 1.

an

Proof. Please refer to Proof of Lemma 1 from [4]. O

Lemma 2. Assume the n-NC condition given in Assumption 1
holds for n € (0,1). Suppose [ € RP satisfy

ly — XB3/(2n) + [|(3; X 1)l < lly — XBII3/(2n)
+ 1R M)l + v
with a certain v > 0. Let ¢ = B — B, e= }J_r—:’] Then,

1 X0]13/(2n) + [|R(dse; M1 < Elh(ds5 A7) 1
+v/(1—n).

Proof. Please refer to Proof of Lemma 2 from [4].
O

Theorem 2. Let {S,/S’, Ay, m, € and A(a, k; Ay ) be as
defined in (9) and Sy represents the set of variables selected
by the model while varying X\ from \paz 10 Apin. Suppose
that the 1-NC condition given in Assumption 1 holds. Con-
sider tg > 0, mg > 0 and the upper sparse eigenvalue for



a matrix X defined as k1 (mg) := | Xul|3/n

for which the following holds:
V(2654 (mo) Aar A, [S[; A7) /mo) + | X Te/nlo (12)

ma
llullo<mo:|lull2=1

< infocs<ioh(s; A;y)
Then for tg > 0,
E(|N N Sal) < mo + [6A(a, [S]: A:y)/h(to; i y)] (13)

Proof. Let 5’1 = {_] e NN S’A : |BJ| > to} and SQ
{j € Nn Sy : |Bj| < to}. It follows from (9), that
1h(ds; N; )]l < A(aq, |S]; A;~y) with the given aq. Thus,

[1S1] < h(@ses A7) 11 /P(to; A )
Using Lemma 2
< Elhlos; A )l /hlto; A y)
< £A(ax, [S[; A7)/ h(tos A y)
We now derive an upper bound on |S,|. Let Ay >

V8 (mo)Alas X, [ST: A7) /mo) satisfying
Ao + HXTE/nHOO < inf0<3<t0h(s; A7)

Here h represents the derivative of function h. The first order
KKT optimality condition implies that for all j € Sy, xJT (y—

XB)/n = hit: Xy)|,_g.

We construct this proof by proving that for j € Sy, |BJ| €
(O,to): where 27 (y — X3)/n| > Ao + || X" /1]l any set
A C S, satisfies |A| < my.

(Ao + [1XTe/nll0) 4] < IXZ(y — XB)/nllx
Using Holder’s inequality, the R.H.S can be expanded as

<|IXTe/n||o Al
+ A2 X a/ V7|2 X 8] |2/ /7.

Since, || X 4/v/7||3 < k4 (mg) from its definition.

Mol A] < JA]Y2 ) (54 (mo) | X 0][3/m)
] < ey (mo)| [ X6]13/nN3

Using Lemma 2

< 28k (mo)Alay, [S|; A7) /A3

Using our definition of Ao we obtain,

‘A| < my

Thus, It follows that max  |A| < mg which implies

ACSs,|Al<mo
that |S3| < mg. Combining this with the bound for |:S; | com-
pletes the proof. O
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Corollary 1. Let hprcp(t, A;y) be the MCP penalty as de-
fined in (8) and v* be as defined in (7). Suppose (3), is
n — NC and h(a, X;v) = M1 — %) for some a > 0 and
ar > 0. If mg = «lS| is an integer and 2v* k4 (a|S]) /o <
(1 —a1/y =m)*(1 = n)/(1+n), then

E(INNSy|) < (a+9/4>5| (14)

Proof. Using Theorem 2, we can write that
E[IN 1 8al] < mo + [€A(a, 5], A7) /hlto, A7)
< alS|+EA(a, S|, A7) /h(tos Asy)
Using the fact that h(to, A; y) > A(L — %) for tg > 0 we get

< alS| + EA(a, S|, A y) /A1 — %)

Using Proposition 1, we know that,
Ala,[S],X9) < Sy (A)?
E[|N N Sal] < afS|
S (A)?)
Al - %)

Using the fact that 4* = 7 with setting A\ = \* where =3
for the MCP and setting a;1=1, this can be simplified as

+¢

9|SIEN
= alS| + |4|£ )

As )\ is non-negative and non-zero setting £ in the range of
1/A would make A ~ 1

= (oz + 9/4) |S].

Lemma 3. Lower bound for simultaneous selection proba-
bilities. For any set K C {1,...,p}, a lower bound for the
simultaneous selection probabilities is given by

O

ﬁ;'{imult,)\ > 213[;\( 1 (15)
Proof. Please refer to Proof of sample splitting A.1 from [13].
O

Lemma 4. Ler K C {1,2,...,p} and let S* be the set of
selected variables based on a sample of size | 5 |. If P(K C

S"\) < g, then

P(ﬂ%’mult,)\ > £) < 62/5
iIfP(K C UyeaS™) < € for some A C R, then
ﬁsimult,)\) > 5} < 2,_:2/5

P{maxyeca (II}
Proof. Please refer to Proof of Lemma 2 from [13].

O
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